
Connectors and APIs

Connectors and APIs Manual
Abstract

This manual describes the Connectors and APIs that can be used with MySQL.

Document generated on: 2009-06-03 (revision: 15169)

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. All rights reserved. U.S. Government Rights - Commercial software. Govern-
ment users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is
subject to license terms. Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo and
MySQL are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the
U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. Tous droits réservés. L'utilisation est soumise aux termes du contrat de li-
cence.Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo et MySQL sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed
copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or
edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing a translation, please contact the Documentation Team.

For additional licensing information, including licenses for libraries used by MySQL, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://dev.mysql.com/doc/refman/5.0/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Connectors
This chapter describes MySQL Connectors, drivers that provide connectivity to the MySQL server for client programs. There are
currently five MySQL Connectors:

• Connector/ODBC provides driver support for connecting to a MySQL server using the Open Database Connectivity (ODBC)
API. Support is available for ODBC connectivity from Windows, Unix and Mac OS X platforms.

• Connector/NET enables developers to create .NET applications that use data stored in a MySQL database. Connector/NET im-
plements a fully-functional ADO.NET interface and provides support for use with ADO.NET aware tools. Applications that
want to use Connector/NET can be written in any of the supported .NET languages.

• The MySQL Visual Studio Plugin works with Connector/NET and Visual Studio 2005. The plugin is a MySQL DDEX Pro-
vider, which means that you can use the schema and data manipulation tools within Visual Studio to create and edit objects
within a MySQL database.

• Connector/J provides driver support for connecting to MySQL from a Java application using the standard Java Database Con-
nectivity (JDBC) API.

• Connector/MXJ is a tool that enables easy deployment and management of MySQL server and database through your Java ap-
plication.

• Connector/PHP is a Windows-only connector for PHP that provides the mysql and mysqli extensions for use with MySQL
5.0.18 and later.

For information on connecting to a MySQL server using other languages and interfaces than those detailed above, including Perl,
Python and PHP for other platforms and environments, please refer to the APIs and Libraries chapter.

iv

http://dev.mysql.com/doc/refman/5.0/en/apis.html

Chapter 1. MySQL Connector/ODBC
The MySQL Connector/ODBC is the name for the family of MySQL ODBC drivers (previously called MyODBC drivers) that
provide access to a MySQL database using the industry standard Open Database Connectivity (ODBC) API. This reference covers
Connector/ODBC 3.51 and Connector/ODBC 5.1. Both releases provide an ODBC compliant interface to MySQL Server.

MySQL Connector/ODBC provides both driver-manager based and native interfaces to the MySQL database, which full support
for MySQL functionality, including stored procedures, transactions and, with Connector/ODBC 5.1, full Unicode compliance.

For more information on the ODBC API standard and how to use it, refer to http://support.microsoft.com/kb/110093.

The application development part of this reference assumes a good working knowledge of C, general DBMS knowledge, and fi-
nally, but not least, familiarity with MySQL. For more information about MySQL functionality and its syntax, refer to ht-
tp://dev.mysql.com/doc/.

Typically, you need to install Connector/ODBC only on Windows machines. For Unix and Mac OS X you can use the native
MySQL network or named pipe to communicate with your MySQL database. You may need Connector/ODBC for Unix or Mac
OS X if you have an application that requires an ODBC interface to communicate with the database. Applications that require
ODBC to communicate with MySQL include ColdFusion, Microsoft Office, and Filemaker Pro.

Key topics:

• For help installing Connector/ODBC see Section 1.3, “Connector/ODBC Installation”.

• For information on the configuration options, see Section 1.4.2, “Connector/ODBC Connection Parameters”.

• For more information on connecting to a MySQL database from a Windows host using Connector/ODBC see Section 1.5.2,
“Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC”.

• If you want to use Microsoft Access as an interface to a MySQL database using Connector/ODBC see Section 1.5.4, “Using
Connector/ODBC with Microsoft Access”.

• General tips on using Connector/ODBC, including obtaining the last auto-increment ID see Section 1.7.1, “Connector/ODBC
General Functionality”.

• For tips and common questions on using Connector/ODBC with specific application see Section 1.7.2, “Connector/ODBC Ap-
plication Specific Tips”.

• For a general list of Frequently Asked Questions see Section 1.7.3, “Connector/ODBC Errors and Resolutions (FAQ)”.

• Additional support when using Connector/ODBC is available, see Section 1.8, “Connector/ODBC Support”.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about MySQL and ODBC in the Knowledge Base
articles about ODBC. Access to the MySQL Knowledge Base collection of articles is one of the advantages
of subscribing to MySQL Enterprise. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

1.1. Connector/ODBC Versions
There are currently two version of Connector/ODBC available:

• Connector/ODBC 5.1, currently in GA status, is a partial rewrite of the of the 3.51 code base and is designed to work with all
versions of MySQL from 4.1. Connector/ODBC 5.1 will be a complete implementation of the ODBC Core interface,plus more
Level 1 and Level 2 functionality of the ODBC specification than that currently supported by Connector/ODBC 3.51. See Sec-
tion 1.2.1, “Connector/ODBC Roadmap”.

Connector/ODBC 5.1 also includes the following changes and improvements over the 3.51 release:

• Improved support on Windows 64-bit platforms.

• Full Unicode support at the driver level. This includes support for the SQL_WCHAR datatype, and support for Unicode lo-
gin, password and DSN configurations. For more information,. see Microsoft Knowledgebase Article #716246.

• Support for the SQL_NUMERIC_STRUCT datatype, which provides easier access to the precise definition of numeric val-
ues. For more information, see Microsoft Knowledgebase Article #714556

1

http://support.microsoft.com/kb/110093
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
https://kb.mysql.com/search.php?cat=search&category=9
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://msdn2.microsoft.com/en-us/library/ms716246.aspx
http://msdn2.microsoft.com/en-us/library/ms714556.aspx

• Native Windows setup library. This replaces the Qt library based interface for configuring DSN information within the
ODBC Data Sources application.

• Support for the ODBC descriptor, which improves the handling and metadata of columns and parameter data. For more in-
formation, see Microsoft Knowledgebase Article #716339.

• Connector/ODBC 3.51 is the current release of the 32-bit ODBC driver, also known as the MySQL ODBC 3.51 driver. Con-
nector/ODBC 3.51 has support for ODBC 3.5x specification level 1 (complete core API + level 2 features) in order to continue
to provide all functionality of ODBC for accessing MySQL.

The manual for versions of Connector/ODBC older than 3.51 can be located in the corresponding binary or source distribution.
Please note that versions of Connector/ODBC earlier than the 3.51 revision were not fully compliant with the ODBC specification.

Note

Development on Connector/ODBC 5.0 was stopped due to development issues. Connector/ODBC 5.1 is now the cur-
rent development release.

Note

From this section onward, the primary focus of this guide is the Connector/ODBC 3.51 and Connector/ODBC 5.1
drivers.

Note

Version numbers for MySQL products are formatted as X.X.X. However, Windows tools (Control Panel, properties
display) may show the version numbers as XX.XX.XX. For example, the official MySQL formatted version number
5.0.9 may be displayed by Windows tools as 5.00.09. The two versions are the same; only the number display format
is different.

1.2. Connector/ODBC Introduction
ODBC (Open Database Connectivity) provides a way for client programs to access a wide range of databases or data sources.
ODBC is a standardized API that allows connections to SQL database servers. It was developed according to the specifications of
the SQL Access Group and defines a set of function calls, error codes, and data types that can be used to develop database-inde-
pendent applications. ODBC usually is used when database independence or simultaneous access to different data sources is re-
quired.

For more information about ODBC, refer to http://support.microsoft.com/kb/110093.

1.2.1. Connector/ODBC Roadmap
Connector/ODBC 5.1 is currently in development and will be a complete implementation of the ODBC Core interface,plus more
Level 1 and Level 2 functionality of the ODBC specification than that currently supported by Connector/ODBC 3.51.

The following functionality was added or changed as part of 5.1:

• Add support for SQL_NUMERIC_STRUCT: MSDN Article 714556.

• Replace installer library with new implementation (from v5 tree).

• Implement native Windows setup library.

• Implement SQLCancel() (Bug#15601): MSDN Article 714112.

The following functionality will be added in a version after 5.1:

• Implement native Mac OS X setup library.

• Replace OPTIONS flags with individual DSN settings (but support OPTIONS for backwards-compatibility).

• Fix support for SQLBIGINT (Bug#28887): MSDN Article 714121.

• Make diagnostics support standards-compliant: MSDN Article 711021.

MySQL Connector/ODBC

2

http://msdn2.microsoft.com/en-us/library/ms716339.aspx
http://support.microsoft.com/kb/110093
http://msdn2.microsoft.com/en-us/library/ms714556.aspx
http://bugs.mysql.com/15601
http://msdn2.microsoft.com/en-us/library/ms714112.aspx
http://bugs.mysql.com/28887
http://msdn2.microsoft.com/en-us/library/ms714121.aspx
http://msdn2.microsoft.com/en-us/library/ms711021.aspx

• Add support for SQL_ATTR_METADATA_ID: MSDN Article 716447.

• Implement SQLBrowseConnect(): MSDN Article 714565, MSDN Article 712446.

• Implement arrays of parameters: MSDN Article 711818.

1.2.2. General Information About ODBC and Connector/ODBC
Open Database Connectivity (ODBC) is a widely accepted application-programming interface (API) for database access. It is based
on the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC for database APIs and uses Structured Query Language
(SQL) as its database access language.

A survey of ODBC functions supported by Connector/ODBC is given at Section 1.6.1, “Connector/ODBC API Reference”. For
general information about ODBC, see http://support.microsoft.com/kb/110093.

1.2.2.1. Connector/ODBC Architecture

The Connector/ODBC architecture is based on five components, as shown in the following diagram:

• Application:

The Application uses the ODBC API to access the data from the MySQL server. The ODBC API in turn uses the communicates

MySQL Connector/ODBC

3

http://msdn2.microsoft.com/en-us/library/ms716447.aspx
http://msdn2.microsoft.com/en-us/library/ms714565.aspx
http://msdn2.microsoft.com/en-us/library/ms712446.aspx
http://msdn2.microsoft.com/en-us/library/ms711818.aspx
http://support.microsoft.com/kb/110093

with the Driver Manager. The Application communicates with the Driver Manager using the standard ODBC calls. The Applic-
ation does not care where the data is stored, how it is stored, or even how the system is configured to access the data. It needs to
know only the Data Source Name (DSN).

A number of tasks are common to all applications, no matter how they use ODBC. These tasks are:

• Selecting the MySQL server and connecting to it

• Submitting SQL statements for execution

• Retrieving results (if any)

• Processing errors

• Committing or rolling back the transaction enclosing the SQL statement

• Disconnecting from the MySQL server

Because most data access work is done with SQL, the primary tasks for applications that use ODBC are submitting SQL state-
ments and retrieving any results generated by those statements.

• Driver manager:

The Driver Manager is a library that manages communication between application and driver or drivers. It performs the follow-
ing tasks:

• Resolves Data Source Names (DSN). The DSN is a configuration string that identifies a given database driver, database,
database host and optionally authentication information that enables an ODBC application to connect to a database using a
standardized reference.

Because the database connectivity information is identified by the DSN, any ODBC compliant application can connect to
the data source using the same DSN reference. This eliminates the need to separately configure each application that needs
access to a given database; instead you instruct the application to use a pre-configured DSN.

• Loading and unloading of the driver required to access a specific database as defined within the DSN. For example, if you
have configured a DSN that connects to a MySQL database then the driver manager will load the Connector/ODBC driver
to enable the ODBC API to communicate with the MySQL host.

• Processes ODBC function calls or passes them to the driver for processing.

• Connector/ODBC Driver:

The Connector/ODBC driver is a library that implements the functions supported by the ODBC API. It processes ODBC func-
tion calls, submits SQL requests to MySQL server, and returns results back to the application. If necessary, the driver modifies
an application's request so that the request conforms to syntax supported by MySQL.

• DSN Configuration:

The ODBC configuration file stores the driver and database information required to connect to the server. It is used by the
Driver Manager to determine which driver to be loaded according to the definition in the DSN. The driver uses this to read con-
nection parameters based on the DSN specified. For more information, Section 1.4, “Connector/ODBC Configuration”.

• MySQL Server:

The MySQL database where the information is stored. The database is used as the source of the data (during queries) and the
destination for data (during inserts and updates).

1.2.2.2. ODBC Driver Managers

An ODBC Driver Manager is a library that manages communication between the ODBC-aware application and any drivers. Its
main functionality includes:

• Resolving Data Source Names (DSN).

• Driver loading and unloading.

• Processing ODBC function calls or passing them to the driver.

MySQL Connector/ODBC

4

Both Windows and Mac OS X include ODBC driver managers with the operating system. Most ODBC Driver Manager imple-
mentations also include an administration application that makes the configuration of DSN and drivers easier. Examples and in-
formation on these managers, including Unix ODBC driver managers are listed below:

• Microsoft Windows ODBC Driver Manager (odbc32.dll), http://support.microsoft.com/kb/110093.

• Mac OS X includes ODBC Administrator, a GUI application that provides a simpler configuration mechanism for the
Unix iODBC Driver Manager. You can configure DSN and driver information either through ODBC Administrator or through
the iODBC configuration files. This also means that you can test ODBC Administrator configurations using the iodbctest
command. http://www.apple.com.

• unixODBC Driver Manager for Unix (libodbc.so). See http://www.unixodbc.org, for more information. The unixODBC
Driver Manager includes the Connector/ODBC driver 3.51 in the installation package, starting with version unixODBC 2.1.2.

• iODBC ODBC Driver Manager for Unix (libiodbc.so), see http://www.iodbc.org, for more information.

1.3. Connector/ODBC Installation
You can install the Connector/ODBC drivers using two different methods, a binary installation and a source installation. The binary
installation is the easiest and most straightforward method of installation. Using the source installation methods should only be ne-
cessary on platforms where a binary installation package is not available, or in situations where you want to customize or modify
the installation process or Connector/ODBC drivers before installation.

Where to Get Connector/ODBC

Sun Microsystems, Inc distributes its MySQL products under the General Public License (GPL). You can get a copy of the latest
version of Connector/ODBC binaries and sources from our Web site at http://dev.mysql.com/downloads/.

For more information about Connector/ODBC, visit http://www.mysql.com/products/myodbc/.

For more information about licensing, visit http://www.mysql.com/company/legal/licensing/.

Supported Platforms

Connector/ODBC can be used on all major platforms supported by MySQL. You can install it on:

• Windows 95, 98, Me, NT, 2000, XP, and 2003

• All Unix-like Operating Systems, including: AIX, Amiga, BSDI, DEC, FreeBSD, HP-UX 10/11, Linux, NetBSD, OpenBSD,
OS/2, SGI Irix, Solaris, SunOS, SCO OpenServer, SCO UnixWare, Tru64 Unix

• Mac OS X and Mac OS X Server

Using a binary distribution offers the most straightforward method for installing Connector/ODBC. If you want more control over
the driver, the installation location and or to customize elements of the driver you will need to build and install from the source.

If a binary distribution is not available for a particular platform build the driver from the original source code. You can contribute
the binaries you create to MySQL by sending a mail message to <myodbc@lists.mysql.com>, so that it becomes available
for other users.

Note

On all non-Windows platforms except Mac OS X, the driver is built against unixODBC and is expecting a 2-byte
SQLWCHAR, not 4 bytes as iODBC is using. For this reason, the binaries are only compatible with unixODBC and
you will need to recompile the driver against iODBC if you wish to use them together. For further information see
Section 1.2.2.2, “ODBC Driver Managers”.

For further instructions:

Platform Binary Source

Windows Installation Instructions Build Instructions

Unix/Linux Installation Instructions Build Instructions

Mac OS X Installation Instructions

MySQL Connector/ODBC

5

http://support.microsoft.com/kb/110093
http://www.apple.com
http://www.unixodbc.org
http://www.iodbc.org
http://dev.mysql.com/downloads/
http://www.mysql.com/products/myodbc/
http://www.mysql.com/company/legal/licensing/

1.3.1. Installing Connector/ODBC from a Binary Distribution on Windows
Before installing the Connector/ODBC drivers on Windows you should ensure that your Microsoft Data Access Components
(MDAC) are up to date. You can obtain the latest version from the Microsoft Data Access and Storage Web site.

There are three available distribution types to use when installing for Windows. The contents in each case are identical, it is only
the installation method which is different.

• Zipped installer consists of a Zipped package containing a standalone installation application. To install from this package, you
must unzip the installer, and then run the installation application. See Section 1.3.1.1, “Installing the Windows Connector/
ODBC Driver using an installer” to complete the installation.

• MSI installer, an installation file that can be used with the installer included in Windows 2000, Windows XP and Windows
Server 2003. See Section 1.3.1.1, “Installing the Windows Connector/ODBC Driver using an installer” to complete the installa-
tion.

• Zipped DLL package, containing the DLL files that need must be manually installed. See Section 1.3.1.2, “Installing the Win-
dows Connector/ODBC Driver using the Zipped DLL package” to complete the installation.

Note

An OLEDB/ODBC driver for Windows 64-bit is available from Microsoft Downloads.

1.3.1.1. Installing the Windows Connector/ODBC Driver using an installer

The installer packages offer a very simple method for installing the Connector/ODBC drivers. If you have downloaded the zipped
installer then you must extract the installer application. The basic installation process is identical for both installers.

You should follow these steps to complete the installation:

1. Double click on the standalone installer that you extracted, or the MSI file you downloaded.

2. The MySQL Connector/ODBC 3.51 - Setup Wizard will start. Click the NEXT button to begin the installation process.

MySQL Connector/ODBC

6

http://support.microsoft.com/kb/110093
http://www.microsoft.com/downloads/details.aspx?FamilyID=000364db-5e8b-44a8-b9be-ca44d18b059b&displaylang=en

3. You will need to choose the installation type. The Typical installation provides the standard files you will need to connect to a
MySQL database using ODBC. The Complete option installs all the available files, including debug and utility components. It
is recommended you choose one of these two options to complete the installation. If choose one of these methods, click NEXT
and then proceed to step 5.

You may also choose a Custom installation, which enables you to select the individual components that you want to install.
You have chosen this method, click NEXT and then proceed to step 4.

MySQL Connector/ODBC

7

4. If you have chosen a custom installation, use the pop-ups to select which components to install and then click NEXT to install
the necessary files.

MySQL Connector/ODBC

8

5. Once the files have copied to your machine, the installation is complete. Click FINISH to exit the installer.

MySQL Connector/ODBC

9

Now the installation is complete, you can continue to configure your ODBC connections using Section 1.4, “Connector/ODBC
Configuration”.

1.3.1.2. Installing the Windows Connector/ODBC Driver using the Zipped DLL package

If you have downloaded the Zipped DLL package then you must install the individual files required for Connector/ODBC opera-
tion manually. Once you have unzipped the installation files, you can either perform this operation by hand, executing each state-
ment individually, or you can use the included Batch file to perform an installation to the default locations.

To install using the Batch file:

1. Unzip the Connector/ODBC Zipped DLL package.

2. Open a Command Prompt.

3. Change to the directory created when you unzipped the Connector/ODBC Zipped DLL package.

4. Run Install.bat:

C:\> Install.bat

This will copy the necessary files into the default location, and then register the Connector/ODBC driver with the Windows
ODBC manager.

If you want to copy the files to an alternative location - for example, to run or test different versions of the Connector/ODBC driver
on the same machine, then you must copy the files by hand. It is however not recommended to install these files in a non-standard
location. To copy the files by hand to the default installation location use the following steps:

1. Unzip the Connector/ODBC Zipped DLL package.

MySQL Connector/ODBC

10

2. Open a Command Prompt.

3. Change to the directory created when you unzipped the Connector/ODBC Zipped DLL package.

4. Copy the library files to a suitable directory. The default is to copy them into the default Windows system directory
\Windows\System32:

C:\> copy lib\myodbc3S.dll \Windows\System32
C:\> copy lib\myodbc3S.lib \Windows\System32
C:\> copy lib\myodbc3.dll \Windows\System32
C:\> copy lib\myodbc3.lib \Windows\System32

5. Copy the Connector/ODBC tools. These must be placed into a directory that is in the system PATH. The default is to install
these into the Windows system directory \Windows\System32:

C:\> copy bin\myodbc3i.exe \Windows\System32
C:\> copy bin\myodbc3m.exe \Windows\System32
C:\> copy bin\myodbc3c.exe \Windows\System32

6. Optionally copy the help files. For these files to be accessible through the help system, they must be installed in the Windows
system directory:

C:\> copy doc*.hlp \Windows\System32

7. Finally, you must register the Connector/ODBC driver with the ODBC manager:

C:\> myodbc3i -a -d -t"MySQL ODBC 3.51 Driver;\
DRIVER=myodbc3.dll;SETUP=myodbc3S.dll"

You must change the references to the DLL files and command location in the above statement if you have not installed these
files into the default location.

1.3.2. Installing Connector/ODBC from a Binary Distribution on Unix
There are two methods available for installing Connector/ODBC on Unix from a binary distribution. For most Unix environments
you will need to use the tarball distribution. For Linux systems, there is also an RPM distribution available.

Note

To install Connector/ODBC 5.1 on Unix you require unixODBC 2.2.12 or later to be installed.

1.3.2.1. Installing Connector/ODBC from a Binary Tarball Distribution

To install the driver from a tarball distribution (.tar.gz file), download the latest version of the driver for your operating system
and follow these steps that demonstrate the process using the Linux version of the tarball:

shell> su root
shell> gunzip mysql-connector-odbc-3.51.11-i686-pc-linux.tar.gz
shell> tar xvf mysql-connector-odbc-3.51.11-i686-pc-linux.tar
shell> cd mysql-connector-odbc-3.51.11-i686-pc-linux

Read the installation instructions in the INSTALL file and execute these commands.

Then proceed on to Section 1.4.5, “Configuring a Connector/ODBC DSN on Unix”, to configure the DSN for Connector/ODBC.
For more information, refer to the INSTALL file that comes with your distribution.

1.3.2.2. Installing Connector/ODBC from an RPM Distribution

To install or upgrade Connector/ODBC from an RPM distribution on Linux, simply download the RPM distribution of the latest
version of Connector/ODBC and follow the instructions below. Use su root to become root, then install the RPM file.

If you are installing for the first time:

shell> su root
shell> rpm -ivh mysql-connector-odbc-3.51.12.i386.rpm

If the driver exists, upgrade it like this:

shell> su root
shell> rpm -Uvh mysql-connector-odbc-3.51.12.i386.rpm

MySQL Connector/ODBC

11

If there is any dependency error for MySQL client library, libmysqlclient, simply ignore it by supplying the --nodeps op-
tion, and then make sure the MySQL client shared library is in the path or set through LD_LIBRARY_PATH.

This installs the driver libraries and related documents to /usr/local/lib and /usr/share/doc/MyODBC, respectively.
Proceed onto Section 1.4.5, “Configuring a Connector/ODBC DSN on Unix”.

To uninstall the driver, become root and execute an rpm command:

shell> su root
shell> rpm -e mysql-connector-odbc

1.3.3. Installing Connector/ODBC from a Binary Distribution on Mac OS X
Mac OS X is based on the FreeBSD operating system, and you can normally use the MySQL network port for connecting to
MySQL servers on other hosts. Installing the Connector/ODBC driver enables you to connect to MySQL databases on any platform
through the ODBC interface. You should only need to install the Connector/ODBC driver when your application requires an
ODBC interface. Applications that require or can use ODBC (and therefore the Connector/ODBC driver) include ColdFusion, File-
maker Pro, 4th Dimension and many other applications.

Mac OS X includes its own ODBC manager, based on the iODBC manager. Mac OS X includes an administration tool that
provides easier administration of ODBC drivers and configuration, updating the underlying iODBC configuration files.

The method for installing Connector/ODBC on Mac OS X depends on the version on Connector/ODBC you are using. For Con-
nector/ODBC 3.51.14 and later, the package is provided as a compressed tar archive that you must manually install. For Connector/
ODBC 3.51.13 and earlier the software was provided on a compressed disk image (.dmg) file and included an installer.

In either case, the driver is designed to work with the iODBC driver manager included with Mac OS X.

To install Connector/ODBC 3.51.14 and later:

1. Download the installation file. Note that versions are available for both PowerPC and Intel platforms.

2. Extract the archive:

shell> tar zxf mysql-connector-odbc-3.51.16-osx10.4-x86-32bit.tar.gz

3. The directory created will contain two subdirectories, lib and bin. You need to copy these to a suitable location such as /
usr/local:

shell> cp bin/* /usr/local/bin
shell> cp lib/* /usr/local/lib

4. Finally, you must register the driver with iODBC using the myodbc3i tool you just installed:

shell> myodbc3i -a -d -t"MySQL ODBC 3.51 Driver;Driver=/usr/local/lib/libmyodbc3.so;Setup=/usr/local/lib/libmyodbc3S.so"

You can verify the installed drivers either by using the ODBC Administrator application or the myodbc3i utility:

shell> myodbc3i -q -d

To install Connector/ODBC 3.51.13 and earlier, follow these steps:

1. Download the file to your computer and double-click on the downloaded image file.

2. Within the disk image you will find an installer package (with the .pkg extension). Double click on this file to start the Mac
OS X installer.

3. You will be presented with the installer welcome message. Click the CONTINUE button to begin the installation process.

MySQL Connector/ODBC

12

4. Please take the time to read the Important Information as it contains guidance on how to complete the installation process.
Once you have read the notice and collected the necessary information, click CONTINUE.

MySQL Connector/ODBC

13

5. Connector/ODBC drivers are made available under the GNU General Public License. Please read the license if you are not fa-
miliar with it before continuing installation. Click CONTINUE to approve the license (you will be asked to confirm that de-
cision) and continue the installation.

6. Choose a location to install the Connector/ODBC drivers and the ODBC Administrator application. You must install the files
onto a drive with an operating system and you may be limited in the choices available. Select the drive you want to use, and
then click CONTINUE.

MySQL Connector/ODBC

14

7. The installer will automatically select the files that need to be installed on your machine. Click INSTALL to continue. The in-
staller will copy the necessary files to your machine. A progress bar will be shown indicating the installation progress.

MySQL Connector/ODBC

15

8. When installation has been completed you will get a window like the one shown below. Click CLOSE to close and quit the in-
staller.

1.3.4. Installing Connector/ODBC from a Source Distribution on Windows
You should only need to install Connector/ODBC from source on Windows if you want to change or modify the source or installa-
tion. If you are unsure whether to install from source, please use the binary installation detailed in Section 1.3.1, “Installing Con-
nector/ODBC from a Binary Distribution on Windows”.

Installing Connector/ODBC from source on Windows requires a number of different tools and packages:

• MDAC, Microsoft Data Access SDK from http://support.microsoft.com/kb/110093.

• Suitable C compiler, such as Microsoft Visual C++ or the C compiler included with Microsoft Visual Studio.

• Compatible make tool. Microsoft's nmake is used in the examples in this section.

• MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL 4.0.16 or higher). This is required
because Connector/ODBC uses new calls and structures that exist only starting from this version of the library. To get the client
libraries and include files, visit http://dev.mysql.com/downloads/.

1.3.4.1. Building Connector/ODBC 3.51

Connector/ODBC source distributions include Makefiles that require the nmake or other make utility. In the distribution, you
can find Makefile for building the release version and Makefile_debug for building debugging versions of the driver librar-
ies and DLLs.

To build the driver, use this procedure:

1. Download and extract the sources to a folder, then change directory into that folder. The following command assumes the
folder is named myodbc3-src:

MySQL Connector/ODBC

16

http://support.microsoft.com/kb/110093
http://dev.mysql.com/downloads/

C:\> cd myodbc3-src

2. Edit Makefile to specify the correct path for the MySQL client libraries and header files. Then use the following commands
to build and install the release version:

C:\> nmake -f Makefile
C:\> nmake -f Makefile install

nmake -f Makefile builds the release version of the driver and places the binaries in subdirectory called Release.

nmake -f Makefile install installs (copies) the driver DLLs and libraries (myodbc3.dll, myodbc3.lib) to
your system directory.

3. To build the debug version, use Makefile_Debug rather than Makefile, as shown below:

C:\> nmake -f Makefile_debug
C:\> nmake -f Makefile_debug install

4. You can clean and rebuild the driver by using:

C:\> nmake -f Makefile clean
C:\> nmake -f Makefile install

Note

• Make sure to specify the correct MySQL client libraries and header files path in the Makefiles (set the
MYSQL_LIB_PATH and MYSQL_INCLUDE_PATH variables). The default header file path is assumed to be
C:\mysql\include. The default library path is assumed to be C:\mysql\lib\opt for release DLLs and
C:\mysql\lib\debug for debug versions.

• For the complete usage of nmake, visit ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp.

• If you are using the Subversion tree for compiling, all Windows-specific Makefiles are named as
Win_Makefile*.

1.3.4.2. Testing

After the driver libraries are copied/installed to the system directory, you can test whether the libraries are properly built by using
the samples provided in the samples subdirectory:

C:\> cd samples
C:\> nmake -f Makefile all

1.3.5. Installing Connector/ODBC from a Source Distribution on Unix
You need the following tools to build MySQL from source on Unix:

• A working ANSI C++ compiler. gcc 2.95.2 or later, SGI C++, and SunPro C++ are some of the compilers that are known to
work.

• A good make program. GNU make is always recommended and is sometimes required.

• MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL 4.0.16 or higher). This is required
because Connector/ODBC uses new calls and structures that exist only starting from this version of the library. To get the client
libraries and include files, visit http://dev.mysql.com/downloads/.

If you have built your own MySQL server and/or client libraries from source then you must have used the -
-enable-thread-safe-client option to configure when the libraries were built.

You should also ensure that the libmysqlclient library were built and installed as a shared library.

• A compatible ODBC manager must be installed. Connector/ODBC is known to work with the iODBC and unixODBC man-
agers. See Section 1.2.2.2, “ODBC Driver Managers”, for more information.

MySQL Connector/ODBC

17

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://dev.mysql.com/downloads/
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_enable-thread-safe-client
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_enable-thread-safe-client

• If you are using a character set that isn't compiled into the MySQL client library then you need to install the MySQL character
definitions from the charsets directory into SHAREDIR (by default,
/usr/local/mysql/share/mysql/charsets). These should be in place if you have installed the MySQL server on
the same machine. See Character Set Support, for more information on character set support.

Once you have all the required files, unpack the source files to a separate directory, you then have to run configure and build
the library using make.

1.3.5.1. Typical configure Options

The configure script gives you a great deal of control over how you configure your Connector/ODBC build. Typically you do
this using options on the configure command line. You can also affect configure using certain environment variables. For a
list of options and environment variables supported by configure, run this command:

shell> ./configure --help

Some of the more commonly used configure options are described here:

1. To compile Connector/ODBC, you need to supply the MySQL client include and library files path using the -
-with-mysql-path=DIR option, where DIR is the directory where MySQL is installed.

MySQL compile options can be determined by running DIR/bin/mysql_config.

2. Supply the standard header and library files path for your ODBC Driver Manager (iODBC or unixODBC).

• If you are using iODBC and iODBC is not installed in its default location (/usr/local), you might have to use the -
-with-iodbc=DIR option, where DIR is the directory where iODBC is installed.

If the iODBC headers do not reside in DIR/include, you can use the --with-iodbc-includes=INCDIR option
to specify their location.

The applies to libraries. If they are not in DIR/lib, you can use the --with-iodbc-libs=LIBDIR option.

• If you are using unixODBC, use the --with-unixODBC=DIR option (case sensitive) to make configure look for
unixODBC instead of iODBC by default, DIR is the directory where unixODBC is installed.

If the unixODBC headers and libraries aren't located in DIR/include and DIR/lib, use the -
-with-unixODBC-includes=INCDIR and --with-unixODBC-libs=LIBDIR options.

3. You might want to specify an installation prefix other than /usr/local. For example, to install the Connector/ODBC
drivers in /usr/local/odbc/lib, use the --prefix=/usr/local/odbc option.

The final configuration command looks something like this:

shell> ./configure --prefix=/usr/local \
--with-iodbc=/usr/local \
--with-mysql-path=/usr/local/mysql

1.3.5.2. Additional configure Options

There are a number of other options that you need, or want, to set when configuring the Connector/ODBC driver before it is built.

• To link the driver with MySQL thread safe client libraries libmysqlclient_r.so or libmysqlclient_r.a, you must
specify the following configure option:

--enable-thread-safe

and can be disabled (default) using

--disable-thread-safe

This option enables the building of the driver thread-safe library libmyodbc3_r.so from by linking with MySQL thread-
safe client library libmysqlclient_r.so (The extensions are OS dependent).

If the compilation with the thread-safe option fails, it may be because the correct thread-libraries on the system could not be
located. You should set the value of LIBS to point to the correct thread library for your system.

MySQL Connector/ODBC

18

http://dev.mysql.com/doc/refman/5.0/en/charset.html

LIBS="-lpthread" ./configure ..

• You can enable or disable the shared and static versions of Connector/ODBC using these options:

--enable-shared[=yes/no]
--disable-shared
--enable-static[=yes/no]
--disable-static

• By default, all the binary distributions are built as non-debugging versions (configured with --without-debug).

To enable debugging information, build the driver from source distribution and use the --with-debug option when you run
configure.

• This option is available only for source trees that have been obtained from the Subversion repository. This option does not ap-
ply to the packaged source distributions.

By default, the driver is built with the --without-docs option. If you would like the documentation to be built, then ex-
ecute configure with:

--with-docs

1.3.5.3. Building and Compilation

To build the driver libraries, you have to just execute make.

shell> make

If any errors occur, correct them and continue the build process. If you aren't able to build, then send a detailed email to
<myodbc@lists.mysql.com> for further assistance.

1.3.5.4. Building Shared Libraries

On most platforms, MySQL does not build or support .so (shared) client libraries by default. This is based on our experience of
problems when building shared libraries.

In cases like this, you have to download the MySQL distribution and configure it with these options:

--without-server --enable-shared

To build shared driver libraries, you must specify the --enable-shared option for configure. By default, configure
does not enable this option.

If you have configured with the --disable-shared option, you can build the .so file from the static libraries using the fol-
lowing commands:

shell> cd mysql-connector-odbc-3.51.01
shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \

$CC -bundle -flat_namespace -undefined error \
-o .libs/libmyodbc3-3.51.01.so \
catalog.o connect.o cursor.o dll.o error.o execute.o \
handle.o info.o misc.o myodbc3.o options.o prepare.o \
results.o transact.o utility.o \
-L/usr/local/mysql/lib/mysql/ \
-L/usr/local/iodbc/lib/ \
-lz -lc -lmysqlclient -liodbcinst

Make sure to change -liodbcinst to -lodbcinst if you are using unixODBC instead of iODBC, and configure the library
paths accordingly.

This builds and places the libmyodbc3-3.51.01.so file in the .libs directory. Copy this file to the Connector/ODBC lib-
rary installation directory (/usr/local/lib (or the lib directory under the installation directory that you supplied with the -
-prefix).

shell> cd .libs
shell> cp libmyodbc3-3.51.01.so /usr/local/lib
shell> cd /usr/local/lib
shell> ln -s libmyodbc3-3.51.01.so libmyodbc3.so

MySQL Connector/ODBC

19

http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-debug
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_prefix
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_prefix

To build the thread-safe driver library:

shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3_r-3.51.01.so
catalog.o connect.o cursor.o dll.o error.o execute.o
handle.o info.o misc.o myodbc3.o options.o prepare.o
results.o transact.o utility.o
-L/usr/local/mysql/lib/mysql/
-L/usr/local/iodbc/lib/
-lz -lc -lmysqlclient_r -liodbcinst

1.3.5.5. Installing Driver Libraries

To install the driver libraries, execute the following command:

shell> make install

That command installs one of the following sets of libraries:

For Connector/ODBC 3.51:

• libmyodbc3.so

• libmyodbc3-3.51.01.so, where 3.51.01 is the version of the driver

• libmyodbc3.a

For thread-safe Connector/ODBC 3.51:

• libmyodbc3_r.so

• libmyodbc3-3_r.51.01.so

• libmyodbc3_r.a

For more information on build process, refer to the INSTALL file that comes with the source distribution. Note that if you are try-
ing to use the make from Sun, you may end up with errors. On the other hand, GNU gmake should work fine on all platforms.

1.3.5.6. Testing Connector/ODBC on Unix

To run the basic samples provided in the distribution with the libraries that you built, use the following command:

shell> make test

Before running the tests, create the DSN 'myodbc3' in odbc.ini and set the environment variable ODBCINI to the correct
odbc.ini file; and MySQL server is running. You can find a sample odbc.ini with the driver distribution.

You can even modify the samples/run-samples script to pass the desired DSN, UID, and PASSWORD values as the com-
mand-line arguments to each sample.

1.3.5.7. Building Connector/ODBC from Source on Mac OS X

To build the driver on Mac OS X (Darwin), make use of the following configure example:

shell> ./configure --prefix=/usr/local
--with-unixODBC=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-gui=no
--host=powerpc-apple

The command assumes that the unixODBC and MySQL are installed in the default locations. If not, configure accordingly.

On Mac OS X, --enable-shared builds .dylib files by default. You can build .so files like this:

shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \

$CC -bundle -flat_namespace -undefined error

MySQL Connector/ODBC

20

-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclient -lz -lc

To build the thread-safe driver library:

shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclienti_r -lz -lc -lpthread

Make sure to change the -liodbcinst to -lodbcinst in case of using unixODBC instead of iODBC and configure the lib-
raries path accordingly.

In Apple's version of GCC, both cc and gcc are actually symbolic links to gcc3.

Copy this library to the $prefix/lib directory and symlink to libmyodbc3.so.

You can cross-check the output shared-library properties using this command:

shell> otool -LD .libs/libmyodbc3-3.51.01.so

1.3.5.8. Building Connector/ODBC from Source on HP-UX

To build the driver on HP-UX 10.x or 11.x, make use of the following configure example:

If using cc:

shell> CC="cc" \
CFLAGS="+z" \
LDFLAGS="-Wl,+b:-Wl,+s" \
./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql/lib/mysql
--enable-shared
--enable-thread-safe

If using gcc:

shell> CC="gcc" \
LDFLAGS="-Wl,+b:-Wl,+s" \
./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql
--enable-shared
--enable-thread-safe

Once the driver is built, cross-check its attributes using chatr .libs/libmyodbc3.sl to determine whether you need to
have set the MySQL client library path using the SHLIB_PATH environment variable. For static versions, ignore all shared-library
options and run configure with the --disable-shared option.

1.3.5.9. Building Connector/ODBC from Source on AIX

To build the driver on AIX, make use of the following configure example:

shell> ./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-thread-safe

Note

For more information about how to build and set up the static and shared libraries across the different platforms refer
to ' Using static and shared libraries across platforms'.

1.3.6. Installing Connector/ODBC from the Development Source Tree

Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get MySQL

MySQL Connector/ODBC

21

http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html

Connector/ODBC up and running on your system, you should use a standard release distribution.

To be able to access the Connector/ODBC source tree, you must have Subversion installed. Subversion is freely available from ht-
tp://subversion.tigris.org/.

To build from the source trees, you need the following tools:

• autoconf 2.52 (or newer)

• automake 1.4 (or newer)

• libtool 1.4 (or newer)

• m4

The most recent development source tree is available from our public Subversion trees at ht-
tp://dev.mysql.com/tech-resources/sources.html.

To checkout out the Connector/ODBC sources, change to the directory where you want the copy of the Connector/ODBC tree to be
stored, then use the following command:

shell> svn co http://svn.mysql.com/svnpublic/connector-odbc3

You should now have a copy of the entire Connector/ODBC source tree in the directory connector-odbc3. To build from this
source tree on Unix or Linux follow these steps:

shell> cd connector-odbc3
shell> aclocal
shell> autoheader
shell> autoconf
shell> automake;
shell> ./configure # Add your favorite options here
shell> make

For more information on how to build, refer to the INSTALL file located in the same directory. For more information on options to
configure, see Section 1.3.5.1, “Typical configure Options”

When the build is done, run make install to install the Connector/ODBC 3.51 driver on your system.

If you have gotten to the make stage and the distribution does not compile, please report it to <myodbc@lists.mysql.com>.

On Windows, make use of Windows Makefiles WIN-Makefile and WIN-Makefile_debug in building the driver. For more
information, see Section 1.3.4, “Installing Connector/ODBC from a Source Distribution on Windows”.

After the initial checkout operation to get the source tree, you should run svn update periodically update your source according
to the latest version.

1.4. Connector/ODBC Configuration
Before you connect to a MySQL database using the Connector/ODBC driver you must configure an ODBC Data Source Name.
The DSN associates the various configuration parameters required to communicate with a database to a specific name. You use the
DSN in an application to communicate with the database, rather than specifying individual parameters within the application itself.
DSN information can be user specific, system specific, or provided in a special file. ODBC data source names are configured in
different ways, depending on your platform and ODBC driver.

1.4.1. Data Source Names
A Data Source Name associates the configuration parameters for communicating with a specific database. Generally a DSN con-
sists of the following parameters:

• Name

• Host Name

• Database Name

• Login

MySQL Connector/ODBC

22

http://subversion.tigris.org/
http://subversion.tigris.org/
http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html

• Password

In addition, different ODBC drivers, including Connector/ODBC, may accept additional driver-specific options and parameters.

There are three types of DSN:

• A System DSN is a global DSN definition that is available to any user and application on a particular system. A System DSN
can normally only be configured by a systems administrator, or by a user who has specific permissions that let them create Sys-
tem DSNs.

• A User DSN is specific to an individual user, and can be used to store database connectivity information that the user regularly
uses.

• A File DSN uses a simple file to define the DSN configuration. File DSNs can be shared between users and machines and are
therefore more practical when installing or deploying DSN information as part of an application across many machines.

DSN information is stored in different locations depending on your platform and environment.

1.4.2. Connector/ODBC Connection Parameters
You can specify the parameters in the following tables for Connector/ODBC when configuring a DSN. Users on Windows can use
the Options and Advanced panels when configuring a DSN to set these parameters; see the table for information on which options
relate to which fields and checkboxes. On Unix and Mac OS X, use the parameter name and value as the keyword/value pair in the
DSN configuration. Alternatively, you can set these parameters within the InConnectionString argument in the
SQLDriverConnect() call.

Parameter Default Value Comment

user ODBC The user name used to connect to MySQL.

uid ODBC Synonymous with user. Added in 3.51.16.

server localhost The host name of the MySQL server.

database The default database.

option 0 Options that specify how Connector/ODBC should work. See below.

port 3306 The TCP/IP port to use if server is not localhost.

initstmt Initial statement. A statement to execute when connecting to MySQL. In version
3.51 the parameter is called stmt. Note, the driver supports the initial statement be-
ing executed only at the time of the initial connection.

password The password for the user account on server.

pwd Synonymous with password. Added in 3.51.16.

socket The Unix socket file or Windows named pipe to connect to if server is local-
host.

sslca The path to a file with a list of trust SSL CAs. Added in 3.51.16.

sslcapath The path to a directory that contains trusted SSL CA certificates in PEM format.
Added in 3.51.16.

sslcert The name of the SSL certificate file to use for establishing a secure connection. Ad-
ded in 3.51.16.

sslcipher A list of allowable ciphers to use for SSL encryption. The cipher list has the same
format as the openssl ciphers command Added in 3.51.16.

sslkey The name of the SSL key file to use for establishing a secure connection. Added in
3.51.16.

charset The character set to use for the connection. Added in 3.51.17.

sslverify If set to 1, the SSL certificate will be verified when used with the MySQL connec-
tion. If not set, then the default behaviour is to ignore SSL certificate verification.

readtimeout The timeout in seconds for attempts to read from the server. Each attempt uses this
timeout value and there are retries if necessary, so the total effective timeout value
is three times the option value. You can set the value so that a lost connection can
be detected earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes.
This option works only for TCP/IP connections, and only for Windows prior to
MySQL 5.1.12. Corresponds to the MYSQL_OPT_READ_TIMEOUT option of the
MySQL Client Library. This option was added in Connector/ODBC 3.51.27.

MySQL Connector/ODBC

23

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_socket

Parameter Default Value Comment

writetimeout The timeout in seconds for attempts to write to the server. Each attempt uses this
timeout value and there are net_retry_count retries if necessary, so the total
effective timeout value is net_retry_count times the option value. This option
works only for TCP/IP connections, and only for Windows prior to MySQL 5.1.12.
Corresponds to the MYSQL_OPT_WRITE_TIMEOUT option of the MySQL Client
Library. This option was added in Connector/ODBC 3.51.27.

Note

The SSL configuration parameters can also be automatically loaded from a my.ini or my.cnf file.

The option argument is used to tell Connector/ODBC that the client isn't 100% ODBC compliant. On Windows, you normally
select options by toggling the checkboxes in the connection screen, but you can also select them in the option argument. The fol-
lowing options are listed in the order in which they appear in the Connector/ODBC connect screen.

Value Flagname GUI Option Description

1 FLAG_FIELD_LENGT
H

Do not Optimize
Column Width

The client cannot handle that Connector/ODBC returns the real
width of a column. This option was removed in 3.51.18.

2 FLAG_FOUND_ROWS Return Matching Rows The client cannot handle that MySQL returns the true value of
affected rows. If this flag is set, MySQL returns “found rows”
instead. You must have MySQL 3.21.14 or newer to get this to
work.

4 FLAG_DEBUG Trace Driver Calls To
myodbc.log

Make a debug log in C:\myodbc.log on Windows, or /
tmp/myodbc.log on Unix variants. This option was removed
in Connector/ODBC 3.51.18.

8 FLAG_BIG_PACKETS Allow Big Results Do not set any packet limit for results and bind parameters.
Without this option, parameter binding will be truncated to 255
characters.

16 FLAG_NO_PROMPT Do not Prompt Upon
Connect

Do not prompt for questions even if driver would like to prompt.

32 FLAG_DYNAMIC_CUR
SOR

Enable Dynamic Cursor Enable or disable the dynamic cursor support.

64 FLAG_NO_SCHEMA Ignore # in Table Name Ignore use of database name in
db_name.tbl_name.col_name.

128 FLAG_NO_DEFAULT_
CURSOR

User Manager Cursors Force use of ODBC manager cursors (experimental).

256 FLAG_NO_LOCALE Do not Use Set Locale Disable the use of extended fetch (experimental).

512 FLAG_PAD_SPACE Pad Char To Full Length Pad CHAR columns to full column length.

1024 FLAG_FULL_COLUMN
_NAMES

Return Table Names for
SQLDescribeCol

SQLDescribeCol() returns fully qualified column names.

2048 FLAG_COMPRESSED_
PROTO

Use Compressed Pro-
tocol

Use the compressed client/server protocol.

4096 FLAG_IGNORE_SPAC
E

Ignore Space After
Function Names

Tell server to ignore space after function name and before “(”
(needed by PowerBuilder). This makes all function names
keywords.

8192 FLAG_NAMED_PIPE Force Use of Named
Pipes

Connect with named pipes to a mysqld server running on NT.

16384 FLAG_NO_BIGINT Change BIGINT
Columns to Int

Change BIGINT columns to INT columns (some applications
cannot handle BIGINT).

32768 FLAG_NO_CATALOG No Catalog Forces results from the catalog functions, such as SQLTables,
to always return NULL and the driver to report that catalogs are
not supported.

65536 FLAG_USE_MYCNF Read Options From
my.cnf

Read parameters from the [client] and [odbc] groups
from my.cnf.

131072 FLAG_SAFE Safe Add some extra safety checks.

262144 FLAG_NO_TRANSACT
IONS

Disable transactions Disable transactions.

524288 FLAG_LOG_QUERY Save queries to myod- Enable query logging to c:\myodbc.sql(/

MySQL Connector/ODBC

24

http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html

bc.sql tmp/myodbc.sql) file. (Enabled only in debug mode.)

1048576 FLAG_NO_CACHE Do not Cache Result
(forward only cursors)

Do not cache the results locally in the driver, instead read from
server (mysql_use_result()). This works only for for-
ward-only cursors. This option is very important in dealing with
large tables when you do not want the driver to cache the entire
result set.

2097152 FLAG_FORWARD_CUR
SOR

Force Use Of Forward
Only Cursors

Force the use of Forward-only cursor type. In case of ap-
plications setting the default static/dynamic cursor type, and one
wants the driver to use non-cache result sets, then this option en-
sures the forward-only cursor behavior.

4194304 FLAG_AUTO_RECONN
ECT

Enable auto-reconnect. Enables auto-reconnection functionality. You should not use this
option with transactions, since a auto reconnection during a in-
complete transaction may cause corruption. Note that an auto-
reconnected connection will not inherit the same settings and
environment as the original. This option was added in Connect-
or/ODBC 3.51.13.

8388608 FLAG_AUTO_IS_NUL
L

Flag Auto Is Null
When FLAG_AUTO_IS_NULL is set, the driver does not
change the default value of sql_auto_is_null, leaving it at
1, so you get the MySQL default, not the SQL standard behavi-
or.

When FLAG_AUTO_IS_NULL is not set, the driver changes the
default value of SQL_AUTO_IS_NULL to 0 after connecting,
so you get the SQL standard, not the MySQL default behaviour.

Thus, omitting the flag disables the compatibility option and
forces SQL standard behaviour.

See IS NULL. This option was added in Connector/ODBC
3.51.13.

16777216 FLAG_ZERO_DATE_T
O_MIN

Flag Zero Date to Min Translates zero dates (XXXX-00-00) into the minimum date
values supported by ODBC, XXXX-01-01. This resolves an is-
sue where some statements will not work because the date re-
turned and the minimum ODBC date value are incompatible.
This option was added in Connector/ODBC 3.51.17.

33554432 FLAG_MIN_DATE_TO
_ZERO

Flag Min Date to Zero Translates the minimum ODBC date value (XXXX-01-01) to
the zero date format supported by MySQL (XXXX-00-00).
This resolves an issue where some statements will not work be-
cause the date returned and the minimum ODBC date value are
incompatible. This option was added in Connector/ODBC
3.51.17.

67108864 FLAG_MULTI_STATE
MENTS

Allow multiple state-
ments

Enables support for batched statements. This option was added
in Connector/ODBC 3.51.18.

134217728 FLAG_COLUMN_SIZE
_S32

Limit column size to
32-bit value

Limits the column size to a signed 32-bit value to prevent prob-
lems with larger column sizes in applications that do not support
them. This option is automatically enabled when working with
ADO applications. This option was added in Connector/ODBC
3.51.22.

268435456 FLAG_NO_BINARY_R
ESULT

Always handle binary
function results as char-
acter data

When set this option disables charset 63 for columns with an
empty org_table. This option was added in Connector/
ODBC 3.51.26.

To select multiple options, add together their values. For example, setting option to 12 (4+8) gives you debugging without pack-
et limits.

The following table shows some recommended option values for various configurations.

Configuration Option Value

Microsoft Access, Visual Basic 3

Driver trace generation (Debug mode) 4

Microsoft Access (with improved DELETE queries) 35

Large tables with too many rows 2049

MySQL Connector/ODBC

25

http://dev.mysql.com/doc/refman/5.0/en/mysql-use-result.html
http://dev.mysql.com/doc/refman/5.0/en/server-session-variables.html#sysvar_sql_auto_is_null
http://dev.mysql.com/doc/refman/5.0/en/comparison-operators.html#operator_is-null

Sybase PowerBuilder 135168

Query log generation (Debug mode) 524288

Generate driver trace as well as query log (Debug mode) 524292

Large tables with no-cache results 3145731

1.4.3. Configuring a Connector/ODBC DSN on Windows
The ODBC Data Source Administrator within Windows enables you to create DSNs, check driver installation and con-
figure ODBC systems such as tracing (used for debugging) and connection pooling.

Different editions and versions of Windows store the ODBC Data Source Administrator in different locations depending
on the version of Windows that you are using.

To open the ODBC Data Source Administrator in Windows Server 2003:

Tip

Because it is possible to create DSN using either the 32-bit or 64-bit driver, but using the same DNS identifier, it is
advisable to include the driver being used within the DSN identifier. This will help you to identify the DSN when us-
ing it from applications such as Excel that are only compatible with the 32-bit driver. For example, you might add
Using32bitCODBC to the DSN identifier for the 32-bit interface and Using64bitCODBC for those using the
64-bit Connector/ODBC driver.

1. On the Start menu, choose Administrative Tools, and then click Data Sources (ODBC).

To open the ODBC Data Source Administrator in Windows 2000 Server or Windows 2000 Professional:

1. On the Start menu, choose Settings, and then click Control Panel.

2. In Control Panel, click Administrative Tools.

3. In Administrative Tools, click Data Sources (ODBC).

To open the ODBC Data Source Administrator on Windows XP:

1. On the Start menu, click Control Panel.

2. In the Control Panel when in Category View click Performance and Maintenance and then click Admin-
istrative Tools.. If you are viewing the Control Panel in Classic View, click Administrative Tools.

3. In Administrative Tools, click Data Sources (ODBC).

Irrespective of your Windows version, you should be presented the ODBC Data Source Administrator window:

MySQL Connector/ODBC

26

Within Windows XP, you can add the Administrative Tools folder to your START menu to make it easier to locate the
ODBC Data Source Administrator. To do this:

1. Right click on the START menu.

2. Select Properties.

3. Click CUSTOMIZE....

4. Select the ADVANCED tab.

5. Within Start menu items, within the System Administrative Tools section, select Display on the All
Programs menu.

Within both Windows Server 2003 and Windows XP you may want to permanently add the ODBC Data Source Adminis-
trator to your START menu. To do this, locate the Data Sources (ODBC) icon using the methods shown, then right-click
on the icon and then choose PIN TO START MENU.

The interfaces for the 3.51 and 5.1 versions of the Connector/ODBC driver are different, although the fields and information that
you need to enter remain the same.

To configure a DSN using Connector/ODBC 3.51.x or Connector/ODBC 5.1.0, see Section 1.4.3.1, “Configuring a Connector/
ODBC 3.51 DSN on Windows”.

To configure a DSN using Connector/ODBC 5.1.1 or later, see Section 1.4.3.2, “Configuring a Connector/ODBC 5.1 DSN on Win-
dows”.

1.4.3.1. Configuring a Connector/ODBC 3.51 DSN on Windows

MySQL Connector/ODBC

27

To add and configure a new Connector/ODBC data source on Windows, use the ODBC Data Source Administrator:

1. Open the ODBC Data Source Administrator.

2. To create a System DSN (which will be available to all users) , select the System DSN tab. To create a User DSN, which
will be unique only to the current user, click the ADD... button.

3. You will need to select the ODBC driver for this DSN.

Select MySQL ODBC 3.51 Driver, then click FINISH.

4. You now need to configure the specific fields for the DSN you are creating through the Add Data Source Name dialog.

MySQL Connector/ODBC

28

In the DATA SOURCE NAME box, enter the name of the data source you want to access. It can be any valid name that you
choose.

5. In the DESCRIPTION box, enter some text to help identify the connection.

6. In the SERVER field, enter the name of the MySQL server host that you want to access. By default, it is localhost.

7. In the USER field, enter the user name to use for this connection.

8. In the PASSWORD field, enter the corresponding password for this connection.

9. The DATABASE pop-up should automatically populate with the list of databases that the user has permissions to access.

10. Click OK to save the DSN.

A completed DSN configuration may look like this:

MySQL Connector/ODBC

29

You can verify the connection using the parameters you have entered by clicking the TEST button. If the connection could be made
successfully, you will be notified with a Success; connection was made! dialog.

If the connection failed, you can obtain more information on the test and why it may have failed by clicking the DIAGNOSTICS...
button to show additional error messages.

You can configure a number of options for a specific DSN by using either the CONNECT OPTIONS or ADVANCED tabs in the DSN
configuration dialog.

MySQL Connector/ODBC

30

The three options you can configure are:

• PORT sets the TCP/IP port number to use when communicating with MySQL. Communication with MySQL uses port 3306 by
default. If your server is configured to use a different TCP/IP port, you must specify that port number here.

• SOCKET sets the name or location of a specific socket or Windows pipe to use when communicating with MySQL.

• INITIAL STATEMENT defines an SQL statement that will be executed when the connection to MySQL is opened. You can use
this to set MySQL options for your connection, such as disabling autocommit.

• CHARACTER SET is a pop-up list from which you can select the default character set to be used with this connection. The Char-
acter Set option was added in 3.5.17.

The ADVANCED tab enables you to configure Connector/ODBC connection parameters. Refer to Section 1.4.2, “Connector/ODBC
Connection Parameters”, for information about the meaning of these options.

MySQL Connector/ODBC

31

1.4.3.2. Configuring a Connector/ODBC 5.1 DSN on Windows

The DSN configuration when using Connector/ODBC 5.1.1 and later has a slightly different layout. Also, due to the native Uni-
code support within Connector/ODBC 5.1, you no longer need to specify the initial character set to be used with your connection.

To configure a DSN using the Connector/ODBC 5.1.1 or later driver:

1. Open the ODBC Data Source Administrator.

2. To create a System DSN (which will be available to all users) , select the SYSTEM DSN tab. To create a User DSN, which will
be unique only to the current user, click the ADD... button.

3. You will need to select the ODBC driver for this DSN.

MySQL Connector/ODBC

32

Select MySQL ODBC 5.1 Driver, then click FINISH.

4. You now need to configure the specific fields for the DSN you are creating through the Connection Parameters dialog.

MySQL Connector/ODBC

33

In the DATA SOURCE NAME box, enter the name of the data source you want to access. It can be any valid name that you
choose.

5. In the DESCRIPTION box, enter some text to help identify the connection.

6. In the SERVER field, enter the name of the MySQL server host that you want to access. By default, it is localhost.

7. In the USER field, enter the user name to use for this connection.

8. In the PASSWORD field, enter the corresponding password for this connection.

9. The DATABASE pop-up should automatically populate with the list of databases that the user has permissions to access.

10. To communicate over a different TCP/IP port than the default (3306), change the value of the PORT.

11. Click OK to save the DSN.

You can verify the connection using the parameters you have entered by clicking the TEST button. If the connection could be made
successfully, you will be notified with a Success; connection was made! dialog.

You can configure a number of options for a specific DSN by using the DETAILS button.

MySQL Connector/ODBC

34

MySQL Connector/ODBC

35

The DETAILS button opens a tabbed display which allows you to set additional options:

• FLAGS 1, FLAGS 2, and FLAGS 3 enable you to select the additional flags for the DSN connection. For more information on
these flags, see Section 1.4.2, “Connector/ODBC Connection Parameters”.

• DEBUG allows you to enable ODBC debugging to record the queries you execute through the DSN to the myodbc.sql file.
For more information, see Section 1.4.8, “Getting an ODBC Trace File”.

• SSL SETTINGS configures the additional options required for using the Secure Sockets Layer (SSL) when communicating with
MySQL server. Note that you must have enabled SSL and configured the MySQL server with suitable certificates to commu-
nicate over SSL.

The ADVANCED tab enables you to configure Connector/ODBC connection parameters. Refer to Section 1.4.2, “Connector/ODBC
Connection Parameters”, for information about the meaning of these options.

1.4.3.3. Errors and Debugging

This section answers Connector/ODBC connection-related questions.

• While configuring a Connector/ODBC DSN, a Could Not Load Translator or Setup Library error occurs

For more information, refer to MS KnowledgeBase Article(Q260558). Also, make sure you have the latest valid
ctl3d32.dll in your system directory.

• On Windows, the default myodbc3.dll is compiled for optimal performance. If you want to debug Connector/ODBC 3.51
(for example, to enable tracing), you should instead use myodbc3d.dll. To install this file, copy myodbc3d.dll over the
installed myodbc3.dll file. Make sure to revert back to the release version of the driver DLL once you are done with the de-
bugging because the debug version may cause performance issues. Note that the myodbc3d.dll isn't included in Connector/
ODBC 3.51.07 through 3.51.11. If you are using one of these versions, you should copy that DLL from a previous version (for
example, 3.51.06).

1.4.4. Configuring a Connector/ODBC DSN on Mac OS X
To configure a DSN on Mac OS X you can either use the myodbc3i utility, edit the odbc.ini file within the Library/ODBC
directory of the user or the should use the ODBC Administrator. If you have Mac OS X 10.2 or earlier, refer to Section 1.4.5,
“Configuring a Connector/ODBC DSN on Unix”. Select whether you want to create a User DSN or a System DSN. If you want to
add a System DSN, you may need to authenticate with the system. You must click the padlock and enter a user and password with
administrator privileges.

MySQL Connector/ODBC

36

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558

For correct operation of ODBC Administrator, you should ensure that the /Library/ODBC/odbc.ini file used to set up
ODBC connectivity and DSNs are writable by the admin group. If this file is not writable by this group then the ODBC Adminis-
trator may fail, or may appear to have worked but not generated the correct entry.

Warning

There are known issues with the OS X ODBC Administrator and Connector/ODBC that may prevent you from creat-
ing a DSN using this method. In this case you should use the command-line or edit the odbc.ini file directly. Note
that existing DSNs or those that you create via the myodbc3i or myodbc-installertool can still be checked and
edited using ODBC Administrator.

To create a DSN using the myodbc3i utility, you need only specify the DSN type and the DSN connection string. For example:

shell> myodbc3i -a -s -t"DSN=mydb;DRIVER=MySQL ODBC 3.51 Driver;SERVER=mysql;USER=username;PASSWORD=pass"

To use ODBC Administrator:

1. Open the ODBC Administrator from the Utilities folder in the Applications folder.

2. On the User DSN or System DSN panel, click ADD.

3. Select the Connector/ODBC driver and click OK.

4. You will be presented with the Data Source Name dialog. Enter The Data Source Name and an optional Descrip-
tion for the DSN.

MySQL Connector/ODBC

37

5. Click ADD to add a new keyword/value pair to the panel. You should configure at least four pairs to specify the server,
username, password and database connection parameters. See Section 1.4.2, “Connector/ODBC Connection Paramet-
ers”.

6. Click OK to add the DSN to the list of configured data source names.

A completed DSN configuration may look like this:

MySQL Connector/ODBC

38

You can configure additional ODBC options to your DSN by adding further keyword/value pairs and setting the corresponding val-
ues. See Section 1.4.2, “Connector/ODBC Connection Parameters”.

1.4.5. Configuring a Connector/ODBC DSN on Unix
On Unix, you configure DSN entries directly in the odbc.ini file. Here is a typical odbc.ini file that configures myodbc3
as the DSN name for Connector/ODBC 3.51:

;
; odbc.ini configuration for Connector/ODBC and Connector/ODBC 3.51 drivers
;
[ODBC Data Sources]
myodbc3 = MyODBC 3.51 Driver DSN
[myodbc3]
Driver = /usr/local/lib/libmyodbc3.so
Description = Connector/ODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =
[Default]
Driver = /usr/local/lib/libmyodbc3.so
Description = Connector/ODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =

Refer to the Section 1.4.2, “Connector/ODBC Connection Parameters”, for the list of connection parameters that can be supplied.

Note

If you are using unixODBC, you can use the following tools to set up the DSN:

• ODBCConfig GUI tool(HOWTO: ODBCConfig)

• odbcinst

In some cases when using unixODBC, you might get this error:

Data source name not found and no default driver specified

If this happens, make sure the ODBCINI and ODBCSYSINI environment variables are pointing to the right odbc.ini file. For
example, if your odbc.ini file is located in /usr/local/etc, set the environment variables like this:

export ODBCINI=/usr/local/etc/odbc.ini
export ODBCSYSINI=/usr/local/etc

1.4.6. Connecting Without a Predefined DSN
You can connect to the MySQL server using SQLDriverConnect, by specifying the DRIVER name field. Here are the connection
strings for Connector/ODBC using DSN-Less connections:

For Connector/ODBC 3.51:

ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};\
SERVER=localhost;\
DATABASE=test;\
USER=venu;\
PASSWORD=venu;\
OPTION=3;"

If your programming language converts backslash followed by whitespace to a space, it is preferable to specify the connection
string as a single long string, or to use a concatenation of multiple strings that does not add spaces in between. For example:

ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"
"SERVER=localhost;"
"DATABASE=test;"
"USER=venu;"
"PASSWORD=venu;"

MySQL Connector/ODBC

39

http://www.unixodbc.org/config.html

"OPTION=3;"

Note. Note that on Mac OS X you may need to specify the full path to the Connector/ODBC driver library.

Refer to the Section 1.4.2, “Connector/ODBC Connection Parameters”, for the list of connection parameters that can be supplied.

1.4.7. ODBC Connection Pooling
Connection pooling enables the ODBC driver to re-use existing connections to a given database from a pool of connections, instead
of opening a new connection each time the database is accessed. By enabling connection pooling you can improve the overall per-
formance of your application by lowering the time taken to open a connection to a database in the connection pool.

For more information about connection pooling: http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470.

1.4.8. Getting an ODBC Trace File
If you encounter difficulties or problems with Connector/ODBC, you should start by making a log file from the ODBC Manager
and Connector/ODBC. This is called tracing, and is enabled through the ODBC Manager. The procedure for this differs for Win-
dows, Mac OS X and Unix.

1.4.8.1. Enabling ODBC Tracing on Windows

To enable the trace option on Windows:

1. The Tracing tab of the ODBC Data Source Administrator dialog box enables you to configure the way ODBC function calls
are traced.

2. When you activate tracing from the Tracing tab, the Driver Manager logs all ODBC function calls for all subsequently

MySQL Connector/ODBC

40

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470

run applications.

3. ODBC function calls from applications running before tracing is activated are not logged. ODBC function calls are recorded
in a log file you specify.

4. Tracing ceases only after you click Stop Tracing Now. Remember that while tracing is on, the log file continues to in-
crease in size and that tracing affects the performance of all your ODBC applications.

1.4.8.2. Enabling ODBC Tracing on Mac OS X

To enable the trace option on Mac OS X 10.3 or later you should use the Tracing tab within ODBC Administrator .

1. Open the ODBC Administrator.

2. Select the Tracing tab.

3. Select the Enable Tracing checkbox.

4. Enter the location where you want to save the Tracing log. If you want to append information to an existing log file, click the
CHOOSE... button.

1.4.8.3. Enabling ODBC Tracing on Unix

To enable the trace option on Mac OS X 10.2 (or earlier) or Unix you must add the trace option to the ODBC configuration:

1. On Unix, you need to explicitly set the Trace option in the ODBC.INI file.

Set the tracing ON or OFF by using TraceFile and Trace parameters in odbc.ini as shown below:

TraceFile = /tmp/odbc.trace
Trace = 1

TraceFile specifies the name and full path of the trace file and Trace is set to ON or OFF. You can also use 1 or YES for

MySQL Connector/ODBC

41

ON and 0 or NO for OFF. If you are using ODBCConfig from unixODBC, then follow the instructions for tracing unixOD-
BC calls at HOWTO-ODBCConfig.

1.4.8.4. Enabling a Connector/ODBC Log

To generate a Connector/ODBC log, do the following:

1. Within Windows, enable the Trace Connector/ODBC option flag in the Connector/ODBC connect/configure screen. The
log is written to file C:\myodbc.log. If the trace option is not remembered when you are going back to the above screen, it
means that you are not using the myodbcd.dll driver, see Section 1.4.3.3, “Errors and Debugging”.

On Mac OS X, Unix, or if you are using DSN-Less connection, then you need to supply OPTION=4 in the connection string
or set the corresponding keyword/value pair in the DSN.

2. Start your application and try to get it to fail. Then check the Connector/ODBC trace file to find out what could be wrong.

If you need help determining what is wrong, see Section 1.8.1, “Connector/ODBC Community Support”.

1.5. Connector/ODBC Examples
Once you have configured a DSN to provide access to a database, how you access and use that connection is dependent on the ap-
plication or programming language. As ODBC is a standardized interface, any application or language that supports ODBC can use
the DSN and connect to the configured database.

1.5.1. Basic Connector/ODBC Application Steps
Interacting with a MySQL server from an applications using the Connector/ODBC typically involves the following operations:

• Configure the Connector/ODBC DSN

• Connect to MySQL server

• Initialization operations

• Execute SQL statements

• Retrieve results

• Perform Transactions

• Disconnect from the server

Most applications use some variation of these steps. The basic application steps are shown in the following diagram:

MySQL Connector/ODBC

42

http://www.unixodbc.org/config.html

1.5.2. Step-by-step Guide to Connecting to a MySQL Database through Con-
nector/ODBC

A typical installation situation where you would install Connector/ODBC is when you want to access a database on a Linux or
Unix host from a Windows machine.

As an example of the process required to set up access between two machines, the steps below take you through the basic steps.
These instructions assume that you want to connect to system ALPHA from system BETA with a user name and password of my-
user and mypassword.

MySQL Connector/ODBC

43

On system ALPHA (the MySQL server) follow these steps:

1. Start the MySQL server.

2. Use GRANT to set up an account with a user name of myuser that can connect from system BETA using a password of my-
user to the database test:

GRANT ALL ON test.* to 'myuser'@'BETA' IDENTIFIED BY 'mypassword';

For more information about MySQL privileges, refer to MySQL User Account Management.

On system BETA (the Connector/ODBC client), follow these steps:

1. Configure a Connector/ODBC DSN using parameters that match the server, database and authentication information that you
have just configured on system ALPHA.

Parameter Value Comment

DSN remote_test A name to identify the connection.

SERVER ALPHA The address of the remote server.

DATABASE test The name of the default database.

USER myuser The user name configured for access to this database.

PASSWORD mypassword The password for myuser.

2. Using an ODBC-capable application, such as Microsoft Office, connect to the MySQL server using the DSN you have just
created. If the connection fails, use tracing to examine the connection process. See Section 1.4.8, “Getting an ODBC Trace
File”, for more information.

1.5.3. Connector/ODBC and Third-Party ODBC Tools
Once you have configured your Connector/ODBC DSN, you can access your MySQL database through any application that sup-
ports the ODBC interface, including programming languages and third-party applications. This section contains guides and help on
using Connector/ODBC with various ODBC-compatible tools and applications, including Microsoft Word, Microsoft Excel and
Adobe/Macromedia ColdFusion.

Connector/ODBC has been tested with the following applications.

Publisher Application Notes

Adobe ColdFusion Formerly Macromedia ColdFusion

Borland C++ Builder

Builder 4

Delphi

Business Objects Crystal Reports

Claris Filemaker Pro

Corel Paradox

Computer Associates Visual Objects Also known as CAVO

AllFusion ERwin Data Model-
er

Gupta Team Developer Previously known as Centura Team Developer; Gupta SQL/
Windows

Gensym G2-ODBC Bridge

Inline iHTML

Lotus Notes Versions 4.5 and 4.6

Microsoft Access

Excel

Visio Enterprise

MySQL Connector/ODBC

44

http://dev.mysql.com/doc/refman/5.0/en/grant.html
http://dev.mysql.com/doc/refman/5.0/en/user-account-management.html

Visual C++

Visual Basic

ODBC.NET Using C#, Visual Basic, C++

FoxPro

Visual Interdev

OpenOffice.org OpenOffice.org

Perl DBD::ODBC

Pervasive Software DataJunction

Sambar Technologies Sambar Server

SPSS SPSS

SoftVelocity Clarion

SQLExpress SQLExpress for Xbase++

Sun StarOffice

SunSystems Vision

Sybase PowerBuilder

PowerDesigner

theKompany.com Data Architect

If you know of any other applications that work with Connector/ODBC, please send mail to <myodbc@lists.mysql.com>
about them.

1.5.4. Using Connector/ODBC with Microsoft Access
You can use MySQL database with Microsoft Access using Connector/ODBC. The MySQL database can be used as an import
source, an export source, or as a linked table for direct use within an Access application, so you can use Access as the front-end in-
terface to a MySQL database.

1.5.4.1. Exporting Access Data to MySQL

To export a table of data from an Access database to MySQL, follow these instructions:

1. When you open an Access database or an Access project, a Database window appears. It displays shortcuts for creating new
database objects and opening existing objects.

MySQL Connector/ODBC

45

2. Click the name of the table or query you want to export, and then in the File menu, select Export.

3. In the Export Object Type Object name To dialog box, in the Save As Type box, select ODBC Databases
() as shown here:

4. In the Export dialog box, enter a name for the file (or use the suggested name), and then select OK.

5. The Select Data Source dialog box is displayed; it lists the defined data sources for any ODBC drivers installed on your com-
puter. Click either the File Data Source or Machine Data Source tab, and then double-click the Connector/ODBC or Connect-
or/ODBC 3.51 data source that you want to export to. To define a new data source for Connector/ODBC, please Section 1.4.3,
“Configuring a Connector/ODBC DSN on Windows”.

Note

Ensure that the information that you are exporting to the MySQL table is valid for the corresponding MySQL data
types. Values that are outside of the supported range of the MySQL data type but valid within Access may trigger an
“overflow” error during the export.

Microsoft Access connects to the MySQL Server through this data source and exports new tables and or data.

1.5.4.2. Importing MySQL Data to Access

MySQL Connector/ODBC

46

To import a table or tables from MySQL to Access, follow these instructions:

1. Open a database, or switch to the Database window for the open database.

2. To import tables, on the File menu, point to Get External Data, and then click Import.

3. In the Import dialog box, in the Files Of Type box, select ODBC DATABASES (). The Select Data Source dialog box lists the
defined data sources THE SELECT DATA SOURCE dialog box is displayed; it lists the defined data source names.

4. If the ODBC data source that you selected requires you to log on, enter your login ID and password (additional information
might also be required), and then click OK.

5. Microsoft Access connects to the MySQL server through ODBC data source and displays the list of tables that you can
import.

6. Click each table that you want to import, and then click OK.

1.5.4.3. Using Microsoft Access as a Front-end to MySQL

You can use Microsoft Access as a front end to a MySQL database by linking tables within your Microsoft Access database to
tables that exist within your MySQL database. When a query is requested on a table within Access, ODBC is used to execute the
queries on the MySQL database instead.

To create a linked table:

1. Open the Access database that you want to link to MySQL.

2. From the FILE, choose GET EXTERNAL DATA->LINK TABLES.

3. From the browser, choose ODBC DATABASES () from the FILES OF TYPE pop-up.

4. In the SELECT DATA SOURCE window, choose an existing DSN, either from a FILE DATA SOURCE or MACHINE DATA
SOURCE.You can also create a new DSN using the NEW... button. For more information on creating a DSN see Section 1.4.3,
“Configuring a Connector/ODBC DSN on Windows”.

MySQL Connector/ODBC

47

5. In the LINK TABLES dialog, select one or more tables from the MySQL database. A link will be created to each table that you
select from this list.

MySQL Connector/ODBC

48

6. If Microsoft Access is unable to determine the unique record identifier for a table automatically then it may ask you to confirm
the column, or combination of columns, to be used to uniquely identify each row from the source table. Select the columns
you want to use and click OK.

Once the process has been completed, you can now build interfaces and queries to the linked tables just as you would for any Ac-
cess database.

Use the following procedure to view or to refresh links when the structure or location of a linked table has changed. The Linked
Table Manager lists the paths to all currently linked tables.

To view or refresh links:

1. Open the database that contains links to MySQL tables.

2. On the Tools menu, point to Add-ins (Database Utilities in Access 2000 or newer), and then click Linked Ta-
ble Manager.

3. Select the check box for the tables whose links you want to refresh.

4. Click OK to refresh the links.

Microsoft Access confirms a successful refresh or, if the table wasn't found, displays the Select New Location of <table
name> dialog box in which you can specify its the table's new location. If several selected tables have moved to the new location
that you specify, the Linked Table Manager searches that location for all selected tables, and updates all links in one step.

To change the path for a set of linked tables:

1. Open the database that contains links to tables.

2. On the Tools menu, point to Add-ins (Database Utilities in Access 2000 or newer), and then click Linked Ta-
ble Manager.

3. Select the Always Prompt For A New Location check box.

4. Select the check box for the tables whose links you want to change, and then click OK.

5. In the Select New Location of <table name> dialog box, specify the new location, click Open, and then click OK.

1.5.5. Using Connector/ODBC with Microsoft Word or Excel

MySQL Connector/ODBC

49

You can use Microsoft Word and Microsoft Excel to access information from a MySQL database using Connector/ODBC. Within
Microsoft Word, this facility is most useful when importing data for mailmerge, or for tables and data to be included in reports.
Within Microsoft Excel, you can execute queries on your MySQL server and import the data directly into an Excel Worksheet,
presenting the data as a series of rows and columns.

With both applications, data is accessed and imported into the application using Microsoft Query , which enables you to execute a
query though an ODBC source. You use Microsoft Query to build the SQL statement to be executed, selecting the tables, fields, se-
lection criteria and sort order. For example, to insert information from a table in the World test database into an Excel spreadsheet,
using the DSN samples shown in Section 1.4, “Connector/ODBC Configuration”:

1. Create a new Worksheet.

2. From the Data menu, choose Import External Data, and then select New Database Query.

3. Microsoft Query will start. First, you need to choose the data source, by selecting an existing Data Source Name.

4. Within the Query Wizard, you must choose the columns that you want to import. The list of tables available to the user
configured through the DSN is shown on the left, the columns that will be added to your query are shown on the right. The
columns you choose are equivalent to those in the first section of a SELECT query. Click NEXT to continue.

MySQL Connector/ODBC

50

http://dev.mysql.com/doc/refman/5.0/en/select.html

5. You can filter rows from the query (the equivalent of a WHERE clause) using the Filter Data dialog. Click NEXT to con-
tinue.

6. Select an (optional) sort order for the data. This is equivalent to using a ORDER BY clause in your SQL query. You can select
up to three fields for sorting the information returned by the query. Click NEXT to continue.

MySQL Connector/ODBC

51

7. Select the destination for your query. You can select to return the data Microsoft Excel, where you can choose a worksheet
and cell where the data will be inserted; you can continue to view the query and results within Microsoft Query, where you
can edit the SQL query and further filter and sort the information returned; or you can create an OLAP Cube from the query,
which can then be used directly within Microsoft Excel. Click FINISH.

The same process can be used to import data into a Word document, where the data will be inserted as a table. This can be used for
mail merge purposes (where the field data is read from a Word table), or where you want to include data and reports within a report
or other document.

MySQL Connector/ODBC

52

1.5.6. Using Connector/ODBC with Crystal Reports
Crystal Reports can use an ODBC DSN to connect to a database from which you to extract data and information for reporting pur-
poses.

Note

There is a known issue with certain versions of Crystal Reports where the application is unable to open and browse
tables and fields through an ODBC connection. Before using Crystal Reports with MySQL, please ensure that you
have update to the latest version, including any outstanding service packs and hotfixes. For more information on this
issue, see the Business) Objects Knowledgebase for more information.

For example, to create a simple crosstab report within Crystal Reports XI, you should follow these steps:

1. Create a DSN using the Data Sources (ODBC) tool. You can either specify a complete database, including user name
and password, or you can build a basic DSN and use Crystal Reports to set the user name and password.

For the purposes of this example, a DSN that provides a connection to an instance of the MySQL Sakila sample database has
been created.

2. Open Crystal Reports and create a new project, or an open an existing reporting project into which you want to insert data
from your MySQL data source.

3. Start the Cross-Tab Report Wizard, either by clicking on the option on the Start Page. Expand the CREATE NEW CONNEC-
TION folder, then expand the ODBC (RDO) folder to obtain a list of ODBC data sources.

You will be asked to select a data source.

4. When you first expand the ODBC (RDO) folder you will be presented the Data Source Selection screen. From here you can
select either a pre-configured DSN, open a file-based DSN or enter and manual connection string. For this example, the
SAKILA DSN will be used.

If the DSN contains a user name/password combination, or you want to use different authentication credentials, click NEXT to
enter the user name and password that you want to use. Otherwise, click FINISH to continue the data source selection wizard.

MySQL Connector/ODBC

53

http://support.crystaldecisions.com/library/kbase/new_articles/c2013269.asp

5. You will be returned the Cross-Tab Report Creation Wizard. You now need to select the database and tables that you want to
include in your report. For our example, we will expand the selected Sakila database. Click the city table and use the > but-
ton to add the table to the report. Then repeat the action with the country table. Alternatively you can select multiple tables
and add them to the report.

Finally, you can select the parent SAKILA resource and add of the tables to the report.

Once you have selected the tables you want to include, click NEXT to continue.

MySQL Connector/ODBC

54

6. Crystal Reports will now read the table definitions and automatically identify the links between the tables. The identification
of links between tables enables Crystal Reports to automatically lookup and summarize information based on all the tables in
the database according to your query. If Crystal Reports is unable to perform the linking itself, you can manually create the
links between fields in the tables you have selected.

Click NEXT to continue the process.

MySQL Connector/ODBC

55

7. You can now select the columns and rows that you wish to include within the Cross-Tab report. Drag and drop or use the >
buttons to add fields to each area of the report. In the example shown, we will report on cities, organized by country, incorpor-
ating a count of the number of cities within each country. If you want to browse the data, select a field and click the BROWSE
DATA... button.

Click NEXT to create a graph of the results. Since we are not creating a graph from this data, click FINISH to generate the re-
port.

MySQL Connector/ODBC

56

8. The finished report will be shown, a sample of the output from the Sakila sample database is shown below.

MySQL Connector/ODBC

57

Once the ODBC connection has been opened within Crystal Reports, you can browse and add any fields within the available tables
into your reports.

1.5.7. Connector/ODBC Programming
With a suitable ODBC Manager and the Connector/ODBC driver installed, any programming language or environment that can
support ODBC should be able to connect to a MySQL database through Connector/ODBC.

This includes, but is certainly not limited to, Microsoft support languages (including Visual Basic, C# and interfaces such as
ODBC.NET), Perl (through the DBI module, and the DBD::ODBC driver).

1.5.7.1. Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO

This section contains simple examples of the use of MySQL ODBC 3.51 Driver with ADO, DAO and RDO.

MySQL Connector/ODBC

58

1.5.7.1.1. ADO: rs.addNew, rs.delete, and rs.update

The following ADO (ActiveX Data Objects) example creates a table my_ado and demonstrates the use of rs.addNew,
rs.delete, and rs.update.

Private Sub myodbc_ado_Click()
Dim conn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim fld As ADODB.Field
Dim sql As String
'connect to MySQL server using MySQL ODBC 3.51 Driver
Set conn = New ADODB.Connection
conn.ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
conn.Open
'create table
conn.Execute "DROP TABLE IF EXISTS my_ado"
conn.Execute "CREATE TABLE my_ado(id int not null primary key, name varchar(20)," _
& "txt text, dt date, tm time, ts timestamp)"
'direct insert
conn.Execute "INSERT INTO my_ado(id,name,txt) values(1,100,'venu')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(2,200,'MySQL')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(3,300,'Delete')"
Set rs = New ADODB.Recordset
rs.CursorLocation = adUseServer
'fetch the initial table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Initial my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print
Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close
'rs insert
rs.Open "select * from my_ado", conn, adOpenDynamic, adLockOptimistic
rs.AddNew
rs!Name = "Monty"
rs!txt = "Insert row"
rs.Update
rs.Close
'rs update
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-row"
rs.Update
rs.Close
'rs update second time..
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-second-time"
rs.Update
rs.Close
'rs delete
rs.Open "SELECT * FROM my_ado"
rs.MoveNext
rs.MoveNext
rs.Delete
rs.Close
'fetch the updated table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Updated my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print
Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close
conn.Close
End Sub

1.5.7.1.2. DAO: rs.addNew, rs.update, and Scrolling

The following DAO (Data Access Objects) example creates a table my_dao and demonstrates the use of rs.addNew,

MySQL Connector/ODBC

59

rs.update, and result set scrolling.

Private Sub myodbc_dao_Click()
Dim ws As Workspace
Dim conn As Connection
Dim queryDef As queryDef
Dim str As String
'connect to MySQL using MySQL ODBC 3.51 Driver
Set ws = DBEngine.CreateWorkspace("", "venu", "venu", dbUseODBC)
str = "odbc;DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
Set conn = ws.OpenConnection("test", dbDriverNoPrompt, False, str)
'Create table my_dao
Set queryDef = conn.CreateQueryDef("", "drop table if exists my_dao")
queryDef.Execute
Set queryDef = conn.CreateQueryDef("", "create table my_dao(Id INT AUTO_INCREMENT PRIMARY KEY, " _
& "Ts TIMESTAMP(14) NOT NULL, Name varchar(20), Id2 INT)")
queryDef.Execute
'Insert new records using rs.addNew
Set rs = conn.OpenRecordset("my_dao")
Dim i As Integer
For i = 10 To 15
rs.AddNew
rs!Name = "insert record" & i
rs!Id2 = i
rs.Update
Next i
rs.Close
'rs update..
Set rs = conn.OpenRecordset("my_dao")
rs.Edit
rs!Name = "updated-string"
rs.Update
rs.Close
'fetch the table back...
Set rs = conn.OpenRecordset("my_dao", dbOpenDynamic)
str = "Results:"
rs.MoveFirst
While Not rs.EOF
str = " " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print "DATA:" & str
rs.MoveNext
Wend
'rs Scrolling
rs.MoveFirst
str = " FIRST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
rs.MoveLast
str = " LAST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
rs.MovePrevious
str = " LAST-1 ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
'free all resources
rs.Close
queryDef.Close
conn.Close
ws.Close
End Sub

1.5.7.1.3. RDO: rs.addNew and rs.update

The following RDO (Remote Data Objects) example creates a table my_rdo and demonstrates the use of rs.addNew and
rs.update.

Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim cl As rdoColumn
Dim SQL As String
'cn.Connect = "DSN=test;"
cn.Connect = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverPrompt
'drop table my_rdo
SQL = "drop table if exists my_rdo"
cn.Execute SQL, rdExecDirect
'create table my_rdo
SQL = "create table my_rdo(id int, name varchar(20))"
cn.Execute SQL, rdExecDirect
'insert - direct
SQL = "insert into my_rdo values (100,'venu')"
cn.Execute SQL, rdExecDirect
SQL = "insert into my_rdo values (200,'MySQL')"
cn.Execute SQL, rdExecDirect
'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 300

MySQL Connector/ODBC

60

rs!Name = "Insert1"
rs.Update
rs.Close
'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 400
rs!Name = "Insert 2"
rs.Update
rs.Close
'rs update
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.Edit
rs!id = 999
rs!Name = "updated"
rs.Update
rs.Close
'fetch back...
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
Do Until rs.EOF
For Each cl In rs.rdoColumns
Debug.Print cl.Value,
Next
rs.MoveNext
Debug.Print
Loop
Debug.Print "Row count="; rs.RowCount
'close
rs.Close
cn.Close
End Sub

1.5.7.2. Using Connector/ODBC with .NET

This section contains simple examples that demonstrate the use of Connector/ODBC drivers with ODBC.NET.

1.5.7.2.1. Using Connector/ODBC with ODBC.NET and C# (C sharp)

The following sample creates a table my_odbc_net and demonstrates its use in C#.

/**
* @sample : mycon.cs
* @purpose : Demo sample for ODBC.NET using Connector/ODBC
* @author : Venu, <myodbc@lists.mysql.com>
*
* (C) Copyright MySQL AB, 1995-2006
*
**/
/* build command
*
* csc /t:exe
* /out:mycon.exe mycon.cs
* /r:Microsoft.Data.Odbc.dll
*/
using Console = System.Console;
using Microsoft.Data.Odbc;
namespace myodbc3
{
class mycon
{
static void Main(string[] args)
{
try
{
//Connection string for Connector/ODBC 3.51
string MyConString = "DRIVER={MySQL ODBC 3.51 Driver};" +
"SERVER=localhost;" +
"DATABASE=test;" +
"UID=venu;" +
"PASSWORD=venu;" +
"OPTION=3";

//Connect to MySQL using Connector/ODBC
OdbcConnection MyConnection = new OdbcConnection(MyConString);
MyConnection.Open();
Console.WriteLine("\n !!! success, connected successfully !!!\n");
//Display connection information
Console.WriteLine("Connection Information:");
Console.WriteLine("\tConnection String:" +

MyConnection.ConnectionString);
Console.WriteLine("\tConnection Timeout:" +

MyConnection.ConnectionTimeout);
Console.WriteLine("\tDatabase:" +

MyConnection.Database);
Console.WriteLine("\tDataSource:" +

MyConnection.DataSource);
Console.WriteLine("\tDriver:" +

MyConnection.Driver);
Console.WriteLine("\tServerVersion:" +

MyConnection.ServerVersion);

MySQL Connector/ODBC

61

//Create a sample table
OdbcCommand MyCommand =
new OdbcCommand("DROP TABLE IF EXISTS my_odbc_net",

MyConnection);
MyCommand.ExecuteNonQuery();
MyCommand.CommandText =
"CREATE TABLE my_odbc_net(id int, name varchar(20), idb bigint)";

MyCommand.ExecuteNonQuery();
//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(10,'venu', 300)";

Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());;

//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(20,'mysql',400)";

Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());

//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(20,'mysql',500)";

Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());

//Update
MyCommand.CommandText =
"UPDATE my_odbc_net SET id=999 WHERE id=20";

Console.WriteLine("Update, Total rows affected:" +
MyCommand.ExecuteNonQuery());

//COUNT(*)
MyCommand.CommandText =
"SELECT COUNT(*) as TRows FROM my_odbc_net";

Console.WriteLine("Total Rows:" +
MyCommand.ExecuteScalar());

//Fetch
MyCommand.CommandText = "SELECT * FROM my_odbc_net";
OdbcDataReader MyDataReader;
MyDataReader = MyCommand.ExecuteReader();
while (MyDataReader.Read())
{
if(string.Compare(MyConnection.Driver,"myodbc3.dll") == 0) {
//Supported only by Connector/ODBC 3.51
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +

MyDataReader.GetString(1) + " " +
MyDataReader.GetInt64(2));

}
else {
//BIGINTs not supported by Connector/ODBC
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +

MyDataReader.GetString(1) + " " +
MyDataReader.GetInt32(2));

}
}

//Close all resources
MyDataReader.Close();
MyConnection.Close();

}
catch (OdbcException MyOdbcException) //Catch any ODBC exception ..
{
for (int i=0; i < MyOdbcException.Errors.Count; i++)
{
Console.Write("ERROR #" + i + "\n" +

"Message: " +
MyOdbcException.Errors[i].Message + "\n" +
"Native: " +
MyOdbcException.Errors[i].NativeError.ToString() + "\n" +
"Source: " +
MyOdbcException.Errors[i].Source + "\n" +
"SQL: " +
MyOdbcException.Errors[i].SQLState + "\n");

}
}

}
}

}

1.5.7.2.2. Using Connector/ODBC with ODBC.NET and Visual Basic

The following sample creates a table my_vb_net and demonstrates the use in VB.

' @sample : myvb.vb
' @purpose : Demo sample for ODBC.NET using Connector/ODBC
' @author : Venu, <myodbc@lists.mysql.com>
'
' (C) Copyright MySQL AB, 1995-2006
'
'
'
' build command
'
' vbc /target:exe
' /out:myvb.exe
' /r:Microsoft.Data.Odbc.dll
' /r:System.dll
' /r:System.Data.dll
'

MySQL Connector/ODBC

62

Imports Microsoft.Data.Odbc
Imports System
Module myvb
Sub Main()
Try
'Connector/ODBC 3.51 connection string
Dim MyConString As String = "DRIVER={MySQL ODBC 3.51 Driver};" & _
"SERVER=localhost;" & _
"DATABASE=test;" & _
"UID=venu;" & _
"PASSWORD=venu;" & _
"OPTION=3;"
'Connection
Dim MyConnection As New OdbcConnection(MyConString)
MyConnection.Open()
Console.WriteLine("Connection State::" & MyConnection.State.ToString)
'Drop
Console.WriteLine("Dropping table")
Dim MyCommand As New OdbcCommand()
MyCommand.Connection = MyConnection
MyCommand.CommandText = "DROP TABLE IF EXISTS my_vb_net"
MyCommand.ExecuteNonQuery()
'Create
Console.WriteLine("Creating....")
MyCommand.CommandText = "CREATE TABLE my_vb_net(id int, name varchar(30))"
MyCommand.ExecuteNonQuery()
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(10,'venu')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net(id) VALUES(30)"
Console.WriteLine("INSERT, Total rows affected:" & _

MyCommand.ExecuteNonQuery())
'Update
MyCommand.CommandText = "UPDATE my_vb_net SET id=999 WHERE id=20"
Console.WriteLine("Update, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'COUNT(*)
MyCommand.CommandText = "SELECT COUNT(*) as TRows FROM my_vb_net"
Console.WriteLine("Total Rows:" & MyCommand.ExecuteScalar())
'Select
Console.WriteLine("Select * FROM my_vb_net")
MyCommand.CommandText = "SELECT * FROM my_vb_net"
Dim MyDataReader As OdbcDataReader
MyDataReader = MyCommand.ExecuteReader
While MyDataReader.Read
If MyDataReader("name") Is DBNull.Value Then
Console.WriteLine("id = " & _
CStr(MyDataReader("id")) & " name = " & _
"NULL")

Else
Console.WriteLine("id = " & _
CStr(MyDataReader("id")) & " name = " & _
CStr(MyDataReader("name")))

End If
End While
'Catch ODBC Exception

Catch MyOdbcException As OdbcException
Dim i As Integer
Console.WriteLine(MyOdbcException.ToString)
'Catch program exception

Catch MyException As Exception
Console.WriteLine(MyException.ToString)

End Try
End Sub

1.6. Connector/ODBC Reference
This section provides reference material for the Connector/ODBC API, showing supported functions and methods, supported
MySQL column types and the corresponding native type in Connector/ODBC, and the error codes returned by Connector/ODBC
when a fault occurs.

1.6.1. Connector/ODBC API Reference
This section summarizes ODBC routines, categorized by functionality.

For the complete ODBC API reference, please refer to the ODBC Programmer's Reference at ht-
tp://msdn.microsoft.com/en-us/library/ms714177.aspx.

An application can call SQLGetInfo function to obtain conformance information about Connector/ODBC. To obtain information

MySQL Connector/ODBC

63

http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx

about support for a specific function in the driver, an application can call SQLGetFunctions.

Note

For backward compatibility, the Connector/ODBC 3.51 driver supports all deprecated functions.

The following tables list Connector/ODBC API calls grouped by task:

Connecting to a data source

Function name C/ODBC
3.51

Standard Purpose

SQLAllocHandle Yes ISO 92 Obtains an environment, connection, statement, or descriptor
handle.

SQLConnect Yes ISO 92 Connects to a specific driver by data source name, user ID, and
password.

SQLDriverConnect Yes ODBC Connects to a specific driver by connection string or requests
that the Driver Manager and driver display connection dialog
boxes for the user.

SQLAllocEnv Yes Deprecated Obtains an environment handle allocated from driver.

SQLAllocConnect Yes Deprecated Obtains a connection handle

Obtaining information about a driver and data source

Function name C/ODBC
3.51

Standard Purpose

SQLDataSources No ISO 92 Returns the list of available data sources, handled by the Driver
Manager

SQLDrivers No ODBC Returns the list of installed drivers and their attributes, handles
by Driver Manager

SQLGetInfo Yes ISO 92 Returns information about a specific driver and data source.

SQLGetFunctions Yes ISO 92 Returns supported driver functions.

SQLGetTypeInfo Yes ISO 92 Returns information about supported data types.

Setting and retrieving driver attributes

Function name C/ODBC
3.51

Standard Purpose

SQLSetConnectAttr Yes ISO 92 Sets a connection attribute.

SQLGetConnectAttr Yes ISO 92 Returns the value of a connection attribute.

SQLSetConnectOption Yes Deprecated Sets a connection option

SQLGetConnectOption Yes Deprecated Returns the value of a connection option

SQLSetEnvAttr Yes ISO 92 Sets an environment attribute.

SQLGetEnvAttr Yes ISO 92 Returns the value of an environment attribute.

SQLSetStmtAttr Yes ISO 92 Sets a statement attribute.

SQLGetStmtAttr Yes ISO 92 Returns the value of a statement attribute.

SQLSetStmtOption Yes Deprecated Sets a statement option

SQLGetStmtOption Yes Deprecated Returns the value of a statement option

Preparing SQL requests

Function name C/ODBC
3.51

Standard Purpose

SQLAllocStmt Yes Deprecated Allocates a statement handle

SQLPrepare Yes ISO 92 Prepares an SQL statement for later execution.

SQLBindParameter Yes ODBC Assigns storage for a parameter in an SQL statement.

MySQL Connector/ODBC

64

SQLGetCursorName Yes ISO 92 Returns the cursor name associated with a statement handle.

SQLSetCursorName Yes ISO 92 Specifies a cursor name.

SQLSetScrollOptions Yes ODBC Sets options that control cursor behavior.

Submitting requests

Function name C/ODBC
3.51

Standard Purpose

SQLExecute Yes ISO 92 Executes a prepared statement.

SQLExecDirect Yes ISO 92 Executes a statement

SQLNativeSql Yes ODBC Returns the text of an SQL statement as translated by the driver.

SQLDescribeParam Yes ODBC Returns the description for a specific parameter in a statement.

SQLNumParams Yes ISO 92 Returns the number of parameters in a statement.

SQLParamData Yes ISO 92 Used in conjunction with SQLPutData to supply parameter
data at execution time. (Useful for long data values.)

SQLPutData Yes ISO 92 Sends part or all of a data value for a parameter. (Useful for long
data values.)

Retrieving results and information about results

Function name C/ODBC
3.51

Standard Purpose

SQLRowCount Yes ISO 92 Returns the number of rows affected by an insert, update, or de-
lete request.

SQLNumResultCols Yes ISO 92 Returns the number of columns in the result set.

SQLDescribeCol Yes ISO 92 Describes a column in the result set.

SQLColAttribute Yes ISO 92 Describes attributes of a column in the result set.

SQLColAttributes Yes Deprecated Describes attributes of a column in the result set.

SQLFetch Yes ISO 92 Returns multiple result rows.

SQLFetchScroll Yes ISO 92 Returns scrollable result rows.

SQLExtendedFetch Yes Deprecated Returns scrollable result rows.

SQLSetPos Yes ODBC Positions a cursor within a fetched block of data and allows an
application to refresh data in the rowset or to update or delete
data in the result set.

SQLBulkOperations Yes ODBC Performs bulk insertions and bulk bookmark operations, includ-
ing update, delete, and fetch by bookmark.

Retrieving error or diagnostic information

Function name C/ODBC
3.51

Standard Purpose

SQLError Yes Deprecated Returns additional error or status information

SQLGetDiagField Yes ISO 92 Returns additional diagnostic information (a single field of the
diagnostic data structure).

SQLGetDiagRec Yes ISO 92 Returns additional diagnostic information (multiple fields of the
diagnostic data structure).

Obtaining information about the data source's system tables (catalog functions) item

Function name C/ODBC
3.51

Standard Purpose

SQLColumnPrivileges Yes ODBC Returns a list of columns and associated privileges for one or
more tables.

SQLColumns Yes X/Open Returns the list of column names in specified tables.

MySQL Connector/ODBC

65

SQLForeignKeys Yes ODBC Returns a list of column names that make up foreign keys, if
they exist for a specified table.

SQLPrimaryKeys Yes ODBC Returns the list of column names that make up the primary key
for a table.

SQLSpecialColumns Yes X/Open Returns information about the optimal set of columns that
uniquely identifies a row in a specified table, or the columns that
are automatically updated when any value in the row is updated
by a transaction.

SQLStatistics Yes ISO 92 Returns statistics about a single table and the list of indexes as-
sociated with the table.

SQLTablePrivileges Yes ODBC Returns a list of tables and the privileges associated with each
table.

SQLTables Yes X/Open Returns the list of table names stored in a specific data source.

Performing transactions

Function name C/ODBC
3.51

Standard Purpose

SQLTransact Yes Deprecated Commits or rolls back a transaction

SQLEndTran Yes ISO 92 Commits or rolls back a transaction.

Terminating a statement

Function name C/ODBC
3.51

Standard Purpose

SQLFreeStmt Yes ISO 92 Ends statement processing, discards pending results, and, op-
tionally, frees all resources associated with the statement handle.

SQLCloseCursor Yes ISO 92 Closes a cursor that has been opened on a statement handle.

SQLCancel Yes ISO 92 Cancels an SQL statement.

Terminating a connection

Function name C/ODBC
3.51

Standard Purpose

SQLDisconnect Yes ISO 92 Closes the connection.

SQLFreeHandle Yes ISO 92 Releases an environment, connection, statement, or descriptor
handle.

SQLFreeConnect Yes Deprecated Releases connection handle

SQLFreeEnv Yes Deprecated Releases an environment handle

1.6.2. Connector/ODBC Data Types
The following table illustrates how driver maps the server data types to default SQL and C data types.

Native Value SQL Type C Type

bigint unsigned SQL_BIGINT SQL_C_UBIGINT

bigint SQL_BIGINT SQL_C_SBIGINT

bit SQL_BIT SQL_C_BIT

bit SQL_CHAR SQL_C_CHAR

blob SQL_LONGVARBINARY SQL_C_BINARY

bool SQL_CHAR SQL_C_CHAR

char SQL_CHAR SQL_C_CHAR

date SQL_DATE SQL_C_DATE

datetime SQL_TIMESTAMP SQL_C_TIMESTAMP

MySQL Connector/ODBC

66

decimal SQL_DECIMAL SQL_C_CHAR

double precision SQL_DOUBLE SQL_C_DOUBLE

double SQL_FLOAT SQL_C_DOUBLE

enum SQL_VARCHAR SQL_C_CHAR

float SQL_REAL SQL_C_FLOAT

int unsigned SQL_INTEGER SQL_C_ULONG

int SQL_INTEGER SQL_C_SLONG

integer unsigned SQL_INTEGER SQL_C_ULONG

integer SQL_INTEGER SQL_C_SLONG

long varbinary SQL_LONGVARBINARY SQL_C_BINARY

long varchar SQL_LONGVARCHAR SQL_C_CHAR

longblob SQL_LONGVARBINARY SQL_C_BINARY

longtext SQL_LONGVARCHAR SQL_C_CHAR

mediumblob SQL_LONGVARBINARY SQL_C_BINARY

mediumint unsigned SQL_INTEGER SQL_C_ULONG

mediumint SQL_INTEGER SQL_C_SLONG

mediumtext SQL_LONGVARCHAR SQL_C_CHAR

numeric SQL_NUMERIC SQL_C_CHAR

real SQL_FLOAT SQL_C_DOUBLE

set SQL_VARCHAR SQL_C_CHAR

smallint unsigned SQL_SMALLINT SQL_C_USHORT

smallint SQL_SMALLINT SQL_C_SSHORT

text SQL_LONGVARCHAR SQL_C_CHAR

time SQL_TIME SQL_C_TIME

timestamp SQL_TIMESTAMP SQL_C_TIMESTAMP

tinyblob SQL_LONGVARBINARY SQL_C_BINARY

tinyint unsigned SQL_TINYINT SQL_C_UTINYINT

tinyint SQL_TINYINT SQL_C_STINYINT

tinytext SQL_LONGVARCHAR SQL_C_CHAR

varchar SQL_VARCHAR SQL_C_CHAR

year SQL_SMALLINT SQL_C_SHORT

1.6.3. Connector/ODBC Error Codes
The following tables lists the error codes returned by the driver apart from the server errors.

Native
Code

SQLSTATE 2 SQLSTATE 3 Error Message

500 01000 01000 General warning

501 01004 01004 String data, right truncated

502 01S02 01S02 Option value changed

503 01S03 01S03 No rows updated/deleted

504 01S04 01S04 More than one row updated/deleted

505 01S06 01S06 Attempt to fetch before the result set returned the first row set

506 07001 07002 SQLBindParameter not used for all parameters

507 07005 07005 Prepared statement not a cursor-specification

508 07009 07009 Invalid descriptor index

509 08002 08002 Connection name in use

510 08003 08003 Connection does not exist

MySQL Connector/ODBC

67

http://dev.mysql.com/doc/refman/5.0/en/server-session-variables.html#sysvar_timestamp

511 24000 24000 Invalid cursor state

512 25000 25000 Invalid transaction state

513 25S01 25S01 Transaction state unknown

514 34000 34000 Invalid cursor name

515 S1000 HY000 General driver defined error

516 S1001 HY001 Memory allocation error

517 S1002 HY002 Invalid column number

518 S1003 HY003 Invalid application buffer type

519 S1004 HY004 Invalid SQL data type

520 S1009 HY009 Invalid use of null pointer

521 S1010 HY010 Function sequence error

522 S1011 HY011 Attribute can not be set now

523 S1012 HY012 Invalid transaction operation code

524 S1013 HY013 Memory management error

525 S1015 HY015 No cursor name available

526 S1024 HY024 Invalid attribute value

527 S1090 HY090 Invalid string or buffer length

528 S1091 HY091 Invalid descriptor field identifier

529 S1092 HY092 Invalid attribute/option identifier

530 S1093 HY093 Invalid parameter number

531 S1095 HY095 Function type out of range

532 S1106 HY106 Fetch type out of range

533 S1117 HY117 Row value out of range

534 S1109 HY109 Invalid cursor position

535 S1C00 HYC00 Optional feature not implemented

0 21S01 21S01 Column count does not match value count

0 23000 23000 Integrity constraint violation

0 42000 42000 Syntax error or access violation

0 42S02 42S02 Base table or view not found

0 42S12 42S12 Index not found

0 42S21 42S21 Column already exists

0 42S22 42S22 Column not found

0 08S01 08S01 Communication link failure

1.7. Connector/ODBC Notes and Tips
Here are some common notes and tips for using Connector/ODBC within different environments, applications and tools. The notes
provided here are based on the experiences of Connector/ODBC developers and users.

1.7.1. Connector/ODBC General Functionality
This section provides help with common queries and areas of functionality in MySQL and how to use them with Connector/ODBC.

1.7.1.1. Obtaining Auto-Increment Values

Obtaining the value of column that uses AUTO_INCREMENT after an INSERT statement can be achieved in a number of different
ways. To obtain the value immediately after an INSERT, use a SELECT query with the LAST_INSERT_ID() function.

For example, using Connector/ODBC you would execute two separate statements, the INSERT statement and the SELECT query
to obtain the auto-increment value.

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
SELECT LAST_INSERT_ID();

MySQL Connector/ODBC

68

http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/select.html

If you do not require the value within your application, but do require the value as part of another INSERT, the entire process can
be handled by executing the following statements:

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
INSERT INTO tbl2 (id,text) VALUES(LAST_INSERT_ID(),'text');

Certain ODBC applications (including Delphi and Access) may have trouble obtaining the auto-increment value using the previous
examples. In this case, try the following statement as an alternative:

SELECT * FROM tbl WHERE auto IS NULL;

See How to Get the Unique ID for the Last Inserted Row.

1.7.1.2. Dynamic Cursor Support

Support for the dynamic cursor is provided in Connector/ODBC 3.51, but dynamic cursors are not enabled by default. You
can enable this function within Windows by selecting the Enable Dynamic Cursor checkbox within the ODBC Data Source
Administrator.

On other platforms, you can enable the dynamic cursor by adding 32 to the OPTION value when creating the DSN.

1.7.1.3. Connector/ODBC Performance

The Connector/ODBC driver has been optimized to provide very fast performance. If you experience problems with the perform-
ance of Connector/ODBC, or notice a large amount of disk activity for simple queries, there are a number of aspects you should
check:

• Ensure that ODBC Tracing is not enabled. With tracing enabled, a lot of information is recorded in the tracing file by the
ODBC Manager. You can check, and disable, tracing within Windows using the TRACING panel of the ODBC Data Source Ad-
ministrator. Within Mac OS X, check the TRACING panel of ODBC Administrator. See Section 1.4.8, “Getting an ODBC Trace
File”.

• Make sure you are using the standard version of the driver, and not the debug version. The debug version includes additional
checks and reporting measures.

• Disable the Connector/ODBC driver trace and query logs. These options are enabled for each DSN, so make sure to examine
only the DSN that you are using in your application. Within Windows, you can disable the Connector/ODBC and query logs by
modifying the DSN configuration. Within Mac OS X and Unix, ensure that the driver trace (option value 4) and query logging
(option value 524288) are not enabled.

1.7.1.4. Setting ODBC Query Timeout in Windows

For more information on how to set the query timeout on Microsoft Windows when executing queries through an ODBC connec-
tion, read the Microsoft knowledgebase document at http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756.

1.7.2. Connector/ODBC Application Specific Tips
Most programs should work with Connector/ODBC, but for each of those listed here, there are specific notes and tips to improve or
enhance the way you work with Connector/ODBC and these applications.

With all applications you should ensure that you are using the latest Connector/ODBC drivers, ODBC Manager and any supporting
libraries and interfaces used by your application. For example, on Windows, using the latest version of Microsoft Data Access
Components (MDAC) will improve the compatibility with ODBC in general, and with the Connector/ODBC driver.

1.7.2.1. Using Connector/ODBC with Microsoft Applications

The majority of Microsoft applications have been tested with Connector/ODBC, including Microsoft Office, Microsoft Access and
the various programming languages supported within ASP and Microsoft Visual Studio.

1.7.2.1.1. Microsoft Access

To improve the integration between Microsoft Access and MySQL through Connector/ODBC:

• For all versions of Access, you should enable the Connector/ODBC Return matching rows option. For Access 2.0, you
should additionally enable the Simulate ODBC 1.0 option.

MySQL Connector/ODBC

69

http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/getting-unique-id.html
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756

• You should have a TIMESTAMP column in all tables that you want to be able to update. For maximum portability, do not use a
length specification in the column declaration (which is unsupported within MySQL in versions earlier than 4.1).

• You should have a primary key in each MySQL table you want to use with Access. If not, new or updated rows may show up as
#DELETED#.

• Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom usually is that new or
updated rows may show up as #DELETED# or that you cannot find or update rows.

• If you are using Connector/ODBC to link to a table that has a BIGINT column, the results are displayed as #DELETED#. The
work around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in ODBC DSN Administrator.

• Delete the table link from Access and re-create it.

Old records may still display as #DELETED#, but newly added/updated records are displayed properly.

• If you still get the error Another user has changed your data after adding a TIMESTAMP column, the following
trick may help you:

Do not use a table data sheet view. Instead, create a form with the fields you want, and use that form data sheet view. You
should set the DefaultValue property for the TIMESTAMP column to NOW(). It may be a good idea to hide the
TIMESTAMP column from view so your users are not confused.

• In some cases, Access may generate SQL statements that MySQL cannot understand. You can fix this by selecting
"Query|SQLSpecific|Pass-Through" from the Access menu.

• On Windows NT, Access reports BLOB columns as OLE OBJECTS. If you want to have MEMO columns instead, you should
change BLOB columns to TEXT with ALTER TABLE.

• Access cannot always handle the MySQL DATE column properly. If you have a problem with these, change the columns to
DATETIME.

• If you have in Access a column defined as BYTE, Access tries to export this as TINYINT instead of TINYINT UNSIGNED.
This gives you problems if you have values larger than 127 in the column.

• If you have very large (long) tables in Access, it might take a very long time to open them. Or you might run low on virtual
memory and eventually get an ODBC Query Failed error and the table cannot open. To deal with this, select the following
options:

• Return Matching Rows (2)

• Allow BIG Results (8).

These add up to a value of 10 (OPTION=10).

Some external articles and tips that may be useful when using Access, ODBC and Connector/ODBC:

• Read How to Trap ODBC Login Error Messages in Access

• Optimizing Access ODBC Applications

• Optimizing for Client/Server Performance

• Tips for Converting Applications to Using ODBCDirect

• Tips for Optimizing Queries on Attached SQL Tables

• For a list of tools that can be used with Access and ODBC data sources, refer to converters section for list of available tools.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about using ODBC with Access in Knowledge
Base articles such as Use MySQL-Specific Syntax with Microsoft Access. To subscribe to MySQL Enter-
prise see http://www.mysql.com/products/enterprise/advisors.html.

MySQL Connector/ODBC

70

http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E
http://support.microsoft.com/default.aspx?scid=kb;en-us;128808
http://support.microsoft.com/default.aspx?scid=kb;en-us;164481
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321
http://www.mysql.com/portal/software/convertors/
https://kb.mysql.com/view.php?id=5309
http://www.mysql.com/products/enterprise/advisors.html

1.7.2.1.2. Microsoft Excel and Column Types

If you have problems importing data into Microsoft Excel, particularly numerical, date, and time values, this is probably because of
a bug in Excel, where the column type of the source data is used to determine the data type when that data is inserted into a cell
within the worksheet. The result is that Excel incorrectly identifies the content and this affects both the display format and the data
when it is used within calculations.

To address this issue, use the CONCAT() function in your queries. The use of CONCAT() forces Excel to treat the value as a
string, which Excel will then parse and usually correctly identify the embedded information.

However, even with this option, some data may be incorrectly formatted, even though the source data remains unchanged. Use the
Format Cells option within Excel to change the format of the displayed information.

1.7.2.1.3. Microsoft Visual Basic

To be able to update a table, you must define a primary key for the table.

Visual Basic with ADO cannot handle big integers. This means that some queries like SHOW PROCESSLIST do not work prop-
erly. The fix is to use OPTION=16384 in the ODBC connect string or to select the Change BIGINT columns to INT op-
tion in the Connector/ODBC connect screen. You may also want to select the Return matching rows option.

MySQL Enterprise
MySQL Enterprise subscribers can find a discussion about using VBA in the Knowledge Base article,
MySQL-Specific Syntax with VBA. To subscribe to MySQL Enterprise see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

1.7.2.1.4. Microsoft Visual InterDev

If you have a BIGINT in your result, you may get the error [Microsoft][ODBC Driver Manager] Driver does
not support this parameter. Try selecting the Change BIGINT columns to INT option in the Connector/ODBC
connect screen.

1.7.2.1.5. Visual Objects

You should select the Don't optimize column widths option.

1.7.2.1.6. Microsoft ADO

When you are coding with the ADO API and Connector/ODBC, you need to pay attention to some default properties that aren't
supported by the MySQL server. For example, using the CursorLocation Property as adUseServer returns a result of
–1 for the RecordCount Property. To have the right value, you need to set this property to adUseClient, as shown in the
VB code here:

Dim myconn As New ADODB.Connection
Dim myrs As New Recordset
Dim mySQL As String
Dim myrows As Long
myconn.Open "DSN=MyODBCsample"
mySQL = "SELECT * from user"
myrs.Source = mySQL
Set myrs.ActiveConnection = myconn
myrs.CursorLocation = adUseClient
myrs.Open
myrows = myrs.RecordCount
myrs.Close
myconn.Close

Another workaround is to use a SELECT COUNT(*) statement for a similar query to get the correct row count.

To find the number of rows affected by a specific SQL statement in ADO, use the RecordsAffected property in the ADO ex-
ecute method. For more information on the usage of execute method, refer to ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp.

For information, see ActiveX Data Objects(ADO) Frequently Asked Questions.

1.7.2.1.7. Using Connector/ODBC with Active Server Pages (ASP)

You should select the Return matching rows option in the DSN.

For more information about how to access MySQL via ASP using Connector/ODBC, refer to the following articles:

MySQL Connector/ODBC

71

http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_concat
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_concat
http://dev.mysql.com/doc/refman/5.0/en/show-processlist.html
https://kb.mysql.com/view.php?id=5308
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606

• Using MyODBC To Access Your MySQL Database Via ASP

• ASP and MySQL at DWAM.NT

A Frequently Asked Questions list for ASP can be found at ht-
tp://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp.

1.7.2.1.8. Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP

Some articles that may help with Visual Basic and ASP:

• MySQL BLOB columns and Visual Basic 6 by Mike Hillyer (<mike@openwin.org>).

• How to map Visual basic data type to MySQL types by Mike Hillyer (<mike@openwin.org>).

1.7.2.2. Using Connector/ODBC with Borland Applications

With all Borland applications where the Borland Database Engine (BDE) is used, follow these steps to improve compatibility:

• Update to BDE 3.2 or newer.

• Enable the Don't optimize column widths option in the DSN.

• Enabled the Return matching rows option in the DSN.

1.7.2.2.1. Using Connector/ODBC with Borland Builder 4

When you start a query, you can use the Active property or the Open method. Note that Active starts by automatically issuing
a SELECT * FROM ... query. That may not be a good thing if your tables are large.

1.7.2.2.2. Using Connector/ODBC with Delphi

Also, here is some potentially useful Delphi code that sets up both an ODBC entry and a BDE entry for Connector/ODBC. The
BDE entry requires a BDE Alias Editor that is free at a Delphi Super Page near you. (Thanks to Bryan Brunton
<bryan@flesherfab.com> for this):

fReg:= TRegistry.Create;
fReg.OpenKey('\Software\ODBC\ODBC.INI\DocumentsFab', True);
fReg.WriteString('Database', 'Documents');
fReg.WriteString('Description', ' ');
fReg.WriteString('Driver', 'C:\WINNT\System32\myodbc.dll');
fReg.WriteString('Flag', '1');
fReg.WriteString('Password', '');
fReg.WriteString('Port', ' ');
fReg.WriteString('Server', 'xmark');
fReg.WriteString('User', 'winuser');
fReg.OpenKey('\Software\ODBC\ODBC.INI\ODBC Data Sources', True);
fReg.WriteString('DocumentsFab', 'MySQL');
fReg.CloseKey;
fReg.Free;
Memo1.Lines.Add('DATABASE NAME=');
Memo1.Lines.Add('USER NAME=');
Memo1.Lines.Add('ODBC DSN=DocumentsFab');
Memo1.Lines.Add('OPEN MODE=READ/WRITE');
Memo1.Lines.Add('BATCH COUNT=200');
Memo1.Lines.Add('LANGDRIVER=');
Memo1.Lines.Add('MAX ROWS=-1');
Memo1.Lines.Add('SCHEMA CACHE DIR=');
Memo1.Lines.Add('SCHEMA CACHE SIZE=8');
Memo1.Lines.Add('SCHEMA CACHE TIME=-1');
Memo1.Lines.Add('SQLPASSTHRU MODE=SHARED AUTOCOMMIT');
Memo1.Lines.Add('SQLQRYMODE=');
Memo1.Lines.Add('ENABLE SCHEMA CACHE=FALSE');
Memo1.Lines.Add('ENABLE BCD=FALSE');
Memo1.Lines.Add('ROWSET SIZE=20');
Memo1.Lines.Add('BLOBS TO CACHE=64');
Memo1.Lines.Add('BLOB SIZE=32');
AliasEditor.Add('DocumentsFab','MySQL',Memo1.Lines);

1.7.2.2.3. Using Connector/ODBC with C++ Builder

Tested with BDE 3.0. The only known problem is that when the table schema changes, query fields are not updated. BDE,
however, does not seem to recognize primary keys, only the index named PRIMARY, although this has not been a problem.

MySQL Connector/ODBC

72

http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via-ASP/
http://www.dwam.net/mysql/asp_myodbc.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://dev.mysql.com/tech-resources/articles/vb-blob-handling.html
http://dev.mysql.com/tech-resources/articles/visual-basic-datatypes.html

1.7.2.3. Using Connector/ODBC with ColdFusion

The following information is taken from the ColdFusion documentation:

Use the following information to configure ColdFusion Server for Linux to use the unixODBC driver with Connector/ODBC for
MySQL data sources. You can download Connector/ODBC at http://dev.mysql.com/downloads/connector/odbc/.

ColdFusion version 4.5.1 allows you to us the ColdFusion Administrator to add the MySQL data source. However, the driver is not
included with ColdFusion version 4.5.1. Before the MySQL driver appears in the ODBC data sources drop-down list, you must
build and copy the Connector/ODBC driver to /opt/coldfusion/lib/libmyodbc.so.

The Contrib directory contains the program mydsn-xxx.zip which allows you to build and remove the DSN registry file for the
Connector/ODBC driver on ColdFusion applications.

For more information and guides on using ColdFusion and Connector/ODBC, see the following external sites:

• Troubleshooting Data Sources and Database Connectivity for Unix Platforms.

1.7.2.4. Using Connector/ODBC with OpenOffice.org

Open Office (http://www.openoffice.org) How-to: MySQL + OpenOffice. How-to: OpenOffice + MyODBC + unixODBC.

1.7.2.5. Using Connector/ODBC with Sambar Server

Sambar Server (http://www.sambarserver.info) How-to: MyODBC + SambarServer + MySQL.

1.7.2.6. Using Connector/ODBC with Pervasive Software DataJunction

You have to change it to output VARCHAR rather than ENUM, as it exports the latter in a manner that causes MySQL problems.

1.7.2.7. Using Connector/ODBC with SunSystems Vision

You should select the Return matching rows option.

1.7.3. Connector/ODBC Errors and Resolutions (FAQ)
The following section details some common errors and their suggested fix or alternative solution. If you are still experiencing prob-
lems, use the Connector/ODBC mailing list; see Section 1.8.1, “Connector/ODBC Community Support”.

Many problems can be resolved by upgrading your Connector/ODBC drivers to the latest available release. On Windows, you
should also make sure that you have the latest versions of the Microsoft Data Access Components (MDAC) installed.

Questions

• 1.7.3.1: I have installed Connector/ODBC on Windows XP x64 Edition or Windows Server 2003 R2 x64. The installation com-
pleted successfully, but the Connector/ODBC driver does not appear in ODBC Data Source Administrator.

• 1.7.3.2: When connecting or using the TEST button in ODBC Data Source Administrator I get error 10061 (Cannot
connect to server)

• 1.7.3.3: The following error is reported when using transactions: Transactions are not enabled

• 1.7.3.4: Access reports records as #DELETED# when inserting or updating records in linked tables.

• 1.7.3.5: How do I handle Write Conflicts or Row Location errors?

• 1.7.3.6: Exporting data from Access 97 to MySQL reports a Syntax Error.

• 1.7.3.7: Exporting data from Microsoft DTS to MySQL reports a Syntax Error.

• 1.7.3.8: Using ODBC.NET with Connector/ODBC, while fetching empty string (0 length), it starts giving the SQL_NO_DATA
exception.

• 1.7.3.9: Using SELECT COUNT(*) FROM tbl_name within Visual Basic and ASP returns an error.

• 1.7.3.10: Using the AppendChunk() or GetChunk() ADO methods, the Multiple-step operation generated

MySQL Connector/ODBC

73

http://dev.mysql.com/downloads/connector/odbc/
http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/index.cfm
http://www.openoffice.org
http://wiki.services.openoffice.org/wiki/Connect_MySQL_and_Base
http://www.sambarserver.info
http://www.sambarserver.info/article.php?sid=66
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/enum.html

errors. Check each status value error is returned.

• 1.7.3.11: Access Returns Another user had modified the record that you have modified while editing
records on a Linked Table.

• 1.7.3.12: When linking an application directly to the Connector/ODBC library under Unix/Linux, the application crashes.

• 1.7.3.13: Applications in the Microsoft Office suite are unable to update tables that have DATE or TIMESTAMP columns.

• 1.7.3.14: When connecting Connector/ODBC 5.x (Beta) to a MySQL 4.x server, the error 1044 Access denied for
user 'xxx'@'%' to database 'information_schema' is returned.

• 1.7.3.15: When calling SQLTables, the error S1T00 is returned, but I cannot find this in the list of error numbers for Con-
nector/ODBC.

• 1.7.3.16: When linking to tables in Access 2000 and generating links to tables programmatically, rather than through the table
designer interface, you may get errors about tables not existing.

• 1.7.3.17: When I try to use batched statements, the excution of the batched statements fails.

• 1.7.3.18: When connecting to a MySQL server using ADODB and Excel, occasionally the application fails to communicate
with the server and the error Got an error reading communication packets appears in the error log.

• 1.7.3.19: When using some applications to access a MySQL server using C/ODBC and outer joins, an error is reported regard-
ing the Outer Join Escape Sequence.

• 1.7.3.20: I can correctly store extended characters in the database (Hebrew/CJK) using C/ODBC 5.1, but when I retrieve the
data, the text is not formatted correctly and I get garbled characters.

• 1.7.3.21: I have a duplicate MySQL Connector/ODBC entry within my INSTALLED PROGRAMS list, but I cannot delete one of
them.

• 1.7.3.22: When submitting queries with parameter binding using UPDATE, my field values are being truncated to 255 charac-
ters.

• 1.7.3.23: Is it possible to disable data-at-execution using a flag?

Questions and Answers

1.7.3.1: I have installed Connector/ODBC on Windows XP x64 Edition or Windows Server 2003 R2 x64. The installation
completed successfully, but the Connector/ODBC driver does not appear in ODBC Data Source Administrator.

This is not a bug, but is related to the way Windows x64 editions operate with the ODBC driver. On Windows x64 editions, the
Connector/ODBC driver is installed in the %SystemRoot%\SysWOW64 folder. However, the default ODBC Data Source
Administrator that is available through the Administrative Tools or Control Panel in Windows x64 Editions is
located in the %SystemRoot%\system32 folder, and only searches this folder for ODBC drivers.

On Windows x64 editions, you should use the ODBC administration tool located at
%SystemRoot%\SysWOW64\odbcad32.exe, this will correctly locate the installed Connector/ODBC drivers and enable you
to create a Connector/ODBC DSN.

This issue was originally reported as Bug#20301.

1.7.3.2: When connecting or using the TEST button in ODBC Data Source Administrator I get error 10061 (Cannot
connect to server)

This error can be raised by a number of different issues, including server problems, network problems, and firewall and port block-
ing problems. For more information, see Can't connect to [local] MySQL server.

1.7.3.3: The following error is reported when using transactions: Transactions are not enabled

This error indicates that you are trying to use transactions with a MySQL table that does not support transactions. Transactions are
supported within MySQL when using the InnoDB database engine. In versions of MySQL before Mysql 5.1 you may also use the
BDB engine.

You should check the following before continuing:

• Verify that your MySQL server supports a transactional database engine. Use SHOW ENGINES to obtain a list of the available
engine types.

MySQL Connector/ODBC

74

http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://bugs.mysql.com/20301
http://dev.mysql.com/doc/refman/5.0/en/common-errors.html#can-not-connect-to-server
http://dev.mysql.com/doc/refman/5.0/en/show-engines.html

• Verify that the tables you are updating use a transaction database engine.

• Ensure that you have not enabled the disable transactions option in your DSN.

1.7.3.4: Access reports records as #DELETED# when inserting or updating records in linked tables.

If the inserted or updated records are shown as #DELETED# in the access, then:

• If you are using Access 2000, you should get and install the newest (version 2.6 or higher) Microsoft MDAC (Microsoft
Data Access Components) from http://support.microsoft.com/kb/110093. This fixes a bug in Access that when you ex-
port data to MySQL, the table and column names aren't specified.

You should also get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5) which can be found at ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes some cases where columns are marked as
#DELETED# in Access.

• For all versions of Access, you should enable the Connector/ODBC Return matching rows option. For Access 2.0, you
should additionally enable the Simulate ODBC 1.0 option.

• You should have a timestamp in all tables that you want to be able to update.

• You should have a primary key in the table. If not, new or updated rows may show up as #DELETED#.

• Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom usually is that new or
updated rows may show up as #DELETED# or that you cannot find or update rows.

• If you are using Connector/ODBC to link to a table that has a BIGINT column, the results are displayed as #DELETED. The
work around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in ODBC DSN Administrator.

• Delete the table link from Access and re-create it.

Old records still display as #DELETED#, but newly added/updated records are displayed properly.

1.7.3.5: How do I handle Write Conflicts or Row Location errors?

If you see the following errors, select the Return Matching Rows option in the DSN configuration dialog, or specify OP-
TION=2, as the connection parameter:

Write Conflict. Another user has changed your data.
Row cannot be located for updating. Some values may have been changed
since it was last read.

1.7.3.6: Exporting data from Access 97 to MySQL reports a Syntax Error.

This error is specific to Access 97 and versions of Connector/ODBC earlier than 3.51.02. Update to the latest version of the Con-
nector/ODBC driver to resolve this problem.

1.7.3.7: Exporting data from Microsoft DTS to MySQL reports a Syntax Error.

This error occurs only with MySQL tables using the TEXT or VARCHAR data types. You can fix this error by upgrading your Con-
nector/ODBC driver to version 3.51.02 or higher.

1.7.3.8: Using ODBC.NET with Connector/ODBC, while fetching empty string (0 length), it starts giving the
SQL_NO_DATA exception.

You can get the patch that addresses this problem from http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243.

1.7.3.9: Using SELECT COUNT(*) FROM tbl_name within Visual Basic and ASP returns an error.

This error occurs because the COUNT(*) expression is returning a BIGINT, and ADO cannot make sense of a number this big.
Select the Change BIGINT columns to INT option (option value 16384).

1.7.3.10: Using the AppendChunk() or GetChunk() ADO methods, the Multiple-step operation generated
errors. Check each status value error is returned.

MySQL Connector/ODBC

75

http://support.microsoft.com/kb/110093
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://dev.mysql.com/doc/refman/5.0/en/group-by-functions.html#function_count
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html

The GetChunk() and AppendChunk() methods from ADO doesn't work as expected when the cursor location is specified as
adUseServer. On the other hand, you can overcome this error by using adUseClient.

A simple example can be found from http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

1.7.3.11: Access Returns Another user had modified the record that you have modified while editing
records on a Linked Table.

In most cases, this can be solved by doing one of the following things:

• Add a primary key for the table if one doesn't exist.

• Add a timestamp column if one doesn't exist.

• Only use double-precision float fields. Some programs may fail when they compare single-precision floats.

If these strategies do not help, you should start by making a log file from the ODBC manager (the log you get when requesting logs
from ODBCADMIN) and a Connector/ODBC log to help you figure out why things go wrong. For instructions, see Section 1.4.8,
“Getting an ODBC Trace File”.

1.7.3.12: When linking an application directly to the Connector/ODBC library under Unix/Linux, the application crashes.

Connector/ODBC 3.51 under Unix/Linux is not compatible with direct application linking. You must use a driver manager, such as
iODBC or unixODBC to connect to an ODBC source.

1.7.3.13: Applications in the Microsoft Office suite are unable to update tables that have DATE or TIMESTAMP columns.

This is a known issue with Connector/ODBC. You must ensure that the field has a default value (rather than NULL and that the de-
fault value is non-zeo (i.e. the default value is not 0000-00-00 00:00:00).

1.7.3.14: When connecting Connector/ODBC 5.x (Beta) to a MySQL 4.x server, the error 1044 Access denied for
user 'xxx'@'%' to database 'information_schema' is returned.

Connector/ODBC 5.x is designed to work with MySQL 5.0 or later, taking advantage of the INFORMATION_SCHEMA database to
determine data definition information. Support for MySQL 4.1 is planned for the final release.

1.7.3.15: When calling SQLTables, the error S1T00 is returned, but I cannot find this in the list of error numbers for
Connector/ODBC.

The S1T00 error indicates that a general timeout has occurred within the ODBC system and is not a MySQL error. Typically it in-
dicates that the connection you are using is stale, the server is too busy to accept your request or that the server has gone away.

1.7.3.16: When linking to tables in Access 2000 and generating links to tables programmatically, rather than through the ta-
ble designer interface, you may get errors about tables not existing.

There is a known issue with a specific version of the msjet40.dll that exhibits this issue. The version affected is 4.0.9025.0.
Reverting to an older version will enable you to create the links. If you have recently updated your version, check your WINDOWS
directory for the older version of the file and copy it to the drivers directory.

1.7.3.17: When I try to use batched statements, the excution of the batched statements fails.

Batched statement support was added in 3.51.18. Support for batched statements is not enabled by default. You must enable option
FLAG_MULTI_STATEMENTS, value 67108864, or select the ALLOW MULTIPLE STATEMENTS flag within a GUI configuration.

1.7.3.18: When connecting to a MySQL server using ADODB and Excel, occasionally the application fails to communicate
with the server and the error Got an error reading communication packets appears in the error log.

This error may be related to Keyboard Logger 1.1 from PanteraSoft.com, which is known to interfere with the network communic-
ation between MySQL Connector/ODBC and MySQL.

1.7.3.19: When using some applications to access a MySQL server using C/ODBC and outer joins, an error is reported re-
garding the Outer Join Escape Sequence.

This is a known issue with MySQL Connector/ODBC which is not correctly parsing the "Outer Join Escape Sequence", as per the
specs at Microsoft ODBC Specs. Currently, Connector/ODBC will return value > 0 when asked for SQL_OJ_CAPABILITIES
even though no parsing takes place in the driver to handle the outer join escape sequence.

1.7.3.20: I can correctly store extended characters in the database (Hebrew/CJK) using C/ODBC 5.1, but when I retrieve
the data, the text is not formatted correctly and I get garbled characters.

MySQL Connector/ODBC

76

http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://msdn2.microsoft.com/en-us/library/ms710299.aspx

When using ASP and UTF8 characters you should add the following to your ASP files to ensure that the data returned is correctly
encoded:

Response.CodePage = 65001
Response.CharSet = "utf-8"

1.7.3.21: I have a duplicate MySQL Connector/ODBC entry within my INSTALLED PROGRAMS list, but I cannot delete one
of them.

This problem can occur when you upgrade an existing Connector/ODBC installation, rather than removing and then installing the
updated version.

Warning

To fix the problem you should use any working uninstallers to remove existing installations and then may have to edit
the contents of the registry. Make sure you have a backup of your registry information before attempting any editing
of the registry contents.

1.7.3.22: When submitting queries with parameter binding using UPDATE, my field values are being truncated to 255 char-
acters.

You should ensure that the FLAG_BIG_PACKETS option is set for your connection. This removes the 255 character limitation on
bound parameters.

1.7.3.23: Is it possible to disable data-at-execution using a flag?

If you do not wish to use data-at-execution, simply remove the corresponding calls. For example:

SQLLEN ylen = SQL_LEN_DATA_AT_EXEC(10);
SQLBindCol(hstmt,2,SQL_C_BINARY, buf, 10, &ylen);

Would become:

SQLBindCol(hstmt,2,SQL_C_BINARY, buf, 10, NULL);

Note that in the call to SQLBindCol(), &ylen has been replaced by NULL.

For further information please refer to the MSDN documentation for SQLBindCol().

1.8. Connector/ODBC Support
There are many different places where you can get support for using Connector/ODBC. You should always try the Connector/
ODBC Mailing List or Connector/ODBC Forum. See Section 1.8.1, “Connector/ODBC Community Support”, for help before re-
porting a specific bug or issue to MySQL.

1.8.1. Connector/ODBC Community Support
Sun Microsystems, Inc. provides assistance to the user community by means of its mailing lists. For Connector/ODBC-related is-
sues, you can get help from experienced users by using the <myodbc@lists.mysql.com> mailing list. Archives are available
online at http://lists.mysql.com/myodbc.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See MySQL
Mailing Lists.

Community support from experienced users is also available through the ODBC Forum. You may also find help from other users in
the other MySQL Forums, located at http://forums.mysql.com. See MySQL Community Support at the MySQL Forums.

1.8.2. How to Report Connector/ODBC Problems or Bugs
If you encounter difficulties or problems with Connector/ODBC, you should start by making a log file from the ODBC Manager
(the log you get when requesting logs from ODBC ADMIN) and Connector/ODBC. The procedure for doing this is described in
Section 1.4.8, “Getting an ODBC Trace File”.

Check the Connector/ODBC trace file to find out what could be wrong. You should be able to determine what statements were is-
sued by searching for the string >mysql_real_query in the myodbc.log file.

You should also try issuing the statements from the mysql client program or from admndemo. This helps you determine whether
the error is in Connector/ODBC or MySQL.

MySQL Connector/ODBC

77

http://dev.mysql.com/doc/refman/5.0/en/update.html
http://msdn.microsoft.com/en-us/library/ms711010(VS.85).aspx
http://lists.mysql.com/myodbc
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://forums.mysql.com/list.php?37
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/forums.html

If you find out something is wrong, please only send the relevant rows (maximum 40 rows) to the myodbc mailing list. See
MySQL Mailing Lists. Please never send the whole Connector/ODBC or ODBC log file!

You should ideally include the following information with the email:

• Operating system and version

• Connector/ODBC version

• ODBC Driver Manager type and version

• MySQL server version

• ODBC trace from Driver Manager

• Connector/ODBC log file from Connector/ODBC driver

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix the problem!

Also, before posting the bug, check the MyODBC mailing list archive at http://lists.mysql.com/myodbc.

If you are unable to find out what is wrong, the last option is to create an archive in tar or Zip format that contains a Connector/
ODBC trace file, the ODBC log file, and a README file that explains the problem. You can send this to
ftp://ftp.mysql.com/pub/mysql/upload/. Only MySQL engineers have access to the files you upload, and we are very discreet with
the data.

If you can create a program that also demonstrates the problem, please include it in the archive as well.

If the program works with another SQL server, you should include an ODBC log file where you perform exactly the same SQL
statements so that we can compare the results between the two systems.

Remember that the more information you can supply to us, the more likely it is that we can fix the problem.

1.8.3. How to Submit a Connector/ODBC Patch
You can send a patch or suggest a better solution for any existing code or problems by sending a mail message to
<myodbc@lists.mysql.com>.

1.8.4. Connector/ODBC Change History
The Connector/ODBC Change History (Changelog) is located with the main Changelog for MySQL. See Appendix A, MySQL
Connector/ODBC (MyODBC) Change History.

1.8.5. Credits
These are the developers that have worked on the Connector/ODBC and Connector/ODBC 3.51 Drivers from MySQL AB.

• Michael (Monty) Widenius

• Venu Anuganti

• Peter Harvey

MySQL Connector/ODBC

78

http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://lists.mysql.com/myodbc
ftp://ftp.mysql.com/pub/mysql/upload/

Chapter 2. MySQL Connector/NET
Connector/NET enables developers to easily create .NET applications that require secure, high-performance data connectivity with
MySQL. It implements the required ADO.NET interfaces and integrates into ADO.NET aware tools. Developers can build applica-
tions using their choice of .NET languages. Connector/NET is a fully managed ADO.NET driver written in 100% pure C#.

Connector/NET includes full support for:

• MySQL 6.0 features

• MySQL 5.1 features

• MySQL 5.0 features (such as stored procedures)

• MySQL 4.1 features (server-side prepared statements, Unicode, and shared memory access, and so forth)

• Large-packet support for sending and receiving rows and BLOBs up to 2 gigabytes in size.

• Protocol compression which allows for compressing the data stream between the client and server.

• Support for connecting using TCP/IP sockets, named pipes, or shared memory on Windows.

• Support for connecting using TCP/IP sockets or Unix sockets on Unix.

• Support for the Open Source Mono framework developed by Novell.

• Fully managed, does not utilize the MySQL client library.

This document is intended as a user's guide to Connector/NET and includes a full syntax reference. Syntax information is also in-
cluded within the Documentation.chm file included with the Connector/NET distribution.

If you are using MySQL 5.0 or later, and Visual Studio as your development environment, you may want also want to use the
MySQL Visual Studio Plugin. The plugin acts as a DDEX (Data Designer Extensibility) provider, enabling you to use the data
design tools within Visual Studio to manipulate the schema and objects within a MySQL database. For more information, see Sec-
tion 2.3, “Visual Studio User Guide”.

Note

Connector/NET 5.1.2 and later include the Visual Studio Plugin by default.

Key topics:

• For connection string properties when using the MySqlConnection class, see Section 2.4.5, “Connector/NET Connection
String Options Reference”.

2.1. Connector/NET Versions
There are several versions of Connector/NET available:

• Connector/NET 1.0 includes support for MySQL 4.0, and MySQL 5.0 features, and full compatibility with the ADO.NET
driver interface.

• Connector/NET 5.0 includes support for MySQL 4.0, MySQL 4.1, MySQL 5.0 and MySQL 5.1 features. Connector/NET 5.0
also includes full support for the ADO.Net 2.0 interfaces and subclasses, includes support for the usage advisor and perform-
ance monitor (PerfMon) hooks.

• Connector/NET 5.1 includes support for MySQL 4.0, MySQL 5.0, MySQL 5.1 and MySQL 6.0 (Falcon Preview) features.
Connector/NET 5.1 also includes support for a new membership/role provider, Compact Framework 2.0, a new stored proced-
ure parser and improvements to GetSchema. Connector/NET 5.1 also includes the Visual Studio Plugin as a standard install-
able component.

• Connector/NET 5.2 includes support for MySQL 4.0, MySQL 5.0, MySQL 5.1 and MySQL 6.0 (Falcon Preview) features.
Connector/NET 5.2 also includes support for a new membership/role provider, Compact Framework 2.0, a new stored proced-
ure parser and improvements to GetSchema. Connector/NET 5.2 also includes the Visual Studio Plugin as a standard install-
able component.

79

• Connector/NET 6.0 includes support for MySQL 4.0, MySQL 5.0, MySQL 5.1 and MySQL 6.0. Connector/NET 6.0 is cur-
rently available as an Alpha release.

The latest source code for Connector/NET can be downloaded from the MySQL public Subversion server. For further details see
Section 2.2.3, “Installing Connector/NET from the source code”.

The following table shows the .NET Framework version required, and MySQL Server version supported by Connector/NET:

Connector/NET version ADO.NET version supported .NET Framework version re-
quired

MySQL Server version sup-
ported

1.0 1.x 1.x 4.0, 5.0

5.0 1.x+ 1.x+ 4.0, 5.0

5.1 1.x+ 1.x+ 4.0, 5.0, 5.1, 6.0

5.2 1.x+ 1.x+ 4.0, 5.0, 5.1, 6.0

6.0 2.x+ 2.x+ 4.0, 5.0, 5.1, 6.0

Note

Version numbers for MySQL products are formatted as X.X.X. However, Windows tools (Control Panel, properties
display) may show the version numbers as XX.XX.XX. For example, the official MySQL formatted version number
5.0.9 may be displayed by Windows tools as 5.00.09. The two versions are the same; only the number display format
is different.

2.2. Connector/NET Installation
Connector/NET runs on any platform that supports the .NET framework. The .NET framework is primarily supported on recent
versions of Microsoft Windows, and is supported on Linux through the Open Source Mono framework (see ht-
tp://www.mono-project.com).

Connector/NET is available for download from http://dev.mysql.com/downloads/connector/net/5.2.html.

2.2.1. Installing Connector/NET on Windows
On Windows, installation is supported either through a binary installation process or by downloading a Zip file with the Connector/
NET components.

Before installing, you should ensure that your system is up to date, including installing the latest version of the .NET Framework.

2.2.1.1. Installing Connector/NET using the Installer

Using the installer is the most straightforward method of installing Connector/NET on Windows and the installed components in-
clude the source code, test code and full reference documentation.

Connector/NET is installed through the use of a Windows Installer (.msi) installation package, which can be used to install Con-
nector/NET on all Windows operating systems. The MSI package in contained within a ZIP archive named mysql-con-
nector-net-version.zip, where version indicates the Connector/NET version.

To install Connector/NET:

1. Double click on the MSI installer file extracted from the Zip you downloaded. Click NEXT to start the installation.

MySQL Connector/NET

80

http://www.mono-project.com
http://www.mono-project.com
http://dev.mysql.com/downloads/connector/net/5.2.html

2. You must choose the type of installation that you want to perform.

MySQL Connector/NET

81

For most situations, the Typical installation will be suitable. Click the TYPICAL button and proceed to Step 5. A Complete in-
stallation installs all the available files. To conduct a Complete installation, click the COMPLETE button and proceed to step 5.
If you want to customize your installation, including choosing the components to install and some installation options, click
the CUSTOM button and proceed to Step 3.

The Connector/NET installer will register the connector within the Global Assembly Cache (GAC) - this will make the Con-
nector/NET component available to all applications, not just those where you explicitly reference the Connector/NET com-
ponent. The installer will also create the necessary links in the Start menu to the documentation and release notes.

3. If you have chosen a custom installation, you can select the individual components that you want to install, including the core
interface component, supporting documentation (a CHM file) samples and examples and the source code. Select the items, and
their installation level, and then click NEXT to continue the installation.

Note

For Connector/NET 1.0.8 or lower and Connector 5.0.4 and lower the installer will attempt to install binaries for both
1.x and 2.x of the .NET Framework. If you only have one version of the framework installed, the connector installa-
tion may fail. If this happens, you can choose the framework version to be installed through the custom installation
step.

MySQL Connector/NET

82

4. You will be given a final opportunity to confirm the installation. Click INSTALL to copy and install the files onto your ma-
chine.

MySQL Connector/NET

83

5. Once the installation has been completed, click FINISH to exit the installer.

MySQL Connector/NET

84

Unless you choose otherwise, Connector/NET is installed in C:\Program Files\MySQL\MySQL Connector Net
X.X.X, where X.X.X is replaced with the version of Connector/NET you are installing. New installations do not overwrite exist-
ing versions of Connector/NET.

Depending on your installation type, the installed components will include some or all of the following components:

• bin - Connector/NET MySQL libraries for different versions of the .NET environment.

• docs - contains a CHM of the Connector/NET documentation.

• samples - sample code and applications that use the Connector/NET component.

• src - the source code for the Connector/NET component.

You may also use the /quiet or /q command-line option with the msiexec tool to install the Connector/NET package automat-
ically (using the default options) with no notification to the user. Using this method the user cannot select options. Additionally, no
prompts, messages or dialog boxes will be displayed.

C:\> msiexec /package conector-net.msi /quiet

To provide a progress bar to the user during automatic installation, use the /passive option.

2.2.1.2. Installing Connector/NET using the Zip packages

If you are having problems running the installer, you can download a Zip file without an installer as an alternative. That file is
called mysql-connector-net-version-noinstall.zip. Once downloaded, you can extract the files to a location of
your choice.

The file contains the following directories:

MySQL Connector/NET

85

• bin - Connector/NET MySQL libraries for different versions of the .NET environment.

• Docs - contains a CHM of the Connector/NET documentation.

• Samples - sample code and applications that use the Connector/NET component.

Connector/NET 6.0.x has a different directory structure:

• Assemblies - contains a collection of DLLs that make up the connector functionality.

• Documentation - contains the Connector/NET documentation as a CHM file.

• Samples - sample code and applications that use the Connector/NET component.

There is also another Zip file available for download called mysql-connector-net-version-src.zip. This file contains
the source code distribution.

The file contains the following directories:

• Documentation - This folder contains the source files to build the documentation into the compiled HTML (CHM) format.

• Installer - This folder contains the source files to build the Connector/NET installer program.

• MySql.Data - This folder contains the source files for the core data provider.

• MySql.VisualStudio - This folder contains the source files for the Microsoft Visual Studio extensions.

• MySql.Web - This folder contains the source files for the web providers. This includes code for the membership provider, role
provider and profile provider. These are used in ASP.NET web sites.

• Samples - This folder contains the source files for several example applications.

• Tests - Ths folder contains a spreadsheet listing test cases.

• VisualStudio - Contains resources used by the Visual Studio plug in.

Finally, you need to ensure that MySql.Data.dll is accessible to your program at build time (and run time). If using Microsoft
Visual Studio you will need to add MySql.Data as a Reference to your project.

2.2.2. Installing Connector/NET on Unix with Mono
There is no installer available for installing the Connector/NET component on your Unix installation. Before installing, please en-
sure that you have a working Mono project installation. You can test whether your system has Mono installed by typing:

shell> mono --version

The version of the Mono JIT compiler will be displayed.

To compile C# source code you will also need to make sure a Mono C# compiler, is installed. Note that there are two Mono C#
compilers available, mcs, which accesses the 1.0-profile libraries, and gmcs, which acesses the 2.0-profile libraries.

To install Connector/NET on Unix/Mono:

1. Download the mysql-connector-net-version-noinstall.zip and extract the contents to a directory of your
choice, for example: ~/connector-net/.

2. In the directory where you unzipped the connector to, change into the bin directory. Ensure the file MySql.Data.dll is
present.

3. You must register the Connector/NET component, MySql.Data, in the Global Assembly Cache (GAC). In the current dir-
ectory enter the gacutil command:

root-shell> gacutil /i MySql.Data.dll

This will register MySql.Data into the GAC. You can check this by listing the contents of /usr/lib/mono/gac, where

MySQL Connector/NET

86

you will find MySql.Data if the registration has been successful.

You are now ready to compile your application. You must ensure that when you compile your application you include the Connect-
or/NET component using the -r: command-line option. For example:

shell> gmcs -r:System.dll -r:System.Data.dll -r:MySql.Data.dll HelloWorld.cs

Note, the assemblies that need to be referenced will depend on the requirements of the application, but applications using Connect-
or/NET will need to provide -r:MySql.Data as a minimum.

You can further check your installation by running the compiled program, for example:

shell> mono HelloWorld.exe

2.2.3. Installing Connector/NET from the source code

Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get Con-
nector/NET up and running on your system, you should use a standard release distribution.

Obtaining the source code

To be able to access the Connector/NET source tree, you must have Subversion installed. Subversion is freely available from ht-
tp://subversion.tigris.org/.

The most recent development source tree is available from our public Subversion trees at ht-
tp://dev.mysql.com/tech-resources/sources.html.

To checkout out the Connector/NET sources, change to the directory where you want the copy of the Connector/NET tree to be
stored, then use the following command:

shell> svn co http://svn.mysql.com/svnpublic/connector-net

Source packages are also available on the downloads page.

Building the source code on Windows

The following procedure can be used to build the connector on Microsoft Windows.

• Obtain the source code, either from the Subversion server, or through one of the prepared source code packages.

• Navigate to the root of the source code tree.

• A Microsoft Visual Studio 2005 solution file is available to build the connector, this is called MySQL-VS2005.sln. Click on
this file to load the solution into Visual Studio.

• Select BUILD, BUILD SOLUTION from the main menu to build the solution.

Building the source code on Unix

Support for building Connector/NET on Mono/Unix is currently not available.

2.3. Visual Studio User Guide

2.3.1. Making a connection
Once the connector is installed, you can use it to create, modify, and delete connections to MySQL databases. To create a connec-
tion with a MySQL database, perform the following steps:

• Start Visual Studio, and open the Server Explorer window (VIEW, SERVER EXPLORER option in the main Visual Studio menu,
or Ctrl+W, L hot keys).

• Right-click on the Data Connections node, and choose the ADD CONNECTION... menu item.

MySQL Connector/NET

87

http://subversion.tigris.org/
http://subversion.tigris.org/
http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html

• Add Connection dialog opens. Press the CHANGE button to choose MySQL Database as a data source.

Figure 2.1. Add Connection Context Menu

• Change Data Source dialog opens. Choose MySQL Database in the list of data sources (or the <other> option, if MySQL
Database is absent), and then choose .NET Framework Data Provider for MySQL in the combo box of data providers.

Figure 2.2. Choose Data Source

• Input the connection settings: the server host name (for example, localhost if the MySQL server is installed on the local ma-
chine), the user name, the password, and the default schema name. Note that you must specify the default schema name to open
the connection.

MySQL Connector/NET

88

Figure 2.3. Add Connection Dialog

• You can also set the port to connect with the MySQL server by pressing the ADVANCED button. To test connection with the
MySQL server, set the server host name, the user name, and the password, and press the TEST CONNECTION button. If the test
succeeds, the success confirmation dialog opens.

• After you set all settings and test the connection, press OK. The newly created connection is displayed in Server Explorer. Now
you can work with the MySQL server through standard Server Explorer GUI.

Figure 2.4. New Data Connection

MySQL Connector/NET

89

After the connection is successfully established, all settings are saved for future use. When you start Visual Studio for the next
time, just open the connection node in Server Explorer to establish a connection to the MySQL server again.

To modify and delete a connection, use the Server Explorer context menu for the corresponding node. You can modify any of the
settings just by overwriting the existing values with new ones. Note that the connection may be modified or deleted only if no act-
ive editor for its objects is opened: otherwise you may loose your data.

2.3.2. Editing Tables
Connector/Net contains a table editor, which enables the visual creation and modification of tables.

The Table Designer can be accessed through a mouse action on table-type node of Server Explorer. To create a new table, right-
click on the TABLES node (under the connection node) and choose the CREATE TABLE command from the context menu.

To modify an existing table, double-click on the node of the table you wish to modify, or right-click on this node and choose the
DESIGN item from the context menu. Either of the commands opens the Table Designer.

The table editor is implemented in the manner of the well-known Query Browser Table Editor, but with minor differences.

Figure 2.5. Editing New Table

MySQL Connector/NET

90

Table Designer consists of the following parts:

• Columns Editor - a data grid on top of the Table Designer. Use the Columns grid for column creation, modification, and dele-
tion.

• Indexes tab - a tab on bottom of the Table Designer. Use the Indexes tab for indexes management.

• Foreign Keys tab - a tab on bottom of the Table Designer. Use the Foreign Keys tab for foreign keys management.

• Column Details tab - a tab on bottom of the Table Designer. Use the Column Details tab to set advanced column options.

• Properties window - a standard Visual Studio Properties window, where the properties of the edited table are displayed. Use the
Properties window to set the table properties.

Each of these areas is discussed in more detail in subsequent sections.

To save changes you have made in the Table Designer, use either SAVE or SAVE ALL button of the Visual Studio main toolbar, or
just press Ctrl+S. If you have not already named the table you will be prompted to do so.

Figure 2.6. Choose Table Name

MySQL Connector/NET

91

Once created you can view the table in the Server Explorer.

Figure 2.7. Newly Created Table

The Table Designer main menu allows you to set a Primary Key column, edit Relationships such as Foreign Keys, and create In-
dexes.

Figure 2.8. Table Designer Main Menu

2.3.2.1. Column Editor

You can use the Column Editor to set or change the name, data type, default value, and other properties of a table column. To set

MySQL Connector/NET

92

the focus to a needed cell of a grid, use the mouse click. Also you can move through the grid using Tab and Shift+Tab keys.

To set or change the name, data type, default value and comment of a column, activate the appropriate cell and type the desired
value.

To set or unset flag-type column properties (NOT NULL, auto incremented, flags), check or uncheck the corresponding check
boxes. Note that the set of column flags depends on its data type.

To reorder columns, index columns or foreign key columns in the Column Editor, select the whole column you wish to reorder by
clicking on the selector column on the left of the column grid. Then move the column by using Ctrl+Up (to move the column up)
or Ctrl+Down (to move the column down) keys.

To delete a column, select it by clicking on the selector column on the left of the column grid, then press the Delete button on a
keyboard.

2.3.2.2. Editing Indexes

Indexes management is performed via the INDEXES/KEYS dialog.

To add an index, select TABLE DESIGNER, INDEXES/KEYS... from the main menu, and click ADD to add a new index. You can then
set the index name, index kind, index type, and a set of index columns.

Figure 2.9. Indexes Dialog

To remove an index, select it in the list box on the left, and click the DELETE button.

To change index settings, select the needed index in the list box on the left. The detailed information about the index is displayed in
the panel on the right hand side. Change the desired values.

2.3.2.3. Editing Foreign Keys

Foreign Keys management is performed via the FOREIGN KEY RELATIONSHIPS dialog.

MySQL Connector/NET

93

To add a foreign key, select TABLE DESIGNER, RELATIONSHIPS... from the main menu. This displays the FOREIGN KEY RELATION-
SHIP dialog. Click ADD. You can then set the foreign key name, referenced table name, foreign key columns, and actions upon up-
date and delete.

To remove a foreign key, select it in the list box on the left, and click the DELETE button.

To change foreign key settings, select the required foreign key in the list box on the left. The detailed information about the foreign
key is displayed in the right hand panel. Change the desired values.

Figure 2.10. Foreign Key Relationships Dialog

2.3.2.4. Column Properties

The COLUMN PROPERTIES tab can be used to set column options. In addition to the general column properties presented in the
Column Editor, in the COLUMN PROPERTIES tab you can set additional properties such as Character Set, Collation and Precision.

2.3.2.5. Table Properties

To bring up Table Properties select the table and right click to activate the context menu. Select PROPERTIES. The TABLE PROPER-
TIES dockable window will be displayed.

Figure 2.11. Table Properties Menu Item

MySQL Connector/NET

94

The following table properties can be set:

• Auto Increment

• Average Row Length

• Character Set

• Collation

• Comment

• Data Directory

• Index Directory

• Maximum Rows

• Minimum Rows

• Name

• Row Format

• Schema

• Storage Engine

The property Schema is read only.

Figure 2.12. Table Properties

MySQL Connector/NET

95

2.3.3. Editing Views
To create a new view, right click the Views node under the connection node in Server Explorer. From the node's context menu,
choose the CREATE VIEW command. This command opens the SQL Editor.

Figure 2.13. Editing View SQL

You can then enter the SQL for your view.

Figure 2.14. View SQL Added

To modify an existing view, double click on a node of the view you wish to modify, or right click on this node and choose the
ALTER VIEW command from a context menu. Either of the commands opens the SQL Editor.

All other view properties can be set in the Properties window. These properties are:

• Catalog

• Check Option

MySQL Connector/NET

96

• Definer

• Definition

• Definer

• Is Updateable

• Name

• Schema

• Security Type

Some of these properties can have arbitrary text values, others accept values from a predefined set. In the latter case you set the de-
sired value with an embedded combobox.

The properties Is Updatable and Schema are readonly.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S.

Figure 2.15. View SQL Saved

2.3.4. Editing Stored Procedures and Functions
To create a new stored procedure, right-click on the STORED PROCEDURES node under the connection node in Server Explorer.
From the node's context menu, choose the CREATE ROUTINE command. This command opens the SQL Editor.

Figure 2.16. Edit Stored Procedure SQL

MySQL Connector/NET

97

To create a new stored function, right-click on the FUNCTIONS node under the connection node in Server Explorer. From the node's
context menu, choose the CREATE ROUTINE command.

To modify an existing stored routine (procedure or function), double-click on the node of the routine you wish to modify, or right-
click on this node and choose the ALTER ROUTINE command from the context menu. Either of the commands opens the SQL Edit-
or.

To create or alter the routine definition using SQL Editor, type this definition in the SQL Editor using standard SQL. All other
routine properties can be set in the Properties window. These properties are:

• Body

• Catalog

• Comment

• Creation Time

• Data Access

• Definer

• Definition

• External Name

• External Language

• Is Deterministic

• Last Modified

• Name

• Parameter Style

• Returns

• Schema

• Security Type

• Specific Name

• SQL Mode

• SQL Path

• Type

Some of these properties can have arbitrary text values, others accept values from a predefined set. In the latter case set the desired
value using the embedded combo box.

You can also set all the options directly in the SQL Editor, using the standard CREATE PROCEDURE or CREATE FUNCTION
statement. However, it is recommended to use the Properties window instead.

MySQL Connector/NET

98

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S.

Figure 2.17. Stored Procedure SQL Saved

2.3.5. Editing Triggers
To create a new trigger, right-click on the node of the table, for which you wish to add a trigger. From the node's context menu,
choose the CREATE TRIGGER command. This command opens the SQL Editor.

To modify an existing trigger, double-click on the node of the trigger you wish to modify, or right-click on this node and choose the
ALTER TRIGGER command from the context menu. Either of the commands opens the SQL Editor.

To create or alter the trigger definition using SQL Editor, type the trigger statement in the SQL Editor using standard SQL.

Note

You should enter only the trigger statement, that is, the part of the CREATE TRIGGER query that is placed after the
FOR EACH ROW clause.

All other trigger properties are set in the Properties window. These properties are:

• Definer

• Event Manipulation

• Name

• Timing

Some of these properties can have arbitrary text values, others accept values from a predefined set. In the latter case set the desired
value using the embedded combo box.

The properties Event Table, Schema, and Server in the Properties window are read only.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. Be-
fore changes are saved, you will be asked to confirm the execution of the corresponding SQL query in a confirmation dialog.

2.3.6. Editing User Defined Functions (UDF)
To create a new User Defined Function (UDF), right-click on the UDFS node under the connection node in Server Explorer. From
the node's context menu, choose the CREATE UDF command. This command opens the UDF Editor.

To modify an existing UDF, double-click on the node of the UDF you wish to modify, or right-click on this node and choose the
ALTER UDF command from the context menu. Either of the commands opens the UDF Editor.

The UDF editor allows you to set the following properties:

• Name

• So-name (DLL name)

• Return type

MySQL Connector/NET

99

• Is Aggregate

There are text fields for both names, a combo box for the return type, and a check box to indicate if the UDF is aggregate. All these
options are also accessible via the Properties window.

The property Server in the Properties window is read only.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. Be-
fore changes are saved, you will be asked to confirm the execution of the corresponding SQL query in a confirmation dialog.

2.3.7. Cloning Database Objects
Tables, views, stored procedures, and functions can be cloned using the appropriate Clone command from the context menu:
CLONE TABLE, CLONE VIEW, CLONE ROUTINE. The clone commands open the corresponding editor for a new object: the TABLE
EDITOR for cloning a table, and the SQL EDITOR for cloning a view or a routine.

The editor is filled with values of the original object. You can modify these values in a usual manner.

To save the cloned object, use either Save or Save All buttons of the Visual Studio main toolbar, or just press Ctrl+S. Before
changes are saved, you will be asked to confirm the execution of the corresponding SQL query in a confirmation dialog.

2.3.8. Dropping Database Objects
Tables, views, stored routines, triggers, and UDFs can be dropped with the appropriate Drop command selected from its context
menu: DROP TABLE, DROP VIEW, DROP ROUTINE, DROP TRIGGER, DROP UDF.

You will be asked to confirm the execution of the corresponding drop query in a confirmation dialog.

Dropping of multiple objects is not supported.

2.3.9. Using the ADO.NET Entity Framework
Connector/NET 6.0 introduced support for the ADO.NET Entity Framework. ADO.NET Entity Framework was included with
.NET Framework 3.5 Service Pack 1, and Visual Studio 2008 Service Pack 1. ADO.NET Entity Framework was released on 11th
August 2008.

ADO.NET Entity Framework provides an Object Relational Mapping (ORM) service, mapping the relational database schema to
objects. The ADO.NET Entity Framework defines several layers, these can be summarized as:

• Logical - this layer defines the relational data and is defined by the Store Schema Definition Language (SSDL).

• Conceptual - this layer defines the .NET classes and is defined by the Conceptual Schema Definition Language (CSDL)

• Mapping - this layer defines the mapping from .NET classes to relational tables and associations, and is defined by Mapping
Specification Language (MSL).

Connector/NET integrates with Visual Studio 2008 to provide a range of helpful tools to assist the developer.

A full treatment of ADO.NET Entity Framework is beyond the scope of this manual. You are encouraged to review the Microsoft
ADO.NET Entity Framework documentation.

2.3.9.1. Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

In this tutorial you will learn how to create a Windows Forms Data Source from an Entity in an Entity Data Model. This tutorial as-
sumes that you have installed the World example database, which can be downloaded from the MySQL Documentation page. You
can also find details on how to install the database on the same page. It will also be convenient for you to create a connection to the
World database after it is installed. For instructions on how to do this see Section 2.3.1, “Making a connection”.

Creating a new Windows Forms application

The first step is to create a new Windows Forms application.

1. In Visual Studio, select FILE, NEW, PROJECT from the main menu.

2. Choose the WINDOWS FORMS APPLICATION installed template. Click OK. The solution is created.

MySQL Connector/NET

100

http://msdn.microsoft.com/en-us/library/aa697427(VS.80).aspx
http://msdn.microsoft.com/en-us/library/aa697427(VS.80).aspx
http://dev.mysql.com/doc/

Adding an Entity Data Model

You will now add an Entity Data Model to your solution.

1. In the Solution Explorer, right click on your application and select ADD, NEW ITEM.... From VISUAL STUDIO INSTALLED
TEMPLATES select ADO.NET ENTITY DATA MODEL. Click ADD.

Figure 2.18. Add Entity Data Model

2. You will now see the Entity Data Model Wizard. You will use the wizard to generate the Entity Data Model from the world
example database. Select the icon GENERATE FROM DATABASE. Click NEXT.

Figure 2.19. Entity Data Model Wizard Screen 1

MySQL Connector/NET

101

3. You can now select the connection you made earlier to the World database. If you have not already done so, you can create the
new connection at this time by clicking on NEW CONNECTION.... For further instructions on creating a connection to a database
see Section 2.3.1, “Making a connection”.

Figure 2.20. Entity Data Model Wizard Screen 2

MySQL Connector/NET

102

4. Make a note of the entity connection settings to be used in App.Config, as these will be used later to write the necessary con-
trol code.

5. Click NEXT.

6. The Entity Data Model Wizard connects to the database. You are then presented with a tree structure of the database. From
this you can select the object you would like to include in your model. If you had created Views and Stored Routines these
will be displayed along with any tables. In this example you just need to select the tables. Click FINISH to create the model and
exit the wizard.

Figure 2.21. Entity Data Model Wizard Screen 3

MySQL Connector/NET

103

7. Visual Studio will generate the model and then display it.

Figure 2.22. Entity Data Model Diagram

MySQL Connector/NET

104

8. From the Visual Studio main menu select BUILD, BUILD SOLUTION, to ensure that everything compiles correctly so far.

Adding a new Data Source

You will now add a new Data Source to your project and see how it can be used to read and write to the database.

1. From the Visual Studio main menu select DATA, ADD NEW DATA SOURCE.... You will be presented with the Data Source
Configuration Wizard.

Figure 2.23. Entity Data Source Configuration Wizard Screen 1

MySQL Connector/NET

105

2. Select the OBJECT icon. Click NEXT.

3. You will now select the Object you wish to bind to. Expand the tree. In this tutorial you will select the city table. Once the city
table has been selected click NEXT.

Figure 2.24. Entity Data Source Configuration Wizard Screen 2

MySQL Connector/NET

106

4. The wizard will confirm that the city object is to be added. Click FINISH.

Figure 2.25. Entity Data Source Configuration Wizard Screen 3

MySQL Connector/NET

107

5. The city object will be display in the Data Sources panel. If the Data Sources panel is not displayed, select DATA, SHOW DATA
SOURCES from the Visual Studio main menu. The docked panel will then be displayed.

Figure 2.26. Data Sources

MySQL Connector/NET

108

Using the Data Source in a Windows Form

You will now learn how to use the Data Source in a Windows Form.

1. In the Data Sources panel select the Data Source you just created and drag and drop it onto the Form Designer. By default the
Data Source object will be added as a Data Grid View control. Note that the Data Grid View control is bound to the city-
BindingSource and the Navigator control is bound to cityBindingNavigator.

MySQL Connector/NET

109

Figure 2.27. Data Form Designer

2. Save and rebuild the solution before continuing.

Adding Code to Populate the Data Grid View

You are now ready to add code to ensure that the Data Grid View control will be populated with data from the City database table.

1. Double click the form to access its code.

2. Add code to instatiate the Entity Data Model's EntityContainer object and retrieve data from the database to populate the con-
trol.

Figure 2.28. Adding Code to the Form

MySQL Connector/NET

110

3. Save and rebuild the solution.

4. Run the solution. Ensure the grid is populated and you can navigate the database.

Figure 2.29. The Populated Grid Control

MySQL Connector/NET

111

Adding Code to Save Changes to the Database

You will now add code to enable you to save changes to the database.

The Binding source component ensures that changes made in the Data Grid View control are also made to the Entity classes bound
to it. However, that data needs to be saved back from the entities to the database itself. This can be achieved by the enabling of the
Save button in the Navigator control, and the addition of some code.

1. In the Form Designer click on the Save icon in the Form toolbar and ensure that its Enabled property is set to True.

Figure 2.30. Save Button Enabled

2. Double click the Save icon in the Form toolbar to display its code.

3. You now need to add code to ensure that data is saved to the database when the save button is click in the application.

Figure 2.31. Adding Save Code to the Form

MySQL Connector/NET

112

4. Once the code has been added, save the solution and rebuild it. Run the application and verify that changes made in the grid
are saved.

2.3.9.2. Tutorial: Databinding in ASP.NET using LINQ on Entities

In this tutorial you create an ASP.NET web page that binds LINQ queries to entities using the Entity Framework mapping.

If you have not already done so, you should install the World example database prior to attempting this tutorial. Instructions on
where to obtain the database and instructions on how to install it where given in the tutorial Section 2.3.9.1, “Tutorial: Using an En-
tity Framework Entity as a Windows Forms Data Source”.

Creating an ASP.NET web site

In this part of the tutorial you will create an ASP.NET web site. The web site will use the World database. The main web page will
feature a drop down list from which you can select a country, data about that country's cities will then be displayed in a grid view
control.

1. From the Visual Studio main menu select FILE, NEW, WEB SITE....

2. From the Visual Studio installed templates select ASP.NET WEB SITE. Click OK. You will be presented with the Source
view of your web page by default.

3. Click the Design view tab situated underneath the Source view panel.

Figure 2.32. The Design Tab

MySQL Connector/NET

113

4. In the Design view panel, enter some text to decorate the blank web page.

5. Click on Toolbox. From the list of controls select DROPDOWNLIST. Drag and drop the control to a location beneath the text
on your web page.

Figure 2.33. Drop Down List

6. From the DROPDOWNLIST control's context menu, ensure that the ENABLE AUTOPOSTBACK check box is enabled. This will
ensure the control's event handler is called when an item is selected. The user's choice will in turn be used to populate the
GRIDVIEW control.

Figure 2.34. Enable AutoPostBack

MySQL Connector/NET

114

7. From the Toolbox select the GRIDVIEW control.

Figure 2.35. Grid View Control

Drag and drop the Grid Vew control to a location just below the Drop Down List you already placed.

Figure 2.36. Placed Grid Vew Control

8. At this point it is recommended that you save your solution, and build the solution to ensure that there are no errors.

9. If you run the solution you will see that the text and drop down list are displayed, but the list is empty. Also, the grid view
does not appear at all. Adding this functionality is described in the following sections.

MySQL Connector/NET

115

At this stage you have a web site that will build, but further functionality is required. The next step will be to use the Entity Frame-
work to create a mapping from the World database into entities that you can control programmatically.

Creating an ADO.NET Entity Data Model

In this stage of the tutorial you will add an ADO.NET Entity Data Model to your project, using the World database at the storage
level. The procedure for doing this is described in the tutorial Section 2.3.9.1, “Tutorial: Using an Entity Framework Entity as a
Windows Forms Data Source”, and so will not be repeated here.

Populating a Drop Data List Box with using the results of a entity LINQ query

In this part of the tutorial you will write code to populate the DropDownList control. When the web page loads the data to populate
the list will be achieved by using the results of a LINQ query on the model created previously.

1. In the Design view panel, double click on any blank area. This brings up the Page_Load method.

2. Modify the relevant section of code according to the following listing:

...
public partial class _Default : System.Web.UI.Page
{

worldModel.worldEntities we;

protected void Page_Load(object sender, EventArgs e)
{

we = new worldModel.worldEntities();

if (!IsPostBack)
{

var countryQuery = from c in we.country
orderby c.Name
select new { c.Code, c.Name };

DropDownList1.DataValueField = "Code";
DropDownList1.DataTextField = "Name";
DropDownList1.DataSource = countryQuery;
DataBind();

}
}

...

Note that the list control only needs to be populated when the page first loads. The conditional code ensures that if the page is
subsequently reloaded, the list control is not repopulated, which would cause the user selection to be lost.

3. Save the solution, build it and run it. You should see the list control has been populated. You can select an item, but as yet the
grid view control does not apear.

At this point you have a working Drop Down List control, populated by a LINQ query on your entity data model.

Populating a Grid View control using an entity LINQ query

In the last part of this tutorial you will populate the Grid View Control using a LINQ query on your entity data model.

1. In the Design view double click on the DROPDOWNLIST control. This causes its SelectedIndexChanged code to be dis-
played. This method is called when a user selects an item in the list control and thus fires an AutoPostBack event.

2. Modify the relevant section of code accordingly to the following listing:

...
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{

var cityQuery = from c in we.city
where c.CountryCode == DropDownList1.SelectedValue
orderby c.Name
select new { c.Name, c.Population, c.CountryCode };

GridView1.DataSource = cityQuery;
DataBind();

}
...

The grid view control is populated from the result of the LINQ query on the entity data model.

3. As a check compare your code to that shown in the following screenshot:

Figure 2.37. Source Code

MySQL Connector/NET

116

4. Save, build and run the solution. As you select a country you will see its cities are displayed in the grid view control.

Figure 2.38. The Working Web Site

MySQL Connector/NET

117

In this tutorial you have seen how to create an ASP.NET web site, you have also seen how you can access a MySQL database via
LINQ queries on an entity data model.

2.4. Connector/NET Programming
Connector/NET comprises several classes that are used to connect to the database, execute queries and statements, and manage
query results.

The following are the major classes of Connector/NET:

• MySqlCommand: Represents an SQL statement to execute against a MySQL database.

• MySqlCommandBuilder: Automatically generates single-table commands used to reconcile changes made to a DataSet with
the associated MySQL database.

• MySqlConnection: Represents an open connection to a MySQL Server database.

• MySqlDataAdapter: Represents a set of data commands and a database connection that are used to fill a data set and update
a MySQL database.

• MySqlDataReader: Provides a means of reading a forward-only stream of rows from a MySQL database.

• MySqlException: The exception that is thrown when MySQL returns an error.

MySQL Connector/NET

118

• MySqlHelper: Helper class that makes it easier to work with the provider.

• MySqlTransaction: Represents an SQL transaction to be made in a MySQL database.

In the following sections you will learn about some common use cases for Connector/NET, including BLOB handling, date hand-
ling, and using Connector/NET with common tools such as Crystal Reports.

2.4.1. Tutorial: An Introduction to Connector/NET Programming
This section provides a gentle introduction to programming with Connector/NET. The example code is written in C#, and is de-
signed to work on both Microsoft .NET Framework and Mono.

This tutorial is designed to get you up and running with Connector/NET as quickly as possible, it does not go into detail on any par-
ticular topic. However, the following sections of this manual describe each of the topics introduced in this tutorial in more detail. In
this tutorial you are encouraged to type in and run the code, modifying it as required for your setup.

This tutorial assumes you have MySQL and Connector/NET already installed. It also assumes that you have installed the World ex-
ample database, which can be downloaded from the MySQL Documentation page. You can also find details on how to install the
database on the same page.

Note

Before compiling the example code make sure that you have added References to your project as required. The Refer-
ences required are System, System.Data and MySql.Data.

2.4.1.1. The MySqlConnection Object

For your Connector/NET application to connect to a MySQL database it needs to establish a connection. This is achieved through
the use of a MySqlConnection object.

The MySqlConnection constructor takes a connection string as one of its parameters. The connection string provides necessary in-
formation to make the connection to the MySQL database. The connection string is discussed more fully in Section 2.4.2,
“Connecting to MySQL Using Connector/NET”. A reference containing a list of supported connection string options can also be
found in Section 2.4.5, “Connector/NET Connection String Options Reference”.

The following code shows how to create a connection object.

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial1
{

public static void Main()
{

string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{

Console.WriteLine("Connecting to MySQL...");
conn.Open();
// Perform databse operations
conn.Close();

}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");

}
}

When the MySqlConnection constructor is invoked it returns a connection object, which is used for subsequent database opera-
tions. The first operation in this example is to open the connection. This needs to be done before further operations take place. Be-
fore the application exits the connection to the database needs to be closed by calling Close on the connection object.

Sometimes an attempt to perform an Open on a connection object can fail, this will generate an exception that can be handled via
standard exception handling code.

In this section you have learned how to create a connection to a MySQL database, and open and close the corresponding connec-
tion object.

2.4.1.2. The MySqlCommand Object

MySQL Connector/NET

119

http://dev.mysql.com/doc/

Once a connection has been established with the MySQL database, the next step is do carry out the desired database operations.
This can be achieved through the use of the MySqlCommand object.

You will see how to create a MySqlCommand object. Once it has been created there are three main methods of interest that you
can call:

• ExecuteReader - used to query the database. Results are usually returned in a MySqlDataReader object, created by Ex-
ecuteReader.

• ExecuteNonQuery - used to insert and delete data.

• ExecuteScalar - used to return a single value.

Once a MySqlCommand object has been created, you will call one of the above methods on it to carry out a database operation,
such as perform a query. The results are usually returned into a MySqlDataReader object, and then processed, for example the
results might be displayed. The following code demonstrates how this could be done.

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial2
{

public static void Main()
{

string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{

Console.WriteLine("Connecting to MySQL...");
conn.Open();

string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'";
MySqlCommand cmd = new MySqlCommand(sql, conn);
MySqlDataReader rdr = cmd.ExecuteReader();

while (rdr.Read())
{

Console.WriteLine(rdr[0]+" -- "+rdr[1]);
}

rdr.Close();
conn.Close();

}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");

}
}

When a connection has been created and opened, the code then creates a MySqlCommand object. Note that the SQL query to be
executed is passed to the MySqlCommand constructor. The ExecuteReader method is then used to generate a MySqlReader
object. The MySqlReader object contains the results generated by the SQL executed on the command object. Once the results
have been obtained in a MySqlReader object, the results can be processed. In this case the information is simply printed out as
part of a while loop. Finally, the MySqlReader object is displosed of by running its Close method on it.

In the next example you will see how to use the ExecuteNonQuery method.

The procedure for performing an ExecuteNonQuery method call is simpler, as there is no need to create an object to store res-
ults. This is because ExecuteNonQuery is only used for inserting, updating and deleting data. The following example illustrates
a simple update to the Country table:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial3
{

public static void Main()
{

string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{

Console.WriteLine("Connecting to MySQL...");
conn.Open();

MySQL Connector/NET

120

string sql = "INSERT INTO Country (Name, HeadOfState, Continent) VALUES ('Disneyland','Mickey Mouse', 'North America')";
MySqlCommand cmd = new MySqlCommand(sql, conn);
cmd.ExecuteNonQuery();

conn.Close();
}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");

}
}

The query is constructed, the command object created and the ExecuteNonQuery method called on the command object. You
can access your MySQL database with the MySQL Client program and verify that the update was carried out correctly.

Finally, you will see how the ExecuteScalar method can be used to return a single value. Again, this is straightforward, as a
MySqlDataReader object is not required to store results, a simple variable will do. The following code illustrates how to use
ExecuteScalar:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial4
{

public static void Main()
{

string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{

Console.WriteLine("Connecting to MySQL...");
conn.Open();

string sql = "SELECT COUNT(*) FROM Country";
MySqlCommand cmd = new MySqlCommand(sql, conn);
object result = cmd.ExecuteScalar();
if (result != null)
{

int r = Convert.ToInt32(result);
Console.WriteLine("Number of countries in the World database is: " + r);

}

conn.Close();
}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");

}
}

This example uses a simple query to count the rows in the Country table. The result is obtained by calling ExecuteScaler on
the command object.

2.4.1.3. Working with Decoupled Data

Previously, when using MySqlDataReader, the connection to the database was continually maintained, unless explicitly closed. It is
also possible to work in a manner where a connection is only established when needed. For example, in this mode, a connection
could be established in order to read a chunk of data, the data could then be modified by the application as required. A connection
could then be reestablished only if and when the application needs to write data back to the database. This decouples the working
data set from the database.

This decouple mode of working with data is supported by Connector/NET. There are several parts involved in allowing this method
to work:

• Data Set - The Data Set is the area in which data is loaded in order to read or modify it. A DataSet object is instantiated,
which can store multiple tables of data.

• Data Adapter - The Data Adapter is the interface between the Data Set and the database itself. The Data Adapter is responsible
for efficiently managing connections to the database, opening and closing them as required. The Data Adapter is created by in-
stantiating an object of the MySqlDataAdapter class. The MySqlDataAdapter object has two main methods: Fill
which reads data into the Data Set, and Update, which writes data from the Data Set to the database.

• Command Builder - The Command Builder is a support object. The Command Builder works in conjunction with the Data

MySQL Connector/NET

121

Adapter. When a MySqlDataAdapter object is created it is typically given an initial SELECT statement. From this SE-
LECT statement the Command Builder can work out the corresponding INSERT, UPDATE and DELETE statements that
would be required should the database need to be updated. To create the Command Builder an object of the class MySqlCom-
mandBuilder is created.

Each of these classes will now be discussed in more detail.

Instantiating a DataSet object

A DataSet object can be created simply, as shown in the following example code snippet:

DataSet dsCountry;
...
dsCountry = new DataSet();

Although this creates the DataSet object it has not yet filled it with data. For that a Data Adapter is required.

Instantiating a MySqlDataAdapter object

The MySqlDataAdapter can be created as illustrated by the following example:

MySqlDataAdapter daCountry;
...
string sql = "SELECT Code, Name, HeadOfState FROM Country WHERE Continent='North America'";
daCountry = new MySqlDataAdapter (sql, conn);

Note, the MySqlDataAdapter is given the SQL specifying the data you wish to work with.

Instantiating a MySqlCommandBuilder object

Once the MySqlDataAdapter has been created, it is necessary to generate the additional statements required for inserting, up-
dating and deleting data. There are several ways to do this, but in this tutorial you will see how this can most easily be done with
MySqlCommandBuilder. The following code snippet ilustrates how this is done:

MySqlCommandBuilder cb = new MySqlCommandBuilder(daCountry);

Note that the MySqlDataAdapter object is passed as a parameter to the command builder.

Filling the Data Set

In order to do anything useful with the data from your datbase, you need to load it into a Data Set. This is one of the jobs of the
MySqlDataAdapter object, and is carried out with its Fill method. The following example code illustrates this:

DataSet dsCountry;
...
dsCountry = new DataSet();
...
daCountry.Fill(dsCountry, "Country");

Note the Fill method is a MySqlDataAdapter method, the Data Adapter knows how to establish a connec tion with the data-
base and retrieve the required data, and then populates the Data Set when the Fill method is called. The second parameter
“Country” is the table in the Data Set to update.

Updating the Data Set

The data in the Data Set can now be manipulated by the application as required. At some point, changes to data will need to be
written back to the database. This is achieved through a MySqlDataAdapter method, the Update method.

daCountry.Update(dsCountry, "Country");

Again, the Data Set and the table within the Data Set to update are specified.

Working Example

The interactions between the DataSet, MySqlDataAdapter and MySqlCommandBuilder classes can be a little confusing,
so their operation can perhaps be best illustrated by working code.

In this example, data from the World database is read into a Data Grid View control. Here, the data can be viewed and changed be-
fore clicking an update button. The update button then activates code to write changes back to the database. The code uses the prin-
ciples explained above. The application was built using the Microsoft Visual Studio in order to place and create the user interface

MySQL Connector/NET

122

controls, but the main code that uses the key classes descibed above is shown below, and is portable.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using MySql.Data;
using MySql.Data.MySqlClient;

namespace WindowsFormsApplication5
{

public partial class Form1 : Form
{

MySqlDataAdapter daCountry;
DataSet dsCountry;

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{

string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{

label2.Text = "Connecting to MySQL...";

string sql = "SELECT Code, Name, HeadOfState FROM Country WHERE Continent='North America'";
daCountry = new MySqlDataAdapter (sql, conn);
MySqlCommandBuilder cb = new MySqlCommandBuilder(daCountry);

dsCountry = new DataSet();
daCountry.Fill(dsCountry, "Country");
dataGridView1.DataSource = dsCountry;
dataGridView1.DataMember = "Country";

}
catch (Exception ex)
{

label2.Text = ex.ToString();
}

}

private void button1_Click(object sender, EventArgs e)
{

daCountry.Update(dsCountry, "Country");
label2.Text = "MySQL Database Updated!";

}

}
}

The application running is shown below:

Figure 2.39. World Database Application

MySQL Connector/NET

123

2.4.1.4. Working with Parameters

This part of the tutorial shows you how to use parameters in your Connector/NET application.

Although it is possible to build SQL query strings directly from user input, this is not advisable as it does not prevent from erro-
neous or malicious information being entered. It is safer to use parameters as they will be processed as field data only. For example,
imagine the following query was contructed from user input:

string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent = "+user_continent;

If the string user_continent came from a Text Box control, there would potentially be no control over the string enetred by
the user. The user could enter a string that generates a run time error, or in the worst case actually harms the system. When using
parameters it is not possible to do this because a parameter is only ever treated as a field parameter, rather than an arbitrary piece of
SQL code.

The same query written user a parameter for user input would be:

string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent = @Continent";

Note that the parameter is preceded by an '@' symbol to indicate it is to be treated as a parameter.

As well as marking the position of the parameter in the query string, it is necessary to create a parameter object that can be passed
to the Command object. In Connector/NET the class MySqlParameter is used for this purpose. The use of MySqlParameter
is best illustrated by a small code snippet:

MySQL Connector/NET

124

MySqlParameter param = new MySqlParameter();
param.ParameterName = "@Continent";
param.Value = "North America";
cmd.Parameters.Add(param);

In this example the string "North America" is supplied as the parameter value statically, but in a more practical example it would
come from a user input control. Once the parameter has its name and value set it needs to be added to the Command object using
the Add method.

A further example illustrates this:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial5
{

public static void Main()
{

string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{

Console.WriteLine("Connecting to MySQL...");
conn.Open();

string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent=@Continent";
MySqlCommand cmd = new MySqlCommand(sql, conn);

Console.WriteLine("Enter a continent e.g. 'North America', 'Europe': ");
string user_input = Console.ReadLine();

MySqlParameter param = new MySqlParameter();
param.ParameterName = "@Continent";
param.Value = user_input;
cmd.Parameters.Add(param);

MySqlDataReader rdr = cmd.ExecuteReader();

while (rdr.Read())
{

Console.WriteLine(rdr["Name"]+" --- "+rdr["HeadOfState"]);
}

conn.Close();
}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");

}
}

In this part of the tutorial you have see how to use parameters to make your code more secure.

2.4.1.5. Working with Stored Procedures

In this section you will see how to work with Stored Procedures. This section assumes you have a basic understanding of what a
Stored Procedure is, and how to create one.

For the purposes of this tutorial, you will create a simple Stored Procedure to see how it can be called from Connector/NET. In the
MySQL Client program, connect to the World database and enter the following Stored Procedure:

DELIMITER //
CREATE PROCEDURE country_hos
(IN con CHAR(20))
BEGIN
SELECT Name, HeadOfState FROM Country
WHERE Continent = con;

END //
DELIMITER ;

Test the Stored Procedure wors as expec ted by typing the following into the MySQL Client program:

CALL country_hos('Europe');

Note that The Stored Routine takes a single parameter, which is the continent you wish to restrict your search to.

Having confirmed that the Stored Procedure is present and correct you can now move on to seeing how it can be accessed from
Connector/NET.

MySQL Connector/NET

125

Calling a Stored Procedure from your Connector/NET application is similar to techniques you have seen earlier in this tutorial. A
MySqlCommand object is created, but rather than taking a SQL query as a parameter it takes the name of the Stored Procedure to
call. The MySqlCommand object also needs to be set to the type of Stored Procedure. This is illustrated by the following code
snippet:

string rtn = "country_hos";
MySqlCommand cmd = new MySqlCommand(rtn, conn);
cmd.CommandType = CommandType.StoredProcedure;

In this case you also need to pass a parameter to the Stored Procedure. This can be achieved using the techniques seen in the previ-
ous section on parameters, Section 2.4.1.4, “Working with Parameters”. This is shown in the following code snippet:

MySqlParameter param = new MySqlParameter();
param.ParameterName = "@con";
param.Value = "Europe";
cmd.Parameters.Add(param);

The value of the parameter @con could more realistically have come from a user input control, but for simplicity it is set as a static
string in this example.

At this point everything is set up and all that now needs to be done is to call the routine. This can be achieved using techniques also
learned in earlier sections, but in this case the ExecuteReader method of the MySqlCommand object is used.

Complete working code for the Stored Procedure example is shown below:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial6
{

public static void Main()
{

string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{

Console.WriteLine("Connecting to MySQL...");
conn.Open();

string rtn = "country_hos";
MySqlCommand cmd = new MySqlCommand(rtn, conn);
cmd.CommandType = CommandType.StoredProcedure;
MySqlParameter param = new MySqlParameter();
param.ParameterName = "@con";
param.Value = "Europe";
cmd.Parameters.Add(param);

MySqlDataReader rdr = cmd.ExecuteReader();
while (rdr.Read())
{

Console.WriteLine(rdr[0] + " --- " + rdr[1]);
}
conn.Close();

}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");

}
}

In this section you have seen how to call a Stored Procedure from Connector/NET. For the moment, this concludes our introductory
tutorial on programming with Connector/NET.

2.4.2. Connecting to MySQL Using Connector/NET
Introduction

All interaction between a .NET application and the MySQL server is routed through a MySqlConnection object. Before your
application can interact with the server, a MySqlConnection object must be instanced, configured, and opened.

Even when using the MySqlHelper class, a MySqlConnection object is created by the helper class.

In this section, we will describe how to connect to MySQL using the MySqlConnection object.

2.4.3. Creating a Connection String

MySQL Connector/NET

126

The MySqlConnection object is configured using a connection string. A connection string contains sever key/value pairs, sep-
arated by semicolons. Each key/value pair is joined with an equals sign.

The following is a sample connection string:

Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

In this example, the MySqlConnection object is configured to connect to a MySQL server at 127.0.0.1, with a user name of
root and a password of 12345. The default database for all statements will be the test database.

The following options are available:

Note

Using the '@' symbol for parameters is now the preferred approach although the old pattern of using '?' is still suppor-
ted.

Please be aware however that using '@' can cause conflicts when user variables are also used. To help with this situ-
ation please see the documentation on the Allow User Variables connection string option, which can be found
here: Section 2.4.3, “Creating a Connection String”. The Old Syntax connection string option has now been de-
precated.

2.4.3.1. Opening a Connection

Once you have created a connection string it can be used to open a connection to the MySQL server.

The following code is used to create a MySqlConnection object, assign the connection string, and open the connection.

Visual Basic Example

Dim conn As New MySql.Data.MySqlClient.MySqlConnection
Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
conn.ConnectionString = myConnectionString
conn.Open()

Catch ex As MySql.Data.MySqlClient.MySqlException
MessageBox.Show(ex.Message)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection();
conn.ConnectionString = myConnectionString;
conn.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message);
}

You can also pass the connection string to the constructor of the MySqlConnection class:

Visual Basic Example

Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
conn.Open()

MySQL Connector/NET

127

Catch ex As MySql.Data.MySqlClient.MySqlException
MessageBox.Show(ex.Message)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
conn.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message);
}

Once the connection is open it can be used by the other Connector/NET classes to communicate with the MySQL server.

2.4.3.2. Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to add error handling to your .NET application. When
there is an error connecting, the MySqlConnection class will return a MySqlException object. This object has two proper-
ties that are of interest when handling errors:

• Message: A message that describes the current exception.

• Number: The MySQL error number.

When handling errors, you can your application's response based on the error number. The two most common error numbers when
connecting are as follows:

• 0: Cannot connect to server.

• 1045: Invalid user name and/or password.

The following code shows how to adapt the application's response based on the actual error:

Visual Basic Example

Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
conn.Open()

Catch ex As MySql.Data.MySqlClient.MySqlException
Select Case ex.Number

Case 0
MessageBox.Show("Cannot connect to server. Contact administrator")

Case 1045
MessageBox.Show("Invalid username/password, please try again")

End Select
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
conn.Open();

MySQL Connector/NET

128

}
catch (MySql.Data.MySqlClient.MySqlException ex)

{
switch (ex.Number)
{

case 0:
MessageBox.Show("Cannot connect to server. Contact administrator");

case 1045:
MessageBox.Show("Invalid username/password, please try again");

}
}

Important

Note that if you are using multilanguage databases you must specify the character set in the connection string. If you
do not specify the character set, the connection defaults to the latin1 charset. You can specify the character set as
part of the connection string, for example:

MySqlConnection myConnection = new MySqlConnection("server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;Charset=latin1;");

2.4.4. Using Connector/NET with Connection Pooling
The Connector/NET supports connection pooling. This is enabled by default, but can be turned off via connection string options.
See Section 2.4.3, “Creating a Connection String” for further information.

Connection pooling works by keeping the native connection to the server live when the client disposes of a MySqlConnection.
Subsequently, if a new MySqlConnection object is opened, it will be created from the connection pool, rather than creating a
new native connection. This improves performance.

To work as designed, it is best to let the connection pooling system manage all connections. You should not create a globally ac-
cessible instance of MySqlConnection and then manually open and close it. This interferes with the way the pooling works and
can lead to unpredictable results or even exceptions.

One approach that simplifies things is to avoid manually creating a MySqlConnection object. Instead use the overloaded meth-
ods that take a connection string as an argument. Using this approach, Connector/NET will automatically create, open, close and
destroy connections, using the connection pooling system for best performance.

Typed Datasets and the MembershipProvider and RoleProvider classes use this approach. Most classes that have meth-
ods that take a MySqlConnection as an argument, also have methods that take a connection string as an argument. This in-
cludes MySqlDataAdapter.

Instead of manually creating MySqlCommand objects, you can use the static methods of the MySqlHelper class. These take a
connection string as an argument, and they fully support connection pooling.

2.4.5. Connector/NET Connection String Options Reference

Name Default Description

Allow Batch true When true, multiple SQL statements can be sent with one command
execution. -Note- Starting with MySQL 4.1.1, batch statements should
be separated by the server-defined separator character. Commands sent
to earlier versions of MySQL should be separated with ';'.

Allow User Variables false Setting this to true indicates that the provider expects user variables
in the SQL. This option was added in Connector/NET version 5.2.2.

Allow Zero Datetime false True to have MySqlDataReader.GetValue() return a MySqlDateTime
for date or datetime columns that have illegal values. False will cause a
System.DateTime object to be returned for legal values and an ex-
ception will be thrown for illegal values.

AutoEnlist true

BlobAsUTF8ExcludePattern null

BlobAsUTF8IncludePattern null

CharSet, Character Set Specifies the character set that should be used to encode all queries
sent to the server. Resultsets are still returned in the character set of the
data returned.

Connect Timeout, Connection
Timeout

15 The length of time (in seconds) to wait for a connection to the server
before terminating the attempt and generating an error.

MySQL Connector/NET

129

Connection Reset false

Convert Zero Datetime false True to have MySqlDataReader.GetValue() and
MySqlDataReader.GetDateTime() return DateTime.MinValue
for date or datetime columns that have illegal values.

Default Command Timeout Sets the default value of the command timeout to be used. This does
not supercede the individual command timeout property on an indi-
vidual command object. If you set the command timeout property, that
will be used. This option was added in Connector/NET 5.1.4

Encrypt, UseSSL false For Connector/NET 5.0.3 and later, when true, SSL encryption is
used for all data sent between the client and server if the server has a
certificate installed. Recognized values are true, false, yes, and
no. In versions before 5.0.3, this option had no effect.

FunctionsReturnString false

Host, Server, Data Source, Data-
Source, Address, Addr, Network
Address

localhost The name or network address of the instance of MySQL to which to
connect. Multiple hosts can be specified separated by &. This can be
useful where multiple MySQL servers are configured for replication
and you are not concerned about the precise server you are connecting
to. No attempt is made by the provider to synchronize writes to the
database so care should be taken when using this option. In Unix envir-
onment with Mono, this can be a fully qualified path to MySQL socket
file name. With this configuration, the Unix socket will be used instead
of TCP/IP socket. Currently only a single socket name can be given so
accessing MySQL in a replicated environment using Unix sockets is
not currently supported.

Ignore Prepare true When true, instructs the provider to ignore any calls to MySqlCom-
mand.Prepare(). This option is provided to prevent issues with
corruption of the statements when use with server side prepared state-
ments. If you want to use server-side prepare statements, set this option
to false. This option was added in Connector/NET 5.0.3 and Connect-
or/NET 1.0.9.

Initial Catalog, Database mysql The name of the database to use intially

InteractiveSession false

Logging false When true, various pieces of information is output to any configured
TraceListeners.

Old Syntax, OldSyntax false Allows use of '@' symbol as a parameter marker. See MySqlCom-
mand for more info. This option was deprecated in Connector/NET
5.2.2. All future code should be written using the '@' symbol.

Password, pwd The password for the MySQL account being used.

Persist Security Info false When set to false or no (strongly recommended), security-sensitive
information, such as the password, is not returned as part of the con-
nection if the connection is open or has ever been in an open state. Re-
setting the connection string resets all connection string values includ-
ing the password. Recognized values are true, false, yes, and no.

Pipe Name, Pipe mysql When set to the name of a named pipe, the MySqlConnection will
attempt to connect to MySQL on that named pipe.This settings only
applies to the Windows platform.

Port 3306 The port MySQL is using to listen for connections. This value is ig-
nored if Unix socket is used.

Procedure Cache Size 25 Sets the size of the stored procedure cache. By default, Connector/NET
will store the metadata (input/output datatypes) about the last 25 stored
procedures used. To disable the stored procedure cache, set the value
to zero (0). This option was added in Connector/NET 5.0.2 and Con-
nector/NET 1.0.9.

Protocol socket Specifies the type of connection to make to the server. Values can be:
socket or tcp for a socket connection, pipe for a named pipe con-
nection, unix for a Unix socket connection, memory to use MySQL
shared memory.

Respect Binary Flags true Setting this option to false means that Connector/NET will ignore a
column's binary flags as set by the server. This option was added in
Connector/NET version 5.1.3.

Shared Memory Name MYSQL The name of the shared memory object to use for communication if the

MySQL Connector/NET

130

connection protocol is set to memory.

TreatBlobsAsUTF8 false

Treat Tiny As Boolean true Setting this value to false indicates that TINYINT(1) will be
treated as an INT. See also Overview of Numeric Types for a further
explanation of the TINYINT and BOOL data types.

Use Affected Rows false When true the connection will report changed rows instead of found
rows. This option was added in Connector/NET version 5.2.6.

Use Procedure Bodies true Setting this option to false indicates that the user connecting to the
database does not have the SELECT privileges for the mysql.proc
(stored procedures) table. When to set to false, Connector/NET will
not rely on this information being available when the procedure is
called. Because Connector/NET will be unable to determine this in-
formation, you should explicitly set the types of the all the parameters
before the call and the parameters should be added to the command in
the exact same order as they appear in the procedure definition. This
option was added in Connector/NET 5.0.4 and Connector/NET 1.0.10.

User Id, Username, Uid, User name The MySQL login account being used.

Use Compression false
Setting this option to true enables compression of packets exchanged
between the client and the server. This exchange is defined by the
MySQL client-server protocol.

Compression is used if both client and server support ZLIB compres-
sion, and the client has requested compression using this option.

A compressed packet header is: packet length (3 bytes), packet number
(1 byte), and Uncompressed Packet Length (3 bytes). The Uncom-
pressed Packet Length is the number of bytes in the original, uncom-
pressed packet. If this is zero then the data in this packet has not been
compressed. When the compression protocol is in use, either the client
or the server may compress packets. However, compression will not
occur if the compressed length is greater than the original length. Thus,
some packets will contain compressed data while other packets will
not.

Use Usage Advisor false

Use Performance Monitor false

The following table lists the valid names for connection pooling values within the ConnectionString. For more information
about connection pooling, see Connection Pooling for the MySQL Data Provider.

Name Default Description

Cache Server Configuration,
CacheServerConfiguration,
CacheServerConfig

false Specifies whether server variables should be updated when a pooled
connection is returned. Turning this one will yeild faster opens but will
also not catch any server changes made by other connections.

Connection Lifetime 0 When a connection is returned to the pool, its creation time is com-
pared with the current time, and the connection is destroyed if that time
span (in seconds) exceeds the value specified by Connection
Lifetime. This is useful in clustered configurations to force load
balancing between a running server and a server just brought online. A
value of zero (0) causes pooled connections to have the maximum con-
nection timeout.

Max Pool Size 100 The maximum number of connections allowed in the pool.

Min Pool Size 0 The minimum number of connections allowed in the pool.

Pooling true When true, the MySqlConnection object is drawn from the ap-
propriate pool, or if necessary, is created and added to the appropriate
pool. Recognized values are true, false, yes, and no.

Reset Pooled Connections, Re-
setConnections, ResetPooledCon-
nections

true Specifies whether a ping and a reset should be sent to the server before
a pooled connection is returned. Not resetting will yield faster connec-
tion opens but also will not clear out session items such as temp tables.

MySQL Connector/NET

131

http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_select

2.4.6. Using the Connector/NET with Prepared Statements
Introduction

As of MySQL 4.1, it is possible to use prepared statements with Connector/NET. Use of prepared statements can provide signific-
ant performance improvements on queries that are executed more than once.

Prepared execution is faster than direct execution for statements executed more than once, primarily because the query is parsed
only once. In the case of direct execution, the query is parsed every time it is executed. Prepared execution also can provide a re-
duction of network traffic because for each execution of the prepared statement, it is necessary only to send the data for the para-
meters.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer between client and server more
efficient.

2.4.6.1. Preparing Statements in Connector/NET

To prepare a statement, create a command object and set the .CommandText property to your query.

After entering your statement, call the .Prepare method of the MySqlCommand object. After the statement is prepared, add
parameters for each of the dynamic elements in the query.

After you enter your query and enter parameters, execute the statement using the .ExecuteNonQuery(),
.ExecuteScalar(), or .ExecuteReader methods.

For subsequent executions, you need only modify the values of the parameters and call the execute method again, there is no need
to set the .CommandText property or redefine the parameters.

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = strConnection

Try
conn.Open()
cmd.Connection = conn

cmd.CommandText = "INSERT INTO myTable VALUES(NULL, @number, @text)"
cmd.Prepare()

cmd.Parameters.Add("@number", 1)
cmd.Parameters.Add("@text", "One")

For i = 1 To 1000
cmd.Parameters["@number"].Value = i
cmd.Parameters["@text"].Value = "A string value"

cmd.ExecuteNonQuery()
Next

Catch ex As MySqlException
MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = strConnection;

try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "INSERT INTO myTable VALUES(NULL, @number, @text)";
cmd.Prepare();

cmd.Parameters.Add("@number", 1);
cmd.Parameters.Add("@text", "One");

for (int i=1; i <= 1000; i++)
{

cmd.Parameters["@number"].Value = i;
cmd.Parameters["@text"].Value = "A string value";

cmd.ExecuteNonQuery();
}

MySQL Connector/NET

132

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

2.4.7. Accessing Stored Procedures with Connector/NET
Introduction

With the release of MySQL version 5 the MySQL server now supports stored procedures with the SQL 2003 stored procedure syn-
tax.

A stored procedure is a set of SQL statements that can be stored in the server. Once this has been done, clients do not need to keep
reissuing the individual statements but can refer to the stored procedure instead.

Stored procedures can be particularly useful in situations such as the following:

• When multiple client applications are written in different languages or work on different platforms, but need to perform the
same database operations.

• When security is paramount. Banks, for example, use stored procedures for all common operations. This provides a consistent
and secure environment, and procedures can ensure that each operation is properly logged. In such a setup, applications and
users would not get any access to the database tables directly, but can only execute specific stored procedures.

Connector/NET supports the calling of stored procedures through the MySqlCommand object. Data can be passed in and our of a
MySQL stored procedure through use of the MySqlCommand.Parameters collection.

Note

When you call a stored procedure, the command object makes an additional SELECT call to determine the parameters
of the stored procedure. You must ensure that the user calling the procedure has the SELECT privilege on the
mysql.proc table to enable them to verify the parameters. Failure to do this will result in an error when calling the
procedure.

This section will not provide in-depth information on creating Stored Procedures. For such information, please refer to ht-
tp://dev.mysql.com/doc/mysql/en/stored-routines.html.

A sample application demonstrating how to use stored procedures with Connector/NET can be found in the Samples directory of
your Connector/NET installation.

2.4.7.1. Creating Stored Procedures from Connector/NET

Stored procedures in MySQL can be created using a variety of tools. First, stored procedures can be created using the mysql com-
mand-line client. Second, stored procedures can be created using the MySQL Query Browser GUI client. Finally, stored pro-
cedures can be created using the .ExecuteNonQuery method of the MySqlCommand object:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()
cmd.Connection = conn

cmd.CommandText = "CREATE PROCEDURE add_emp(" _
& "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT) " _
& "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " _
& "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END"

cmd.ExecuteNonQuery()
Catch ex As MySqlException

MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySQL Connector/NET

133

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/mysql/en/stored-routines.html
http://dev.mysql.com/doc/mysql/en/stored-routines.html

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "CREATE PROCEDURE add_emp(" +
"IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT) " +
"BEGIN INSERT INTO emp(first_name, last_name, birthdate) " +
"VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END";

cmd.ExecuteNonQuery();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,

"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

It should be noted that, unlike the command-line and GUI clients, you are not required to specify a special delimiter when creating
stored procedures in Connector/NET.

2.4.7.2. Calling a Stored Procedure from Connector/NET

To call a stored procedure using Connector/NET, create a MySqlCommand object and pass the stored procedure name as the
.CommandText property. Set the .CommandType property to CommandType.StoredProcedure.

After the stored procedure is named, create one MySqlCommand parameter for every parameter in the stored procedure. IN para-
meters are defined with the parameter name and the object containing the value, OUT parameters are defined with the parameter
name and the datatype that is expected to be returned. All parameters need the parameter direction defined.

After defining parameters, call the stored procedure by using the MySqlCommand.ExecuteNonQuery() method:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()
cmd.Connection = conn

cmd.CommandText = "add_emp"
cmd.CommandType = CommandType.StoredProcedure

cmd.Parameters.Add("@lname", 'Jones')
cmd.Parameters["@lname"].Direction = ParameterDirection.Input

cmd.Parameters.Add("@fname", 'Tom')
cmd.Parameters["@fname"].Direction = ParameterDirection.Input

cmd.Parameters.Add("@bday", #12/13/1977 2:17:36 PM#)
cmd.Parameters["@bday"].Direction = ParameterDirection.Input

cmd.Parameters.Add("@empno", MySqlDbType.Int32)
cmd.Parameters["@empno"].Direction = ParameterDirection.Output

cmd.ExecuteNonQuery()

MessageBox.Show(cmd.Parameters["@empno"].Value)
Catch ex As MySqlException

MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

MySQL Connector/NET

134

try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "add_emp";
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add("@lname", "Jones");
cmd.Parameters["@lname"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("@fname", "Tom");
cmd.Parameters["@fname"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("@bday", DateTime.Parse("12/13/1977 2:17:36 PM"));
cmd.Parameters["@bday"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("@empno", MySqlDbType.Int32);
cmd.Parameters["@empno"].Direction = ParameterDirection.Output;

cmd.ExecuteNonQuery();

MessageBox.Show(cmd.Parameters["@empno"].Value);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

Once the stored procedure is called, the values of output parameters can be retrieved by using the .Value property of the MySql-
Connector.Parameters collection.

2.4.8. Handling BLOB Data With Connector/NET
Introduction

One common use for MySQL is the storage of binary data in BLOB columns. MySQL supports four different BLOB datatypes:
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB.

Data stored in a BLOB column can be accessed using Connector/NET and manipulated using client-side code. There are no special
requirements for using Connector/NET with BLOB data.

Simple code examples will be presented within this section, and a full sample application can be found in the Samples directory
of the Connector/NET installation.

2.4.8.1. Preparing the MySQL Server

The first step is using MySQL with BLOB data is to configure the server. Let's start by creating a table to be accessed. In my file
tables, I usually have four columns: an AUTO_INCREMENT column of appropriate size (UNSIGNED SMALLINT) to serve as a
primary key to identify the file, a VARCHAR column that stores the file name, an UNSIGNED MEDIUMINT column that stores
the size of the file, and a MEDIUMBLOB column that stores the file itself. For this example, I will use the following table defini-
tion:

CREATE TABLE file(
file_id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
file_name VARCHAR(64) NOT NULL,
file_size MEDIUMINT UNSIGNED NOT NULL,
file MEDIUMBLOB NOT NULL);

After creating a table, you may need to modify the max_allowed_packet system variable. This variable determines how large of a
packet (i.e. a single row) can be sent to the MySQL server. By default, the server will only accept a maximum size of 1 meg from
our client application. If you do not intend to exceed 1 meg, this should be fine. If you do intend to exceed 1 meg in your file trans-
fers, this number has to be increased.

The max_allowed_packet option can be modified using MySQL Administrator's Startup Variables screen. Adjust the Maximum al-
lowed option in the Memory section of the Networking tab to an appropriate setting. After adjusting the value, click the APPLY
CHANGES button and restart the server using the Service Control screen of MySQL Administrator. You can also adjust this
value directly in the my.cnf file (add a line that reads max_allowed_packet=xxM), or use the SET max_allowed_packet=xxM; syn-
tax from within MySQL.

Try to be conservative when setting max_allowed_packet, as transfers of BLOB data can take some time to complete. Try to set a
value that will be adequate for your intended use and increase the value if necessary.

2.4.8.2. Writing a File to the Database

MySQL Connector/NET

135

http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html

To write a file to a database we need to convert the file to a byte array, then use the byte array as a parameter to an INSERT query.

The following code opens a file using a FileStream object, reads it into a byte array, and inserts it into the file table:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

Dim SQL As String

Dim FileSize As UInt32
Dim rawData() As Byte
Dim fs As FileStream

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
fs = New FileStream("c:\image.png", FileMode.Open, FileAccess.Read)
FileSize = fs.Length

rawData = New Byte(FileSize) {}
fs.Read(rawData, 0, FileSize)
fs.Close()

conn.Open()

SQL = "INSERT INTO file VALUES(NULL, @FileName, @FileSize, @File)"

cmd.Connection = conn
cmd.CommandText = SQL
cmd.Parameters.Add("@FileName", strFileName)
cmd.Parameters.Add("@FileSize", FileSize)
cmd.Parameters.Add("@File", rawData)

cmd.ExecuteNonQuery()

MessageBox.Show("File Inserted into database successfully!", _
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)

conn.Close()
Catch ex As Exception

MessageBox.Show("There was an error: " & ex.Message, "Error", _
MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

fs = new FileStream(@"c:\image.png", FileMode.Open, FileAccess.Read);
FileSize = fs.Length;

rawData = new byte[FileSize];
fs.Read(rawData, 0, FileSize);
fs.Close();

conn.Open();

SQL = "INSERT INTO file VALUES(NULL, @FileName, @FileSize, @File)";

cmd.Connection = conn;
cmd.CommandText = SQL;
cmd.Parameters.Add("@FileName", strFileName);
cmd.Parameters.Add("@FileSize", FileSize);
cmd.Parameters.Add("@File", rawData);

cmd.ExecuteNonQuery();

MessageBox.Show("File Inserted into database successfully!",
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)

MySQL Connector/NET

136

http://dev.mysql.com/doc/refman/5.0/en/insert.html

{
MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,

"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

The Read method of the FileStream object is used to load the file into a byte array which is sized according to the Length
property of the FileStream object.

After assigning the byte array as a parameter of the MySqlCommand object, the ExecuteNonQuery method is called and the
BLOB is inserted into the file table.

2.4.8.3. Reading a BLOB from the Database to a File on Disk

Once a file is loaded into the file table, we can use the MySqlDataReader class to retrieve it.

The following code retrieves a row from the file table, then loads the data into a FileStream object to be written to disk:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myData As MySqlDataReader
Dim SQL As String
Dim rawData() As Byte
Dim FileSize As UInt32
Dim fs As FileStream

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

SQL = "SELECT file_name, file_size, file FROM file"

Try
conn.Open()

cmd.Connection = conn
cmd.CommandText = SQL

myData = cmd.ExecuteReader

If Not myData.HasRows Then Throw New Exception("There are no BLOBs to save")

myData.Read()

FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"))
rawData = New Byte(FileSize) {}

myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize)

fs = New FileStream("C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write)
fs.Write(rawData, 0, FileSize)
fs.Close()

MessageBox.Show("File successfully written to disk!", "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)

myData.Close()
conn.Close()

Catch ex As Exception
MessageBox.Show("There was an error: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataReader myData;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

SQL = "SELECT file_name, file_size, file FROM file";

try
{

conn.Open();

MySQL Connector/NET

137

cmd.Connection = conn;
cmd.CommandText = SQL;

myData = cmd.ExecuteReader();

if (! myData.HasRows)
throw new Exception("There are no BLOBs to save");

myData.Read();

FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"));
rawData = new byte[FileSize];

myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize);

fs = new FileStream(@"C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write);
fs.Write(rawData, 0, FileSize);
fs.Close();

MessageBox.Show("File successfully written to disk!",
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

myData.Close();
conn.Close();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

After connecting, the contents of the file table are loaded into a MySqlDataReader object. The GetBytes method of the
MySqlDataReader is used to load the BLOB into a byte array, which is then written to disk using a FileStream object.

The GetOrdinal method of the MySqlDataReader can be used to determine the integer index of a named column. Use of the
GetOrdinal method prevents errors if the column order of the SELECT query is changed.

2.4.9. Using Connector/NET with Crystal Reports
Introduction

Crystal Reports is a common tool used by Windows application developers to perform reporting and document generation. In this
section we will show how to use Crystal Reports XI with MySQL and Connector/NET.

2.4.9.1. Creating a Data Source

When creating a report in Crystal Reports there are two options for accessing the MySQL data while designing your report.

The first option is to use Connector/ODBC as an ADO data source when designing your report. You will be able to browse your
database and choose tables and fields using drag and drop to build your report. The disadvantage of this approach is that additional
work must be performed within your application to produce a data set that matches the one expected by your report.

The second option is to create a data set in VB.NET and save it as XML. This XML file can then be used to design a report. This
works quite well when displaying the report in your application, but is less versatile at design time because you must choose all rel-
evant columns when creating the data set. If you forget a column you must re-create the data set before the column can be added to
the report.

The following code can be used to create a data set from a query and write it to disk:

Visual Basic Example

Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"

Try
conn.Open()
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _

& "country.name, country.population, country.continent " _
& "FROM country, city ORDER BY country.continent, country.name"

cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myData.WriteXml("C:\dataset.xml", XmlWriteMode.WriteSchema)
Catch ex As Exception

MySQL Connector/NET

138

http://dev.mysql.com/doc/refman/5.0/en/select.html

MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
"country.name, country.population, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";
cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myData.WriteXml(@"C:\dataset.xml", XmlWriteMode.WriteSchema);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

The resulting XML file can be used as an ADO.NET XML datasource when designing your report.

If you choose to design your reports using Connector/ODBC, it can be downloaded from dev.mysql.com.

2.4.9.2. Creating the Report

For most purposes the Standard Report wizard should help with the initial creation of a report. To start the wizard, open Crystal Re-
ports and choose the New > Standard Report option from the File menu.

The wizard will first prompt you for a data source. If you are using Connector/ODBC as your data source, use the OLEDB provider
for ODBC option from the OLE DB (ADO) tree instead of the ODBC (RDO) tree when choosing a data source. If using a saved
data set, choose the ADO.NET (XML) option and browse to your saved data set.

The remainder of the report creation process is done automatically by the wizard.

After the report is created, choose the Report Options... entry of the File menu. Un-check the Save Data With Report option. This
prevents saved data from interfering with the loading of data within our application.

2.4.9.3. Displaying the Report

To display a report we first populate a data set with the data needed for the report, then load the report and bind it to the data set.
Finally we pass the report to the crViewer control for display to the user.

The following references are needed in a project that displays a report:

• CrytalDecisions.CrystalReports.Engine

• CrystalDecisions.ReportSource

• CrystalDecisions.Shared

• CrystalDecisions.Windows.Forms

The following code assumes that you created your report using a data set saved using the code shown in Section 2.4.9.1, “Creating
a Data Source”, and have a crViewer control on your form named myViewer.

Visual Basic Example

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient

MySQL Connector/NET

139

http://dev.mysql.com/downloads/connector/odbc/3.51.html

Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = _
"server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()

cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
& "country.name, country.population, country.continent " _
& "FROM country, city ORDER BY country.continent, country.name"

cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myReport.Load(".\world_report.rpt")
myReport.SetDataSource(myData)
myViewer.ReportSource = myReport

Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;

ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
"country.name, country.population, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";

cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myReport.Load(@".\world_report.rpt");
myReport.SetDataSource(myData);
myViewer.ReportSource = myReport;

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

A new data set it generated using the same query used to generate the previously saved data set. Once the data set is filled, a Re-
portDocument is used to load the report file and bind it to the data set. The ReportDocument is the passed as the ReportSource of
the crViewer.

This same approach is taken when a report is created from a single table using Connector/ODBC. The data set replaces the table
used in the report and the report is displayed properly.

When a report is created from multiple tables using Connector/ODBC, a data set with multiple tables must be created in our applic-
ation. This allows each table in the report data source to be replaced with a report in the data set.

We populate a data set with multiple tables by providing multiple SELECT statements in our MySqlCommand object. These SE-
LECT statements are based on the SQL query shown in Crystal Reports in the Database menu's Show SQL Query option. Assume
the following query:

SELECT `country`.`Name`, `country`.`Continent`, `country`.`Population`, `city`.`Name`, `city`.`Population`
FROM `world`.`country` `country` LEFT OUTER JOIN `world`.`city` `city` ON `country`.`Code`=`city`.`CountryCode`
ORDER BY `country`.`Continent`, `country`.`Name`, `city`.`Name`

MySQL Connector/NET

140

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html

This query is converted to two SELECT queries and displayed with the following code:

Visual Basic Example

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient

Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"

Try
conn.Open()
cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER BY countrycode, name; " _

& "SELECT name, population, code, continent FROM country ORDER BY continent, name"
cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myReport.Load(".\world_report.rpt")
myReport.Database.Tables(0).SetDataSource(myData.Tables(0))
myReport.Database.Tables(1).SetDataSource(myData.Tables(1))
myViewer.ReportSource = myReport

Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;

ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER " +
"BY countrycode, name; SELECT name, population, code, continent FROM " +
"country ORDER BY continent, name";

cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myReport.Load(@".\world_report.rpt");
myReport.Database.Tables(0).SetDataSource(myData.Tables(0));
myReport.Database.Tables(1).SetDataSource(myData.Tables(1));
myViewer.ReportSource = myReport;

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

It is important to order the SELECT queries in alphabetical order, as this is the order the report will expect its source tables to be in.
One SetDataSource statement is needed for each table in the report.

This approach can cause performance problems because Crystal Reports must bind the tables together on the client-side, which will
be slower than using a pre-saved data set.

2.4.10. Handling Date and Time Information in Connector/NET
Introduction

MySQL Connector/NET

141

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html

MySQL and the .NET languages handle date and time information differently, with MySQL allowing dates that cannot be repres-
ented by a .NET data type, such as '0000-00-00 00:00:00'. These differences can cause problems if not properly handled.

In this section we will demonstrate how to properly handle date and time information when using Connector/NET.

2.4.10.1. Problems when Using Invalid Dates

The differences in date handling can cause problems for developers who use invalid dates. Invalid MySQL dates cannot be loaded
into native .NET DateTime objects, including NULL dates.

Because of this issue, .NET DataSet objects cannot be populated by the Fill method of the MySqlDataAdapter class as in-
valid dates will cause a System.ArgumentOutOfRangeException exception to occur.

2.4.10.2. Restricting Invalid Dates

The best solution to the date problem is to restrict users from entering invalid dates. This can be done on either the client or the
server side.

Restricting invalid dates on the client side is as simple as always using the .NET DateTime class to handle dates. The DateTime
class will only allow valid dates, ensuring that the values in your database are also valid. The disadvantage of this is that it is not
useful in a mixed environment where .NET and non .NET code are used to manipulate the database, as each application must per-
form its own date validation.

Users of MySQL 5.0.2 and higher can use the new traditional SQL mode to restrict invalid date values. For information on
using the traditional SQL mode, see Server SQL Modes.

2.4.10.3. Handling Invalid Dates

Although it is strongly recommended that you avoid the use of invalid dates within your .NET application, it is possible to use in-
valid dates by means of the MySqlDateTime datatype.

The MySqlDateTime datatype supports the same date values that are supported by the MySQL server. The default behavior of
Connector/NET is to return a .NET DateTime object for valid date values, and return an error for invalid dates. This default can be
modified to cause Connector/NET to return MySqlDateTime objects for invalid dates.

To instruct Connector/NET to return a MySqlDateTime object for invalid dates, add the following line to your connection string:

Allow Zero Datetime=True

Please note that the use of the MySqlDateTime class can still be problematic. The following are some known issues:

1. Data binding for invalid dates can still cause errors (zero dates like 0000-00-00 do not seem to have this problem).

2. The ToString method return a date formatted in the standard MySQL format (for example, 2005-02-23 08:50:25).
This differs from the ToString behavior of the .NET DateTime class.

3. The MySqlDateTime class supports NULL dates, while the .NET DateTime class does not. This can cause errors when try-
ing to convert a MySQLDateTime to a DateTime if you do not check for NULL first.

Because of the known issues, the best recommendation is still to use only valid dates in your application.

2.4.10.4. Handling NULL Dates

The .NET DateTime datatype cannot handle NULL values. As such, when assigning values from a query to a DateTime vari-
able, you must first check whether the value is in fact NULL.

When using a MySqlDataReader, use the .IsDBNull method to check whether a value is NULL before making the assign-
ment:

Visual Basic Example

If Not myReader.IsDBNull(myReader.GetOrdinal("mytime")) Then
myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"))

Else
myTime = DateTime.MinValue

End If

MySQL Connector/NET

142

http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html

C# Example

if (! myReader.IsDBNull(myReader.GetOrdinal("mytime")))
myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"));

else
myTime = DateTime.MinValue;

NULL values will work in a data set and can be bound to form controls without special handling.

2.4.11. ASP.NET Provider Model
MySQL Connector/Net provides support for the ASP.NET 2.0 provider model. This model allows application developers to focus
on the business logic of there application instead of having to recreate such boilerplate items as membership and roles support. Cur-
rently, only membership and role providers are supplied although session state and profile providers will be provided in upcoming
releases.

Installing The Providers

The installation of Connector/Net 5.1 or later will install the providers and register them in your machines .NET configuration file.
The providers are implemented in the file mysql.web.dll and this file can be found in your Connector/Net installation folder.
There is no need to run any type of SQL script to setup the database as the providers create and maintain the proper schema auto-
matically.

Using The Providers

The easiest way to start using the providers is to use the ASP.NET configuration tool that is available on the Solution Explorer tool-
bar when you have a website project loaded.

In the web pages that open you will be able to select the MySQL membership and roles provider by indicating that you want to
pick a custom provider for each area.

When the provider is installed, it creates a dummy connection string named LocalMySqlServer. This has to be done so that the
provider will work in the ASP.NET configuration tool. However, you will want to override this connection string in your
web.config file. You do this by first removing the dummy connection string and then adding in the proper one. Here is an example:

<connectionStrings>
<remove name="LocalMySqlServer"/>
<add name="LocalMySqlServer" connectionString="server=xxx;uid=xxx;pwd=xxx"/>

</connectionStrings>

Distribution

To use the providers on a production server you will need to distribute the MySql.Data and the MySql.Web assemblies and
either register them in the remote systems Global Assembly Cache or keep them in your applications bin folder.

2.4.12. Binary/Nonbinary Issues
There are certain situations where MySQL will return incorrect metadata about one or more columns. More specifically, the server
will sometimes report that a column is binary when it is not and vice versa. In these situations, it becomes practically impossible for
the connector to be able to correctly identify the correct metadat.

Some examples of situations that may return incorrect metadata are:

• Execution of SHOW PROCESSLIST. Some of the columns will be returned as binary even though they only hold string data.

• When a temp table is used to process a resultset, some columns may be returned with incorrect binary flags.

• Some server functions such DATE_FORMAT will incorrectly return the column as binary.

With the availability of BINARY and VARBINARY data types it is important that we respect the metadata returned by the sever.
However, we are aware that some existing applications may break with this change so we are creating a connection string option to
enable or disable it. By default, Connector/Net 5.1 will respect the binary flags returned by the server. This will mean that you may
need to make small changes to your application to accomodate this change.

In the event that the changes required to your application would be too large, you can add 'respect binary flags=false' to your con-
nection string. This will cause the connector to use the prior behavior. In a nutshell, that behavior was that any column that is
marked as string, regardless of binary flags, will be returned as string. Only columns that are specifically marked as a BLOB will be

MySQL Connector/NET

143

returned as BLOB.

2.4.13. Character Sets
Treating Binary Blobs As UTF8

MySQL doesn't currently support 4 byte UTF8 sequences. This makes it difficult to represent some multi-byte languages such as
Japanese. To try and alleviate this, Connector/Net now supports a mode where binary blobs can be treated as strings.

To do this, you set the 'Treat Blobs As UTF8' connection string keyword to yes. This is all that needs to be done to enable conver-
sion of all binary blobs to UTF8 strings. If you wish to convert only some of your blob columns, then you can make use of the 'Blo-
bAsUTF8IncludePattern' and 'BlobAsUTF8ExcludePattern' keywords. These should be set to the regular expression pattern that
matches the column names you wish to include or exlude respectively.

One thing to note is that the regular expression patterns can both match a single column. When this happens, the include pattern is
applied before the exclude pattern. The result, in this case, would be that the column would be excluded. You should also be aware
that this mode does not apply to columns of type BINARY or VARBINARY and also do not apply to nonbinary BLOB columns.

Currently this mode only applies to reading strings out of MySQL. To insert 4-byte UTF8 strings into blob columns you will need
to use the .NET Encoding.GetBytes function to convert your string to a series of bytes. You can then set this byte array as a
parameter for a BLOB column.

2.4.14. Working with medium trust
.NET applications operate under a given trust level. Normal desktop applications operate under full trust while web applications
that are hosted in shared environments are normally run under the medium trust level. Some hosting providers host shared applica-
tions in their own app pools and allow the application to run under full trust, but this seems to be the exception rather than the rule.

Connector/Net versions prior to 5.0.8 and 5.1.3 were not compatible with medium trust hosting. Starting with these versions, Con-
nector/Net can be used under medium trust hosting that has been modified to allow the use of sockets for communication. By de-
fault, medium trust does not include SocketPermission. Connector/Net uses sockets to talk with the MySQL server so it is re-
quired that a new trust level be created that is an exact clone of medium trust but that has SocketPermission added.

2.5. Connector/NET Support
The developers of Connector/NET greatly value the input of our users in the software development process. If you find Connector/
NET lacking some feature important to you, or if you discover a bug and need to file a bug report, please use the instructions in
How to Report Bugs or Problems.

2.5.1. Connector/NET Community Support

• Community support for Connector/NET can be found through the forums at http://forums.mysql.com.

• Community support for Connector/NET can also be found through the mailing lists at http://lists.mysql.com.

• Paid support is available from Sun Microsystems, Inc. Additional information is available at http://www.mysql.com/support/.

2.5.2. How to report Connector/NET Problems or Bugs
If you encounter difficulties or problems with Connector/NET, contact the Connector/NET community Section 2.5.1,
“Connector/NET Community Support”.

You should first try to execute the same SQL statements and commands from the mysql client program or from admndemo. This
helps you determine whether the error is in Connector/NET or MySQL.

If reporting a problem, you should ideally include the following information with the email:

• Operating system and version

• Connector/NET version

• MySQL server version

• Copies of error messages or other unexpected output

• Simple reproducible sample

MySQL Connector/NET

144

http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html
http://forums.mysql.com
http://lists.mysql.com
http://www.mysql.com/support/

Remember that the more information you can supply to us, the more likely it is that we can fix the problem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

2.5.3. Connector/NET Change History
The Connector/NET Change History (Changelog) is located with the main Changelog for MySQL. See Appendix B, MySQL Con-
nector/NET Change History.

2.6. Connector/NET FAQ
Questions

• 2.6.1: How do I obtain the value of an auto-incremented column?

Questions and Answers

2.6.1: How do I obtain the value of an auto-incremented column?

When using the commandBuilder you should make sure that you set the ReturnGeneratedIdentifiers property to
true.

Then, you can use an active view on a table to access the updated ID. For example:

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
da = new MySql.Data.MySqlClient.MySqlDataAdapter();
cmdBuilder = new MySql.Data.MySqlClient.MySqlCommandBuilder();
SystemDataDataSet = new System.Data.DataSet();
SystemDataDataView = new System.Data.DataView();
...
cmd.Connection = conn;
cmd.CommandText = "SELECT * FROM contacts";
da.SelectCommand = cmd;
da.Fill(SystemDataDataSet, "contacts");
cmdBuilder.DataAdapter = da;
cmdBuilder.ReturnGeneratedIdentifiers = true;
cmdBuilder.DataAdapter.SelectCommand.CommandText = "SELECT * FROM contacts";
cmdBuilder.RefreshSchema();

SystemDataDataView = SystemDataDataSet.Tables["contacts"].DefaultView;

SystemDataDataRow = SystemDataDataView.Table.NewRow();
SystemDataDataRow["status"] = 1;

SystemDataDataView.Table.Rows.Add(SystemDataDataRow);
da.Update(SystemDataDataSet, "contacts");
System.Console.WriteLine("ID after update: " + SystemDataDataRow["id"]);

The SystemDataDataRow object in this instance provides the interface to the updated auto-increment value in the id column.

MySQL Connector/NET

145

http://bugs.mysql.com/

Chapter 3. MySQL Visual Studio Plugin
The MySQL Visual Studio Plugin is a DDEX provider; a plug-in for Visual Studio 2005 that allows developers to maintain data-
base structures, and supports built-in data-driven application development tools.

The current version of the MySQL Visual Studio Plugin includes only database maintenance tools. Data-driven application devel-
opment tools are not supported.

The MySQL DDEX Provider operates as a standard extension to the Visual Studio Data Designer functionality available through
the Server Explorer menu of Visual Studio 2005, and enables developers to create database objects and data within a MySQL data-
base.

The MySQL Visual Studio Plugin is designed to work with MySQL version 5.0, but is also compatible with MySQL 4.1.1 and
provides limited compatibility with MySQL 5.1.

3.1. Installing the MySQL Visual Studio Plugin
The MySQL Visual Studio Plugin requires one of Visual Studio 2005 Standard, Professional or Team Developer Edition to be in-
stalled. Other editions of Visual Studio 2005 are not supported.

Note

Starting with Connector/NET 5.1.2, the Visual Studio Plugin is included in the installation. If you have installed Con-
nector/NET 5.1.2, then you do not need to separately install the Visual Studio Plugin.

Here is the list of components that should already be installed before starting the installation of the MySQL Visual Studio Plugin:

• Visual Studio 2005 Standard, Professional or Team Developer Edition.

• MySQL Server 4.1.1 or later (either installed on the same machine, or a separate server).

• MySQL Connector/NET 5.0.

Note

When installing Connector/NET you must ensure that the connector is installed into the Global Assembly Cache
(GAC). The Connector/NET installer handles this for you automatically, but in a custom installation the option may
have been disabled.

The user used to connect to the MySQL server must have the following privileges to use the functionality provided by the MySQL
Visual Studio Plugin:

• The SELECT privilege for the INFORMATION_SCHEMA database.

• The EXECUTE privilege for the SHOW CREATE TABLE statement.

• The SELECT privilege for the mysql.proc table (required for operations with stored procedures and functions).

• The SELECT privilege for the mysql.func table (required for operations with User Defined Functions (UDF)).

• The EXECUTE privilege for the SHOW ENGINE STATUS statement (required for retrieving extended error information).

• Appropriate privileges for performed operations (e.g. the SELECT privilege is required to browse data from a table etc.).

The MySQL Visual Studio Plugin is delivered as a MSI package that can be used to install, uninstall or reinstall the Provider. If
you are not using Windows XP or Windows Server 2003 you upgrade the Windows Installer system to the latest version (see ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;292539 for details).

The MSI-package is named MySQL.VisualStudio.msi. To install the MySQL Visual Studio Plugin, right click on the MSI
file and select INSTALL. The installation process is as follow:

1. The standard Welcome dialog is opened. Click Next to continue installation.

2. The License agreement (GNU GPL) window is opened. Accept the agreement and click NEXT to continue.

146

http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/refman/5.0/en/execute.html
http://dev.mysql.com/doc/refman/5.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/refman/5.0/en/execute.html
http://dev.mysql.com/doc/refman/5.0/en/show-engine.html
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_select
http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539
http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539

3. The destination folder choice dialog is opened. Here you can point out the folder where the MySQL Visual Studio Plugin will
be installed. The default destination folder is %ProgramFilesDir%\MySQL\MySQL DDEX Data Provider, where
%ProgramFilesDir% is the Program Files folder of the installation machine. After choosing the destination folder, click
NEXT to continue.

4. The installer will ask to confirm that installation. Click Install to start installation process.

5. The installation will now take place. At the end of this step the Visual Studio command table is rebuilt (this process may take
several minutes).

6. Once installation is complete, click FINISH to end the installation process.

To uninstall the MySQL Visual Studio Plugin, you can use either Add/Remove Programs component of the Control Panel or the
same MSI-package. Choose the REMOVE option, and the Provider will be uninstalled automatically.

To repair the Provider, right click the MSI-package and choose the REPAIR option. The MySQL Visual Studio Plugin will be re-
paired automatically.

The installation package includes the following files:

• MySQL.VisualStudio.dll — the MySQL DDEX Provider assembly.

• MySQL.Data.dll — the assembly containing the MySQL Connector .NET which is used by the Provider.

• MySql.VisualStudio.dll.config — the configuration file for the MySQL Visual Studio Plugin. This file contains
default values for the provider GUI layout.

Note

Do not remove this file before the first use of the Provider.

• Register.reg — the file with registry entries that can be used to register the MySQL DDEX Provider in the case of the
manual installation.

• Install.js — the script used to register the Connector .NET as an ADO.NET data provider in the machine.config file.

• Release notes.doc — the document with release notes.

To install the Provider manually, copy all files of the installation package in a desired folder, then set the full path to the Provider
assembly as a value of the CodeBase entry. For example:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\8.0\Packages\{79A115C9-B133-4891-9E7B-242509DAD272}]@="MySql.Data.VisualStudio.MySqlDataProviderPackage"
"InprocServer32"="C:\\WINNT\\system32\\mscoree.dll"
"Class"="MySql.Data.VisualStudio.MySqlDataProviderPackage"
"CodeBase"="C:\\MySqlDdexProvider\\MySql.VisualStudio.dll"

Then import information from the Register.reg file to the registry by clicking of the file. At the confirmation dialog choose Yes.
Next you must run the command devenv.exe /setup within a Command Prompt to rebuild the Visual Studio command table.

3.2. Creating a connection to the MySQL server
Once the MySQL Visual Studio Plugin is installed, you can use it to create, modify and delete connections to MySQL databases.
To create a connection with a MySQL database, perform the following steps:

1. Start Visual Studio 2005 and open Server Explorer window by choosing the SERVER EXPLORER option from the VIEW menu.

2. Right click on the DATA CONNECTIONS node and choose the ADD CONNECTION button.

3. The Add Connection dialog is opened. Press the CHANGE button to choose MySQL Database as a data source.

4. Change Data Source dialog is opened. Choose MySQL Database in the list of data sources (or the other option, if MySQL
Database is absent), and then choose .NET FRAMEWORK DATA PROVIDER FOR MYSQL in the combo box of data providers.

MySQL Visual Studio Plugin

147

Press OK to confirm your choice.

5. Enter the connection settings: the server host name (for example, localhost if the MySQL server is installed on the local ma-
chine), the user name, the password, and the default database schema. Note that you must specify the default schema name to
open the connection.

6. You can also set the port to connect with the MySQL server by pressing the ADVANCED button. To test a connection with the
MySQL server, ser the server host name, the user name, and the password, and press the TEST CONNECTION button. If the test
fails, check the connection values that you have supplied are correct and that the corresponding user and privileges have been
configured on the MySQL server.

7. After you set all settings and test the connection, press OK. The newly created connection is displayed in Server Explorer.
Now you can work with the MySQL server through standard Server Explorer interface.

After a connection is successfully established, all the connection settings are saved. When you next open Visual Studio, the connec-

MySQL Visual Studio Plugin

148

tion to the MySQL server will appear within Server Explorer so that you can re-establish a connection to the MySQL server.

To modify and delete a connection, use the SERVER EXPLORER context menu for the corresponding node. You can modify any of
the settings just by overwriting the existing values with new ones. Note that a connection should be modified or deleted only if no
active editor for its objects is opened. Otherwise your data could be lost.

3.3. Using the MySQL Visual Studio Plugin
To work with a MySQL server using the MySQL Visual Studio Plugin, open the Visual Studio 2005, open the SERVER
EXPLORER, and select the required connection. The working area of the MySQL Visual Studio Plugin consists of three parts.

• Database objects (tables, views, stored routines, triggers, and user defined functions) are displayed in the Server Explorer tree.
Here you can choose an object and edit its properties and definition.

• Properties of a selected database object are displayed in the PROPERTIES panel. Certain properties can be edited directly within
this window.

• The editor panel provides direct access to the SQL statement and definition of specific objects. Fore example, the SQL state-
ments within a stored procedure definition are shown and edited within this panel.

3.3.1. Editing Tables
The Table Editor can be accessed through a mouse action on table-type node of Server Explorer. To create a new table, right click
on the TABLES node (under the connection node) and choose the CREATE TABLE command from a context menu. To modify an ex-
isting table, double click on a node of the table you wish to modify, or right click on this node and choose the ALTER TABLE com-
mand from a context menu. Either of the commands opens the Table Editor.

MySQL Visual Studio Plugin

149

The MySQL Visual Studio Plugin Table Editor is implemented in a similar fashion to the standard Query Browser Table Editor,
but with minor differences.

The Table Editor consists of the following parts:

• Columns Editor — for column creation, modification and deletion.

• Indexes tab — for table/column index management.

• Foreign Keys tab — for configuration of foreign keys.

• Column Details tab — used to set advanced column options.

• Properties window — used to set table properties.

To save changes you have made in the Table Editor, use either Save or Save All buttons of the Visual Studio main toolbar, or just
press Ctrl+S. Before changes are saved, a confirmation dialog will be displayed to confirm that you want to update the correspond-
ing object within the MySQL database.

3.3.1.1. Column Editor

You can use the Column Editor to set or change the name, data type, default value and other properties of a table column. To set
the properties of an individual column, select the column using the mouse. Alternatively, you can move through the grid using Tab
and Shift+Tab keys.

• To set or change the name, data type, default value and comment of a column, select the appropriate cell and edit the desired
value.

• To set or unset flag-type column properties (i.e., primary key, NOT NULL, auto-incremented, flags), check or uncheck the cor-
responding checkboxes. Note that the available column flags will depend on the columns data type.

• To reorder columns, index columns or foreign key columns in the Column Editor, select the whole column you wish to reorder
by clicking on the selector column at the left of the column grid. Then move the column by using Ctrl+Up (to move the

MySQL Visual Studio Plugin

150

column up) and Ctrl+Down (to move the column down) keys.

• To delete a column, select it by clicking on the selector column at the left of the column grid, then press the Delete button on a
keyboard.

3.3.1.2. Indexes tab

Index management is performed via the Indexes tab.

• To add an index, press the + button and set the properties in the INDEX SETTINGS groupbox at the right. You can set the index
name, index kind, index type and a set of index columns.

• To remove an index, select the index from the list and press the - button.

• To change index settings, select the index from the list; detailed information about the index is displayed in the INDEX SET-
TINGS panel.

You cannot change a table column to an index column using drag and drop. Instead, you can add new index columns to a table and
set their table columns by using the embedded editor within the Indexes tab

3.3.1.3. Foreign Keys tab

Foreign Key management is performed via the Foreign Keys tab.

• To add a foreign key, press the + button and set properties in the FOREIGN KEYS SETTINGS panel. You can set the foreign key
name, referenced table name, foreign key columns and actions on update and delete.

• To remove a foreign key, select the foreign key and press the - button.

• To change foreign key settings, select the foreign key and use the FOREIGN KEYS SETTINGS panel to edit the properties.

• When a foreign key is changed, the MySQL Visual Studio Plugin generates two queries: the first query drops the changed keys
and the second one recreates the new values. The reason for such a behavior is to avoid the Bug#8377 and Bug#8919.

Note

If changed values are for some reason inconsistent and cause the second query to fail, all affected foreign keys will be
dropped. If this is the case, the MySQL Visual Studio Plugin will mark them as new in the Table Editor, and you will
have to recreate them later. But if you close the Table Editor without saving, these foreign keys will be lost.

3.3.1.4. Column Details tab

The Column Details tab can be used to set column options. Besides the main column properties that are presented in the Column
Editor, in the Column Details tab you can set two additional properties options: the character set and the collation sequence.

3.3.1.5. Table Properties window

There is no separate tab for table options and advanced options. All table options can be browsed and changed using the PROPER-
TIES window of Visual Studio 2005.

The following table properties can be set:

• AUTO INCREMENT

• AVERAGE ROW LENGTH

• CHARACTER SET

• CHECKSUM FOR ROWS

• COLLATION

• COMMENT

MySQL Visual Studio Plugin

151

http://bugs.mysql.com/8377
http://bugs.mysql.com/8919

• CONNECTION

• DATA DIRECTORY

• DELAY KEY UPDATES

• ENGINE

• INDEX DIRECTORY

• INSERT METHOD

• MAXIMUM ROWS

• MINIMUM ROWS

• NAME

• PACK KEYS

• PASSWORD

• ROW FORMAT

• UNION

Some of these properties can have arbitrary text values, others accept values from a predefined set.

The properties SCHEMA and SERVER are read only.

3.3.2. Editing Table Data
The Table Data Editor, allows a user to browse, create and edit data of tables. The Table Data Editor is implemented as a simple
data grid with auto generated columns.

To access the Table Data Editor, right click on a node representing the table or view in Server Explorer. From the nodes context
menu, choose the BROWSE or EDIT DATA command. For tables and updatable views, this command opens the Table Data Editor in
edit mode. For non-updatable views, this command opens the Table Data Editor in read-only mode.

When in the edit mode, you can modify table data by modifying the displayed table contents directly. To add a row, set desired val-
ues in the last row of the grid. To modify values, set new values in appropriate cells. To delete a row, select it by clicking on the se-
lector column at the left of the grid, then press the DELETE button.

To save changes you have made in the Table Data Editor, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar,
or just press Ctrl+S. A confirmation dialog will confirm whether you want the changes saved to the database.

3.3.3. Editing Views
To create a new view, right click the Views node under the connection node in Server Explorer. From the nodes context menu,
choose the CREATE VIEW command. This command opens the SQL Editor.

To modify an existing view, double click on a node of the view you wish to modify, or right click on this node and choose the
ALTER VIEW command from a context menu. Either of the commands opens the SQL Editor.

To create or alter the view definition using SQL Editor, type the appropriate SQL statement in the SQL Editor.

Note

You should enter only the defining statement itself, without the CREATE VIEW AS preface.

All other view properties can be set in the PROPERTIES window. These properties are:

• ALGORITHM

• CHECK OPTION

• DEFINER

• NAME

MySQL Visual Studio Plugin

152

• SECURITY TYPE

Some of these properties can have arbitrary text values, others accept values from a predefined set.

The properties IS UPDATABLE, SCHEMA and SERVER are readonly.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A
confirmation dialog will confirm whether you want the changes saved to the database.

3.3.4. Editing Stored Procedures and Functions
To create a new stored procedure, right click the Stored Procedures node under the connection node in Server Explorer. From the
nodes context menu, choose the CREATE ROUTINE command. This command opens the SQL Editor.

To create a new stored function, right click the FUNCTIONS node under the connection node in Server Explorer. From the node's
context menu, choose the CREATE ROUTINE command.

To modify an existing stored routine (procedure or function), double click on a node of the routine you wish to modify, or right
click on this node and choose the ALTER ROUTINE command from a context menu. Either of the commands opens the SQL Editor.

To create or alter the routine definition using SQL Editor, type this definition in the SQL Editor using standard SQL.

All other routine properties can be set in the PROPERTIES window. These properties are:

• Comment

• Data Access

• Definer

• Is Deterministic

• Security Type

Some of these properties can have arbitrary text values, others accept values only from a predefined set.

Also you can set all the options directly in the SQL Editor, using the standard CREATE PROCEDURE or CREATE FUNCTION
statement. However, it is recommended to use the PROPERTIES window instead.

Note

You should never add the CREATE preface to the routine definition.

The properties NAME, SCHEMA and SERVER in the PROPERTIES window are read-only. Set or change the procedure name in the
SQL editor.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A
confirmation dialog will confirm whether you want the changes saved to the database..

3.3.5. Editing Triggers
To create a new trigger, right click on a node of a table for which you wish to add a trigger. From the node's context menu, choose
the CREATE TRIGGER command. This command opens the SQL Editor.

To modify an existing trigger, double click on a node of the trigger you wish to modify, or right click on this node and choose the
ALTER TRIGGER command from a context menu. Either of the commands opens the SQL Editor.

To create or alter the trigger definition using SQL Editor, type the trigger statement in the SQL Editor using standard SQL.

Note

You should enter only the trigger statement, that is the part of the CREATE TRIGGER query that is placed after the
FOR EACH ROW clause.

All other trigger properties are set in the PROPERTIES window. These properties are:

MySQL Visual Studio Plugin

153

http://dev.mysql.com/doc/refman/5.0/en/create-procedure.html
http://dev.mysql.com/doc/refman/5.0/en/create-function.html
http://dev.mysql.com/doc/refman/5.0/en/create-trigger.html

• DEFINER

• EVENT MANIPULATION

• NAME

• TIMING

Some of these properties can have arbitrary text values, others accept values only from a predefined set.

The properties EVENT TABLE, SCHEMA and SERVER in the PROPERTIES window are read-only.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A
confirmation dialog will confirm whether you want the changes saved to the database.

3.3.6. Editing User Defined Functions (UDF)
To create a new User Defined Function (UDF), right click the UDFs node under the connection node in Server Explorer. From the
node's context menu, choose the CREATE UDF command. This command opens the UDF Editor.

To modify an existing UDF, double click on a node of the UDF you wish to modify, or right click on this node and choose the Al-
ter UDF command from a context menu. Either of the commands opens the UDF Editor.

The UDF editor allows you to set the following properties through the properties panel:

• NAME

• SO-NAME (DLL NAME)

• RETURN TYPE

• IS AGGREGATE

The property Server in the PROPERTIES window is read-only.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A
confirmation dialog will confirm whether you want the changes saved to the database.

3.3.7. Dropping database objects
Tables, views, stored routines, triggers, an UDFs can be dropped with the appropriate DROP command from its context menu: DROP
TABLE, DROP VIEW, DROP ROUTINE, DROP TRIGGER, DROP UDF.

You will be asked to confirm the execution of the corresponding drop query in a confirmation dialog.

Dropping of multiple objects is not supported.

3.3.8. Cloning database objects
Tables, views, stored procedures and functions can be cloned with the appropriate CLONE command from its context menu: CLONE
TABLE, CLONE VIEW, CLONE ROUTINE. The clone commands open the corresponding editor for a new object: the TABLE EDITOR
for cloning a table and the SQL Editor for cloning a view or a routine.

To save the cloned object, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A confirm-
ation dialog will confirm whether you want the changes saved to the database.

3.4. Visual Studio Plugin Support
If you have a comment, or if you discover a bug, please, use our MySQL bug tracking system (http://bugs.mysql.com) to report
problem or add your suggestion.

3.4.1. Visual Studio Plugin FAQ
Questions

MySQL Visual Studio Plugin

154

http://bugs.mysql.com

• 3.4.1.1: When creating a connection, typing the connection details causes the connection window to immediately close.

Questions and Answers

3.4.1.1: When creating a connection, typing the connection details causes the connection window to immediately close.

There are known issues with versions of Connector/NET earlier than 5.0.2. Connector/NET 1.0.x is known not to work. If you have
any of these versions installed, or have previously upgraded from an earlier version, uninstall Connector/NET completely and then
install Connector/NET 5.0.2.

MySQL Visual Studio Plugin

155

Chapter 4. MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language via a JDBC driver, which is
called MySQL Connector/J.

MySQL Connector/J is a JDBC Type 4 driver. Different versions are available that are compatible with the JDBC 3.0 and JDBC
4.0 specifications. The Type 4 designation means that the driver is pure-Java implementation of the MySQL protocol and does not
rely on the MySQL client libraries.

Although JDBC is useful by itself, we would hope that if you are not familiar with JDBC that after reading the first few sections of
this manual, that you would avoid using naked JDBC for all but the most trivial problems and consider using one of the popular
persistence frameworks such as Hibernate, Spring's JDBC templates or Ibatis SQL Maps to do the majority of repetitive work and
heavier lifting that is sometimes required with JDBC.

This section is not designed to be a complete JDBC tutorial. If you need more information about using JDBC you might be inter-
ested in the following online tutorials that are more in-depth than the information presented here:

• JDBC Basics — A tutorial from Sun covering beginner topics in JDBC

• JDBC Short Course — A more in-depth tutorial from Sun and JGuru

Key topics:

• For help with connection strings, connection options setting up your connection through JDBC, see Section 4.4.1,
“Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”.

• For tips on using Connector/J and JDBC with generic J2EE toolkits, see Section 4.5.2, “Using Connector/J with J2EE and Oth-
er Java Frameworks”.

• Developers using the Tomcat server platform, see Section 4.5.2.2, “Using Connector/J with Tomcat”.

• Developers using JBoss, see Section 4.5.2.3, “Using Connector/J with JBoss”.

• Developers using Spring, see Section 4.5.2.4, “Using Connector/J with Spring”.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about using JDBC with MySQL in the Knowledge
Base articles about JDBC. Access to the MySQL Knowledge Base collection of articles is one of the ad-
vantages of subscribing to MySQL Enterprise. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

4.1. Connector/J Versions
There are currently four versions of MySQL Connector/J available:

• Connector/J 5.1 is the Type 4 pure Java JDBC driver, which conforms to the JDBC 3.0 and JDBC 4.0 specifications. It provides
compatibility with all the functionality of MySQL, including 4.1, 5.0, 5.1 and the 6.0 alpha release featuring the new Falcon
storage engine. Connector/J 5.1 provides ease of development features, including auto-registration with the Driver Manager,
standardized validity checks, categorized SQLExceptions, support for the JDBC-4.0 XML processing, per connection client in-
formation, NCHAR, NVARCHAR and NCLOB types. This release also includes all bug fixes up to and including Connector/J
5.0.6.

• Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes distributed transaction (XA)
support.

• Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides support for all the function-
ality in MySQL 5.0 except distributed transaction (XA) support.

• Connector/J 3.0 provides core functionality and was designed with connectivity to MySQL 3.x or MySQL 4.1 servers, although
it will provide basic compatibility with later versions of MySQL. Connector/J 3.0 does not support server-side prepared state-
ments, and does not support any of the features in versions of MySQL later than 4.1.

The following table summarizes the Connector/J versions available:

156

http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html
https://kb.mysql.com/search.php?cat=search&category=10
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html

Connector/J version Driver Type JDBC version MySQL Server version Status

5.1 4 3.0, 4.0 4.1, 5.0, 5.1, 6.0 Recommended version

5.0 4 3.0 4.1, 5.0 Released version

3.1 4 3.0 4.1, 5.0 Obsolete

3.0 4 3.0 3.x, 4.1 Obsolete

The current recommended version for Connector/J is 5.1. This guide covers all four connector versions, with specific notes given
where a setting applies to a specific option.

4.1.1. Java Versions Supported
The following table summarizes Connector/J Java dependencies:

Connector/J version Java RTE required JDK required (to build source code)

5.1 1.4.x, 1.5.x, 1.6.x 1.6.x and 1.5.x (or older)

5.0 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

3.1 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

3.0 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x.

Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run on a Java runtime older
than 1.4 unless the class verifier is turned off (by setting the -Xverify:none option to the Java runtime). This is because the
class verifier will try to load the class definition for java.sql.Savepoint even though it is not accessed by the driver unless
you actually use savepoint functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than 1.4.x, as it relies on
java.util.LinkedHashMap which was first available in JDK-1.4.0.

If you are building Connector/J from source code using the source distribution (see Section 4.2.4, “Installing from the Development
Source Tree”) then you must use JDK 1.4.2 or newer to compile the Connector package. For Connector/J 5.1 you must have both
JDK-1.6.x. and JDK-1.5.x installed in order to be able to build the source code.

4.2. Connector/J Installation
You can install the Connector/J package using either the binary or source distribution. The binary distribution provides the easiest
method for installation; the source distribution enables you to customize your installation further. With either solution, you must
manually add the Connector/J location to your Java CLASSPATH.

If you are upgrading from a previous version, read the upgrade information before continuing. See Section 4.2.3, “Upgrading from
an Older Version”.

4.2.1. Installing Connector/J from a Binary Distribution
The easiest method of installation is to use the binary distribution of the Connector/J package. The binary distribution is available
either as a Tar/Gzip or Zip file which you must extract to a suitable location and then optionally make the information about the
package available by changing your CLASSPATH (see Section 4.2.2, “Installing the Driver and Configuring the CLASSPATH”).

MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files, and the JAR archive named
mysql-connector-java-[version]-bin.jar, and starting with Connector/J 3.1.8 a debug build of the driver in a file
named mysql-connector-java-[version]-bin-g.jar.

Starting with Connector/J 3.1.9, the .class files that constitute the JAR files are only included as part of the driver JAR file.

You should not use the debug build of the driver unless instructed to do so when reporting a problem or a bug to MySQL AB, as it
is not designed to be run in production environments, and will have adverse performance impact when used. The debug binary also
depends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/
J distribution.

You will need to use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for the .zip

MySQL Connector/J

157

archive, and tar for the .tar.gz archive). Because there are potentially long file names in the distribution, we use the GNU tar
archive format. You will need to use GNU tar (or an application that understands the GNU tar archive format) to unpack the .tar.gz
variant of the distribution.

4.2.2. Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing mysql-connect-
or-java-[version]-bin.jar in your classpath, either by adding the full path to it to your CLASSPATH environment vari-
able, or by directly specifying it with the command line switch -cp when starting your JVM.

If you are going to use the driver with the JDBC DriverManager, you would use com.mysql.jdbc.Driver as the class that
implements java.sql.Driver.

You can set the CLASSPATH environment variable under UNIX, Linux or Mac OS X either locally for a user within their
.profile, .login or other login file. You can also set it globally by editing the global /etc/profile file.

For example, under a C shell (csh, tcsh) you would add the Connector/J driver to your CLASSPATH using the following:

shell> setenv CLASSPATH /path/mysql-connector-java-[ver]-bin.jar:$CLASSPATH

Or with a Bourne-compatible shell (sh, ksh, bash):

shell> export set CLASSPATH=/path/mysql-connector-java-[ver]-bin.jar:$CLASSPATH

Within Windows 2000, Windows XP, Windows Server 2003 and Windows Vista, you must set the environment variable through
the System Control Panel.

If you want to use MySQL Connector/J with an application server such as GlassFish, Tomcat or JBoss, you will have to read your
vendor's documentation for more information on how to configure third-party class libraries, as most application servers ignore the
CLASSPATH environment variable. For configuration examples for some J2EE application servers, see Section 4.5.2, “Using Con-
nector/J with J2EE and Other Java Frameworks”. However, the authoritative source for JDBC connection pool configuration in-
formation for your particular application server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the driver's .jar file in the WEB-
INF/lib subdirectory of your webapp, as this is a standard location for third party class libraries in J2EE web applications.

You can also use the MysqlDataSource or MysqlConnectionPoolDataSource classes in the
com.mysql.jdbc.jdbc2.optional package, if your J2EE application server supports or requires them. Starting with Con-
nector/J 5.0.0, the javax.sql.XADataSource interface is implemented via the
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource class, which supports XA distributed transactions when used
in combination with MySQL server version 5.0.

The various MysqlDataSource classes support the following parameters (through standard set mutators):

• user

• password

• serverName (see the previous section about fail-over hosts)

• databaseName

• port

4.2.3. Upgrading from an Older Version
We try to keep the upgrade process as easy as possible, however as is the case with any software, sometimes changes need to be
made in new versions to support new features, improve existing functionality, or comply with new standards.

This section has information about what users who are upgrading from one version of Connector/J to another (or to a new version
of the MySQL server, with respect to JDBC functionality) should be aware of.

4.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major changes are isolated to
new functionality exposed in MySQL-4.1 and newer, which includes Unicode character sets, server-side prepared statements, SQL-
State codes returned in error messages by the server and various performance enhancements that can be enabled or disabled via

MySQL Connector/J

158

configuration properties.

• Unicode Character Sets — See the next section, as well as Character Set Support, for information on this new feature of
MySQL. If you have something misconfigured, it will usually show up as an error with a message similar to Illegal mix
of collations.

• Server-side Prepared Statements — Connector/J 3.1 will automatically detect and use server-side prepared statements when
they are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing via all variants of Connec-
tion.prepareStatement() to determine if it is a supported type of statement to prepare on the server side, and if it is not
supported by the server, it instead prepares it as a client-side emulated prepared statement. You can disable this feature by
passing emulateUnsupportedPstmts=false in your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the older client-side emulated pre-
pared statement code that is still presently used for MySQL servers older than 4.1.0 with the connection property useServer-
PrepStmts=false

• Datetimes with all-zero components (0000-00-00 ...) — These values can not be represented reliably in Java. Connector/
J 3.0.x always converted them to NULL when being read from a ResultSet.

Connector/J 3.1 throws an exception by default when these values are encountered as this is the most correct behavior accord-
ing to the JDBC and SQL standards. This behavior can be modified using the zeroDateTimeBehavior configuration property.
The allowable values are:

• exception (the default), which throws an SQLException with an SQLState of S1009.

• convertToNull, which returns NULL instead of the date.

• round, which rounds the date to the nearest closest value which is 0001-01-01.

Starting with Connector/J 3.1.7, ResultSet.getString() can be decoupled from this behavior via noDatetimeString-
Sync=true (the default value is false) so that you can retrieve the unaltered all-zero value as a String. It should be noted that
this also precludes using any time zone conversions, therefore the driver will not allow you to enable noDatetimeStringSync
and useTimezone at the same time.

• New SQLState Codes — Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL server (if supported), which
are different from the legacy X/Open state codes that Connector/J 3.0 uses. If connected to a MySQL server older than
MySQL-4.1.0 (the oldest version to return SQLStates as part of the error code), the driver will use a built-in mapping. You can
revert to the old mapping by using the configuration property useSqlStateCodes=false.

• ResultSet.getString() — Calling ResultSet.getString() on a BLOB column will now return the address of
the byte[] array that represents it, instead of a String representation of the BLOB. BLOB values have no character set, so
they cannot be converted to java.lang.Strings without data loss or corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will treat as a java.sql.Clob.

• Debug builds — Starting with Connector/J 3.1.8 a debug build of the driver in a file named
mysql-connector-java-[version]-bin-g.jar is shipped alongside the normal binary jar file that is named
mysql-connector-java-[version]-bin.jar.

Starting with Connector/J 3.1.9, we do not ship the .class files unbundled, they are only available in the JAR archives that ship
with the driver.

You should not use the debug build of the driver unless instructed to do so when reporting a problem or bug, as it is not de-
signed to be run in production environments, and will have adverse performance impact when used. The debug binary also de-
pends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connect-
or/J distribution.

4.2.3.2. Upgrading to MySQL Connector/J 5.1.x

• In Connector/J 5.0.x and earlier, the alias for a table in a SELECT statement is returned when accessing the result set metadata
using ResultSetMetaData.getColumnName(). This behavior however is not JDBC compliant, and in Connector/J 5.1
this behavior was changed so that the original table name, rather than the alias, is returned.

The JDBC-compliant behavior is designed to let API users reconstruct the DML statement based on the metadata within Res-
ultSet and ResultSetMetaData.

MySQL Connector/J

159

http://dev.mysql.com/doc/refman/5.0/en/charset.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/select.html

You can get the alias for a column in a result set by calling ResultSetMetaData.getColumnLabel(). If you want to
use the old non-compliant behavior with ResultSetMetaData.getColumnName(), use the useOldAli-
asMetadataBehavior option and set the value to true.

In Connector/J 5.0.x the default value of useOldAliasMetadataBehavior was true, but in Connector/J 5.1 this was
changed to a default value of false.

4.2.3.3. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

• Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character encoding was not supported
by the server, however the JDBC driver could use it, allowing storage of multiple character sets in latin1 tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this functionality, and can not
upgrade them to use the official Unicode character support in MySQL server version 4.1 or newer, you should add the follow-
ing property to your connection URL:

useOldUTF8Behavior=true

• Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side prepared statements when they
are available (MySQL server version 4.1.0 and newer). If your application encounters issues with server-side prepared state-
ments, you can revert to the older client-side emulated prepared statement code that is still presently used for MySQL servers
older than 4.1.0 with the following connection property:

useServerPrepStmts=false

4.2.4. Installing from the Development Source Tree

Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get MySQL
Connector/J up and running on your system, you should use a standard binary release distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following prerequisites:

• A Bazaar client, to check out the sources from our Launchpad repository (available from http://bazaar-vcs.org/).

• Apache Ant version 1.7 or newer (available from http://ant.apache.org/).

• JDK 1.4.2 or later. Although MySQL Connector/J can be be used with older JDKs, to compile it from source you must have at
least JDK 1.4.2. If you are building Connector/J 5.1 you will need JDK 1.6.x and an older JDK such as JDK 1.5.x. You will
then need to point your JAVA_HOME environment variable at the older installation.

The source code repository for MySQL Connector/J is located on Launchpad at https://code.launchpad.net/connectorj.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. Check out the latest code from the branch that you want with one of the following commands.

To check out the latest development branch use:

shell> bzr branch lp:connectorj

This creates a connectorj subdirectory in the current directory that contains the latest sources for the requested branch.

To check out the latest 5.1 code use:

shell> bzr branch lp:connectorj/5.1

This will create a 5.1 subdirectory in the current directory containing the latest 5.1 code.

2. If you are building Connector/J 5.1 make sure that you have both JDK 1.6.x installed and an older JDK such as JDK 1.5.x.
This is because Connector/J supports both JDBC 3.0 (which was prior to JDK 1.6.x) and JDBC 4.0. Set your JAVA_HOME
environment variable to the path of the older JDK installation.

MySQL Connector/J

160

http://bazaar-vcs.org/
http://ant.apache.org/
https://code.launchpad.net/connectorj

3. Change location to either the connectorj or 5.1 directory, depending on which branch you want to build, to make it your
current working directory. For example:

shell> cd connectorj

4. If you are building Connector/J 5.1 you need to edit the build.xml to reflect the location of your JDK 1.6.x installation.
The lines that you need to change are:

<property name="com.mysql.jdbc.java6.javac" value="C:\jvms\jdk1.6.0\bin\javac.exe" />
<property name="com.mysql.jdbc.java6.rtjar" value="C:\jvms\jdk1.6.0\jre\lib\rt.jar" />

Alternatively, you can set the value of these property names through the Ant -D option.

5. Issue the following command to compile the driver and create a .jar file suitable for installation:

shell> ant dist

This creates a build directory in the current directory, where all build output will go. A directory is created in the build
directory that includes the version number of the sources you are building from. This directory contains the sources, compiled
.class files, and a .jar file suitable for deployment. For other possible targets, including ones that will create a fully pack-
aged distribution, issue the following command:

shell> ant -projecthelp

6. A newly created .jar file containing the JDBC driver will be placed in the directory
build/mysql-connector-java-[version].

Install the newly created JDBC driver as you would a binary .jar file that you download from MySQL by following the in-
structions in Section 4.2.2, “Installing the Driver and Configuring the CLASSPATH”.

A package containing both the binary and source code for Connector/J 5.1 can also be found at the following location: Connector/J
5.1 Download

4.3. Connector/J Examples
Examples of using Connector/J are located throughout this document, this section provides a summary and links to these examples.

• Example 4.1, “Connector/J: Obtaining a connection from the DriverManager”

• Example 4.2, “Connector/J: Using java.sql.Statement to execute a SELECT query”

• Example 4.3, “Connector/J: Calling Stored Procedures”

• Example 4.4, “Connector/J: Using Connection.prepareCall()”

• Example 4.5, “Connector/J: Registering output parameters”

• Example 4.6, “Connector/J: Setting CallableStatement input parameters”

• Example 4.7, “Connector/J: Retrieving results and output parameter values”

• Example 4.8, “Connector/J: Retrieving AUTO_INCREMENT column values using Statement.getGeneratedKeys()”

• Example 4.9, “Connector/J: Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID()”

• Example 4.10, “Connector/J: Retrieving AUTO_INCREMENT column values in Updatable ResultSets”

• Example 4.11, “Connector/J: Using a connection pool with a J2EE application server”

• Example 4.12, “Connector/J: Example of transaction with retry logic”

4.4. Connector/J (JDBC) Reference
This section of the manual contains reference material for MySQL Connector/J, some of which is automatically generated during
the Connector/J build process.

MySQL Connector/J

161

http://dev.mysql.com/downloads/connector/j/5.1.html
http://dev.mysql.com/downloads/connector/j/5.1.html

4.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Proper-
ties for Connector/J

The name of the class that implements java.sql.Driver in MySQL Connector/J is com.mysql.jdbc.Driver. The
org.gjt.mm.mysql.Driver class name is also usable to remain backward-compatible with MM.MySQL. You should use
this class name when registering the driver, or when otherwise configuring software to use MySQL Connector/J.

The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the host name is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306, the default port number for
MySQL servers.

jdbc:mysql://[host:port],[host:port].../[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the database is not specified, the connection will be made with no default database. In this case, you will need to either call the
setCatalog() method on the Connection instance or fully-specify table names using the database name (i.e. SELECT db-
name.tablename.colname FROM dbname.tablename...) in your SQL. Not specifying the database to use upon con-
nection is generally only useful when building tools that work with multiple databases, such as GUI database managers.

MySQL Connector/J has fail-over support. This allows the driver to fail-over to any number of slave hosts and still perform read-
only queries. Fail-over only happens when the connection is in an autoCommit(true) state, because fail-over can not happen
reliably when a transaction is in progress. Most application servers and connection pools set autoCommit to true at the end of
every transaction/connection use.

The fail-over functionality has the following behavior:

• If the URL property autoReconnect is false: Failover only happens at connection initialization, and failback occurs when the
driver determines that the first host has become available again.

• If the URL property autoReconnect is true: Failover happens when the driver determines that the connection has failed (before
every query), and falls back to the first host when it determines that the host has become available again (after queriesBe-
foreRetryMaster queries have been issued).

In either case, whenever you are connected to a "failed-over" server, the connection will be set to read-only state, so queries that
would modify data will have exceptions thrown (the query will never be processed by the MySQL server).

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless otherwise noted, properties
can be set for a DataSource object or for a Connection object.

Configuration Properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the preferred method when using im-
plementations of java.sql.DataSource):

• com.mysql.jdbc.jdbc2.optional.MysqlDataSource

• com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

• As a key/value pair in the java.util.Properties instance passed to DriverManager.getConnection() or
Driver.connect()

• As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(),
java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource setURL() meth-
od.

Note

If the mechanism you use to configure a JDBC URL is XML-based, you will need to use the XML character literal
& to separate configuration parameters, as the ampersand is a reserved character for XML.

The properties are listed in the following tables.

Connection/Authentication.

MySQL Connector/J

162

Property Name Definition Default
Value

Since Ver-
sion

user The user to connect as all versions

password The password to use when connecting all versions

socketFactory The name of the class that the driver should use for creating
socket connections to the server. This class must implement the
interface 'com.mysql.jdbc.SocketFactory' and have public no-
args constructor.

com.mysql.
jd-
bc.Standard
SocketFact-
ory

3.0.3

connectTimeout Timeout for socket connect (in milliseconds), with 0 being no
timeout. Only works on JDK-1.4 or newer. Defaults to '0'.

0 3.0.1

socketTimeout Timeout on network socket operations (0, the default means no
timeout).

0 3.0.1

connectionLifecycleInterceptors A comma-delimited list of classes that implement
"com.mysql.jdbc.ConnectionLifecycleInterceptor" that should
notified of connection lifecycle events (creation, destruction,
commit, rollback, setCatalog and setAutoCommit) and poten-
tially alter the execution of these commands. ConnectionLife-
cycleInterceptors are "stackable", more than one interceptor may
be specified via the configuration property as a comma-delim-
ited list, with the interceptors executed in order from left to
right.

5.1.4

useConfigs Load the comma-delimited list of configuration properties be-
fore parsing the URL or applying user-specified properties.
These configurations are explained in the 'Configurations' of the
documentation.

3.1.5

interactiveClient Set the CLIENT_INTERACTIVE flag, which tells MySQL to
timeout connections based on INTERACTIVE_TIMEOUT in-
stead of WAIT_TIMEOUT

false 3.1.0

localSocketAddress Host name or IP address given to explicitly configure the inter-
face that the driver will bind the client side of the TCP/IP con-
nection to when connecting.

5.0.5

mysqlIOFactory The name of the class which implements
"com.mysql.jdbc.MysqlIO" for communicating with mysqld.
(default is "com.mysql.jdbc.MysqlIOprotocol")

com.mysql.
jd-
bc.MysqlIO
protocol

6.0.0

propertiesTransform An implementation of
com.mysql.jdbc.ConnectionPropertiesTransform that the driver
will use to modify URL properties passed to the driver before
attempting a connection

3.1.4

useCompression Use zlib compression when communicating with the server
(true/false)? Defaults to 'false'.

false 3.0.17

Networking.

Property Name Definition Default
Value

Since Ver-
sion

tcpKeepAlive If connecting using TCP/IP, should the driver set
SO_KEEPALIVE?

true 5.0.7

tcpNoDelay If connecting using TCP/IP, should the driver set
SO_TCP_NODELAY (disabling the Nagle Algorithm)?

true 5.0.7

tcpRcvBuf If connecting using TCP/IP, should the driver set
SO_RCV_BUF to the given value? The default value of '0',
means use the platform default value for this property)

0 5.0.7

tcpSndBuf If connecting using TCP/IP, shuold the driver set
SO_SND_BUF to the given value? The default value of '0',
means use the platform default value for this property)

0 5.0.7

tcpTrafficClass If connecting using TCP/IP, should the driver set traffic class or
type-of-service fields ?See the documentation for
java.net.Socket.setTrafficClass() for more information.

0 5.0.7

MySQL Connector/J

163

High Availability and Clustering.

Property Name Definition Default
Value

Since Ver-
sion

autoReconnect Should the driver try to re-establish stale and/or dead connec-
tions? If enabled the driver will throw an exception for a queries
issued on a stale or dead connection, which belong to the current
transaction, but will attempt reconnect before the next query is-
sued on the connection in a new transaction. The use of this fea-
ture is not recommended, because it has side effects related to
session state and data consistency when applications do not
handle SQLExceptions properly, and is only designed to be used
when you are unable to configure your application to handle
SQLExceptions resulting from dead and stale connections prop-
erly. Alternatively, investigate setting the MySQL server vari-
able "wait_timeout" to some high value rather than the default
of 8 hours.

false 1.1

autoReconnectForPools Use a reconnection strategy appropriate for connection pools
(defaults to 'false')

false 3.1.3

failOverReadOnly When failing over in autoReconnect mode, should the connec-
tion be set to 'read-only'?

true 3.0.12

maxReconnects Maximum number of reconnects to attempt if autoReconnect is
true, default is '3'.

3 1.1

reconnectAtTxEnd If autoReconnect is set to true, should the driver attempt recon-
nections at the end of every transaction?

false 3.0.10

initialTimeout If autoReconnect is enabled, the initial time to wait between re-
connect attempts (in seconds, defaults to '2').

2 1.1

roundRobinLoadBalance When autoReconnect is enabled, and failoverReadonly is false,
should we pick hosts to connect to on a round-robin basis?

false 3.1.2

queriesBeforeRetryMaster Number of queries to issue before falling back to master when
failed over (when using multi-host failover). Whichever condi-
tion is met first, 'queriesBeforeRetryMaster' or 'secondsBe-
foreRetryMaster' will cause an attempt to be made to reconnect
to the master. Defaults to 50.

50 3.0.2

secondsBeforeRetryMaster How long should the driver wait, when failed over, before at-
tempting

30 3.0.2

selfDestructOnPingMaxOperations =If set to a nonzero value, the driver will report close the con-
nection and report failure when Connection.ping() or Connec-
tion.isValid(int) is called if the connnection's count of com-
mands sent to the server exceeds this value.

0 5.1.6

selfDestructOnPingSecondsLifetime If set to a nonzero value, the driver will report close the connec-
tion and report failure when Connection.ping() or Connec-
tion.isValid(int) is called if the connnection's lifetime exceeds
this value.

0 5.1.6

resourceId A globally unique name that identifies the resource that this
datasource or connection is connected to, used for XARe-
source.isSameRM() when the driver cannot determine this value
based on host names used in the URL

5.0.1

Security.

Property Name Definition Default
Value

Since Ver-
sion

allowMultiQueries Allow the use of ';' to delimit multiple queries during one state-
ment (true/false), defaults to 'false'

false 3.1.1

useSSL Use SSL when communicating with the server (true/false), de-
faults to 'false'

false 3.0.2

requireSSL Require SSL connection if useSSL=true? (defaults to 'false'). false 3.1.0

verifyServerCertificate If "useSSL" is set to "true", should the driver verify the server's
certificate? When using this feature, the keystore parameters
should be specified by the "clientCertificateKeyStore*" proper-

true 5.1.6

MySQL Connector/J

164

ties, rather than system properties.

clientCertificateKeyStoreUrl URL to the client certificate KeyStore (if not specified, use de-
faults)

5.1.0

clientCertificateKeyStoreType KeyStore type for client certificates (NULL or empty means use
default, standard keystore types supported by the JVM are
"JKS" and "PKCS12", your environment may have more avail-
able depending on what security products are installed and
available to the JVM.

5.1.0

clientCertificateKeyStorePassword Password for the client certificates KeyStore 5.1.0

trustCertificateKeyStoreUrl URL to the trusted root certificate KeyStore (if not specified,
use defaults)

5.1.0

trustCertificateKeyStoreType KeyStore type for trusted root certificates (NULL or empty
means use default, standard keystore types supported by the
JVM are "JKS" and "PKCS12", your environment may have
more available depending on what security products are in-
stalled and available to the JVM.

5.1.0

trustCertificateKeyStorePassword Password for the trusted root certificates KeyStore 5.1.0

allowLoadLocalInfile Should the driver allow use of 'LOAD DATA LOCAL IN-
FILE...' (defaults to 'true').

true 3.0.3

allowUrlInLocalInfile Should the driver allow URLs in 'LOAD DATA LOCAL IN-
FILE' statements?

false 3.1.4

paranoid Take measures to prevent exposure sensitive information in er-
ror messages and clear data structures holding sensitive data
when possible? (defaults to 'false')

false 3.0.1

Performance Extensions.

Property Name Definition Default
Value

Since Ver-
sion

callableStmtCacheSize If 'cacheCallableStmts' is enabled, how many callable state-
ments should be cached?

100 3.1.2

metadataCacheSize The number of queries to cache ResultSetMetadata for if
cacheResultSetMetaData is set to 'true' (default 50)

50 3.1.1

prepStmtCacheSize If prepared statement caching is enabled, how many prepared
statements should be cached?

25 3.0.10

prepStmtCacheSqlLimit If prepared statement caching is enabled, what is the largest
SQL the driver will cache the parsing for?

256 3.0.10

alwaysSendSetIsolation Should the driver always communicate with the database when
Connection.setTransactionIsolation() is called? If set to false,
the driver will only communicate with the database when the re-
quested transaction isolation is different than the whichever is
newer, the last value that was set via Connec-
tion.setTransactionIsolation(), or the value that was read from
the server when the connection was established.

true 3.1.7

maintainTimeStats Should the driver maintain various internal timers to enable idle
time calculations as well as more verbose error messages when
the connection to the server fails? Setting this property to false
removes at least two calls to System.getCurrentTimeMillis() per
query.

true 3.1.9

useCursorFetch If connected to MySQL > 5.0.2, and setFetchSize() > 0 on a
statement, should that statement use cursor-based fetching to re-
trieve rows?

false 5.0.0

blobSendChunkSize Chunk to use when sending BLOB/CLOBs via ServerPrepared-
Statements

1048576 3.1.9

cacheCallableStmts Should the driver cache the parsing stage of CallableStatements false 3.1.2

cachePrepStmts Should the driver cache the parsing stage of PreparedStatements
of client-side prepared statements, the "check" for suitability of
server-side prepared and server-side prepared statements them-
selves?

false 3.0.10

MySQL Connector/J

165

cacheResultSetMetadata Should the driver cache ResultSetMetaData for Statements and
PreparedStatements? (Req. JDK-1.4+, true/false, default 'false')

false 3.1.1

cacheServerConfiguration Should the driver cache the results of 'SHOW VARIABLES'
and 'SHOW COLLATION' on a per-URL basis?

false 3.1.5

defaultFetchSize The driver will call setFetchSize(n) with this value on all newly-
created Statements

0 3.1.9

dontTrackOpenResources The JDBC specification requires the driver to automatically
track and close resources, however if your application doesn't do
a good job of explicitly calling close() on statements or result
sets, this can cause memory leakage. Setting this property to
true relaxes this constraint, and can be more memory efficient
for some applications.

false 3.1.7

dynamicCalendars Should the driver retrieve the default calendar when required, or
cache it per connection/session?

false 3.1.5

elideSetAutoCommits If using MySQL-4.1 or newer, should the driver only issue 'set
autocommit=n' queries when the server's state doesn't match the
requested state by Connection.setAutoCommit(boolean)?

false 3.1.3

enableQueryTimeouts When enabled, query timeouts set via State-
ment.setQueryTimeout() use a shared java.util.Timer instance
for scheduling. Even if the timeout doesn't expire before the
query is processed, there will be memory used by the TimerTask
for the given timeout which will not be reclaimed until the time
the timeout would have expired if it hadn't been cancelled by the
driver. High-load environments might want to consider dis-
abling this functionality.

true 5.0.6

holdResultsOpenOverStatementClose Should the driver close result sets on Statement.close() as re-
quired by the JDBC specification?

false 3.1.7

largeRowSizeThreshold What size result set row should the JDBC driver consider
"large", and thus use a more memory-efficient way of represent-
ing the row internally?

2048 5.1.1

loadBalanceStrategy If using a load-balanced connection to connect to SQL nodes in
a MySQL Cluster/NDB configuration (by using the URL prefix
"jdbc:mysql:loadbalance://"), which load balancing algorithm
should the driver use: (1) "random" - the driver will pick a ran-
dom host for each request. This tends to work better than round-
robin, as the randomness will somewhat account for spreading
loads where requests vary in response time, while round-robin
can sometimes lead to overloaded nodes if there are variations
in response times across the workload. (2) "bestResponseTime"
- the driver will route the request to the host that had the best re-
sponse time for the previous transaction.

random 5.0.6

locatorFetchBufferSize If 'emulateLocators' is configured to 'true', what size buffer
should be used when fetching BLOB data for getBinaryInput-
Stream?

1048576 3.2.1

rewriteBatchedStatements Should the driver use multiqueries (irregardless of the setting of
"allowMultiQueries") as well as rewriting of prepared state-
ments for INSERT into multi-value inserts when executeBatch()
is called? Notice that this has the potential for SQL injection if
using plain java.sql.Statements and your code doesn't sanitize
input correctly. Notice that for prepared statements, server-side
prepared statements can not currently take advantage of this re-
write option, and that if you do not specify stream lengths when
using PreparedStatement.set*Stream(), the driver will not be
able to determine the optimum number of parameters per batch
and you might receive an error from the driver that the resultant
packet is too large. Statement.getGeneratedKeys() for these re-
written statements only works when the entire batch includes
INSERT statements.

false 3.1.13

useDirectRowUnpack Use newer result set row unpacking code that skips a copy from
network buffers to a MySQL packet instance and instead reads
directly into the result set row data buffers.

true 5.1.1

useDynamicCharsetInfo Should the driver use a per-connection cache of character set in-
formation queried from the server when necessary, or use a

true 5.0.6

MySQL Connector/J

166

built-in static mapping that is more efficient, but isn't aware of
custom character sets or character sets implemented after the re-
lease of the JDBC driver?

useFastDateParsing Use internal String->Date/Time/Timestamp conversion routines
to avoid excessive object creation?

true 5.0.5

useFastIntParsing Use internal String->Integer conversion routines to avoid ex-
cessive object creation?

true 3.1.4

useJvmCharsetConverters Always use the character encoding routines built into the JVM,
rather than using lookup tables for single-byte character sets?

false 5.0.1

useLocalSessionState Should the driver refer to the internal values of autocommit and
transaction isolation that are set by Connec-
tion.setAutoCommit() and Connection.setTransactionIsolation()
and transaction state as maintained by the protocol, rather than
querying the database or blindly sending commands to the data-
base for commit() or rollback() method calls?

false 3.1.7

useReadAheadInput Use newer, optimized non-blocking, buffered input stream when
reading from the server?

true 3.1.5

Debugging/Profiling.

Property Name Definition Default
Value

Since Ver-
sion

logger The name of a class that implements "com.mysql.jdbc.log.Log"
that will be used to log messages to. (default is
"com.mysql.jdbc.log.StandardLogger", which logs to STDERR)

com.mysql.
jd-
bc.log.Stan
dardLogger

3.1.1

gatherPerfMetrics Should the driver gather performance metrics, and report them
via the configured logger every 'reportMetricsIntervalMillis'
milliseconds?

false 3.1.2

profileSQL Trace queries and their execution/fetch times to the configured
logger (true/false) defaults to 'false'

false 3.1.0

profileSql Deprecated, use 'profileSQL' instead. Trace queries and their ex-
ecution/fetch times on STDERR (true/false) defaults to 'false'

2.0.14

reportMetricsIntervalMillis If 'gatherPerfMetrics' is enabled, how often should they be
logged (in ms)?

30000 3.1.2

maxQuerySizeToLog Controls the maximum length/size of a query that will get
logged when profiling or tracing

2048 3.1.3

packetDebugBufferSize The maximum number of packets to retain when 'enablePacket-
Debug' is true

20 3.1.3

slowQueryThresholdMillis If 'logSlowQueries' is enabled, how long should a query (in ms)
before it is logged as 'slow'?

2000 3.1.2

slowQueryThresholdNanos If 'useNanosForElapsedTime' is set to true, and this property is
set to a nonzero value, the driver will use this threshold (in
nanosecond units) to determine if a query was slow.

0 5.0.7

useUsageAdvisor Should the driver issue 'usage' warnings advising proper and ef-
ficient usage of JDBC and MySQL Connector/J to the log
(true/false, defaults to 'false')?

false 3.1.1

autoGenerateTestcaseScript Should the driver dump the SQL it is executing, including serv-
er-side prepared statements to STDERR?

false 3.1.9

autoSlowLog Instead of using slowQueryThreshold* to determine if a query is
slow enough to be logged, maintain statistics that allow the
driver to determine queries that are outside the 99th percentile?

true 5.1.4

clientInfoProvider The name of a class that implements the
com.mysql.jdbc.JDBC4ClientInfoProvider interface in order to
support JDBC-4.0's Connection.get/setClientInfo() methods

com.mysql.
jd-
bc.JDBC4C
om-
mentCli-
entInfoPro-
vider

5.1.0

dumpMetadataOnColumnNotFound Should the driver dump the field-level metadata of a result set false 3.1.13

MySQL Connector/J

167

into the exception message when ResultSet.findColumn() fails?

dumpQueriesOnException Should the driver dump the contents of the query sent to the
server in the message for SQLExceptions?

false 3.1.3

enablePacketDebug When enabled, a ring-buffer of 'packetDebugBufferSize' packets
will be kept, and dumped when exceptions are thrown in key
areas in the driver's code

false 3.1.3

explainSlowQueries If 'logSlowQueries' is enabled, should the driver automatically
issue an 'EXPLAIN' on the server and send the results to the
configured log at a WARN level?

false 3.1.2

includeInnodbStatusInDeadlockEx-
ceptions

Include the output of "SHOW ENGINE INNODB STATUS" in
exception messages when deadlock exceptions are detected?

false 5.0.7

logSlowQueries Should queries that take longer than 'slowQueryThresholdMillis'
be logged?

false 3.1.2

logXaCommands Should the driver log XA commands sent by MysqlXaConnec-
tion to the server, at the DEBUG level of logging?

false 5.0.5

profilerEventHandler Name of a class that implements the interface
com.mysql.jdbc.profiler.ProfilerEventHandler that will be used
to handle profiling/tracing events.

com.mysql.
jd-
bc.profiler.
Logging-
Pro-
filerEventH
andler

5.1.6

resultSetSizeThreshold If the usage advisor is enabled, how many rows should a result
set contain before the driver warns that it is suspiciously large?

100 5.0.5

traceProtocol Should trace-level network protocol be logged? false 3.1.2

useNanosForElapsedTime For profiling/debugging functionality that measures elapsed
time, should the driver try to use nanoseconds resolution if
available (JDK >= 1.5)?

false 5.0.7

Miscellaneous.

Property Name Definition Default
Value

Since Ver-
sion

useUnicode Should the driver use Unicode character encodings when hand-
ling strings? Should only be used when the driver cannot de-
termine the character set mapping, or you are trying to 'force' the
driver to use a character set that MySQL either doesn't natively
support (such as UTF-8), true/false, defaults to 'true'

true 1.1g

characterEncoding If 'useUnicode' is set to true, what character encoding should the
driver use when dealing with strings? (defaults is to 'autodetect')

1.1g

characterSetResults Character set to tell the server to return results as. 3.0.13

connectionCollation If set, tells the server to use this collation via 'set colla-
tion_connection'

3.0.13

useBlobToStoreUTF8OutsideBMP Tells the driver to treat [MEDIUM/LONG]BLOB columns as
[LONG]VARCHAR columns holding text encoded in UTF-8
that has characters outside the BMP (4-byte encodings), which
MySQL server cannot handle natively.

false 5.1.3

utf8OutsideBmpExcludedColumnNa
mePattern

When "useBlobToStoreUTF8OutsideBMP" is set to "true",
column names matching the given regex will still be treated as
BLOBs unless they match the regex specified for
"utf8OutsideBmpIncludedColumnNamePattern". The regex
must follow the patterns used for the java.util.regex package.

5.1.3

utf8OutsideBmpIncludedColumnNam
ePattern

Used to specify exclusion rules to
"utf8OutsideBmpExcludedColumnNamePattern". The regex
must follow the patterns used for the java.util.regex package.

5.1.3

sessionVariables A comma-separated list of name/value pairs to be sent as SET
SESSION ... to the server when the driver connects.

3.1.8

allowNanAndInf Should the driver allow NaN or +/- INF values in PreparedState-
ment.setDouble()?

false 3.1.5

MySQL Connector/J

168

autoClosePStmtStreams Should the driver automatically call .close() on streams/readers
passed as arguments via set*() methods?

false 3.1.12

autoDeserialize Should the driver automatically detect and de-serialize objects
stored in BLOB fields?

false 3.1.5

blobsAreStrings Should the driver always treat BLOBs as Strings - specifically
to work around dubious metadata returned by the server for
GROUP BY clauses?

false 5.0.8

capitalizeTypeNames Capitalize type names in DatabaseMetaData? (usually only use-
ful when using WebObjects, true/false, defaults to 'false')

true 2.0.7

clobCharacterEncoding The character encoding to use for sending and retrieving TEXT,
MEDIUMTEXT and LONGTEXT values instead of the con-
figured connection characterEncoding

5.0.0

clobberStreamingResults This will cause a 'streaming' ResultSet to be automatically
closed, and any outstanding data still streaming from the server
to be discarded if another query is executed before all the data
has been read from the server.

false 3.0.9

continueBatchOnError Should the driver continue processing batch commands if one
statement fails. The JDBC spec allows either way (defaults to
'true').

true 3.0.3

createDatabaseIfNotExist Creates the database given in the URL if it doesn't yet exist. As-
sumes the configured user has permissions to create databases.

false 3.1.9

emptyStringsConvertToZero Should the driver allow conversions from empty string fields to
numeric values of '0'?

true 3.1.8

emulateLocators Should the driver emulate java.sql.Blobs with locators? With
this feature enabled, the driver will delay loading the actual
Blob data until the one of the retrieval methods
(getInputStream(), getBytes(), and so forth) on the blob data
stream has been accessed. For this to work, you must use a
column alias with the value of the column to the actual name of
the Blob. The feature also has the following restrictions: The
SELECT that created the result set must reference only one ta-
ble, the table must have a primary key; the SELECT must alias
the original blob column name, specified as a string, to an al-
ternate name; the SELECT must cover all columns that make up
the primary key.

false 3.1.0

emulateUnsupportedPstmts Should the driver detect prepared statements that are not suppor-
ted by the server, and replace them with client-side emulated
versions?

true 3.1.7

functionsNeverReturnBlobs Should the driver always treat data from functions returning
BLOBs as Strings - specifically to work around dubious
metadata returned by the server for GROUP BY clauses?

false 5.0.8

generateSimpleParameterMetadata Should the driver generate simplified parameter metadata for
PreparedStatements when no metadata is available either be-
cause the server couldn't support preparing the statement, or
server-side prepared statements are disabled?

false 5.0.5

ignoreNonTxTables Ignore non-transactional table warning for rollback? (defaults to
'false').

false 3.0.9

jdbcCompliantTruncation Should the driver throw java.sql.DataTruncation exceptions
when data is truncated as is required by the JDBC specification
when connected to a server that supports warnings (MySQL
4.1.0 and newer)? This property has no effect if the server sql-
mode includes STRICT_TRANS_TABLES.

true 3.1.2

maxRows The maximum number of rows to return (0, the default means
return all rows).

-1 all versions

netTimeoutForStreamingResults What value should the driver automatically set the server setting
'net_write_timeout' to when the streaming result sets feature is
in use? (value has unit of seconds, the value '0' means the driver
will not try and adjust this value)

600 5.1.0

noAccessToProcedureBodies When determining procedure parameter types for CallableState-
ments, and the connected user cannot access procedure bodies
through "SHOW CREATE PROCEDURE" or select on
mysql.proc should the driver instead create basic metadata (all

false 5.0.3

MySQL Connector/J

169

parameters reported as IN VARCHARs, but allowing regis-
terOutParameter() to be called on them anyway) instead of
throwing an exception?

noDatetimeStringSync Do not ensure that Result-
Set.getDatetimeType().toString().equals(ResultSet.getString())

false 3.1.7

noTimezoneConversionForTimeType Do not convert TIME values using the server timezone if 'use-
Timezone'='true'

false 5.0.0

nullCatalogMeansCurrent When DatabaseMetadataMethods ask for a 'catalog' parameter,
does the value null mean use the current catalog? (this is not JD-
BC-compliant, but follows legacy behavior from earlier versions
of the driver)

true 3.1.8

nullNamePatternMatchesAll Should DatabaseMetaData methods that accept *pattern para-
meters treat null the same as '%' (this is not JDBC-compliant,
however older versions of the driver accepted this departure
from the specification)

true 3.1.8

overrideSupportsIntegrityEnhance-
mentFacility

Should the driver return "true" for Database-
MetaData.supportsIntegrityEnhancementFacility() even if the
database doesn't support it to workaround applications that re-
quire this method to return "true" to signal support of foreign
keys, even though the SQL specification states that this facility
contains much more than just foreign key support (one such ap-
plication being OpenOffice)?

false 3.1.12

padCharsWithSpace If a result set column has the CHAR type and the value does not
fill the amount of characters specified in the DDL for the
column, should the driver pad the remaining characters with
space (for ANSI compliance)?

false 5.0.6

pedantic Follow the JDBC spec to the letter. false 3.0.0

pinGlobalTxToPhysicalConnection When using XAConnections, should the driver ensure that oper-
ations on a given XID are always routed to the same physical
connection? This allows the XAConnection to support "XA
START ... JOIN" after "XA END" has been called

false 5.0.1

populateInsertRowWithDefaultVal-
ues

When using ResultSets that are CONCUR_UPDATABLE,
should the driver pre-populate the "insert" row with default val-
ues from the DDL for the table used in the query so those values
are immediately available for ResultSet accessors? This func-
tionality requires a call to the database for metadata each time a
result set of this type is created. If disabled (the default), the de-
fault values will be populated by the an internal call to re-
freshRow() which pulls back default values and/or values
changed by triggers.

false 5.0.5

processEscapeCodesForPrepStmts Should the driver process escape codes in queries that are pre-
pared?

true 3.1.12

relaxAutoCommit If the version of MySQL the driver connects to does not support
transactions, still allow calls to commit(), rollback() and setAu-
toCommit() (true/false, defaults to 'false')?

false 2.0.13

retainStatementAfterResultSetClose Should the driver retain the Statement reference in a ResultSet
after ResultSet.close() has been called. This is not JDBC-
compliant after JDBC-4.0.

false 3.1.11

rollbackOnPooledClose Should the driver issue a rollback() when the logical connection
in a pool is closed?

true 3.0.15

runningCTS13 Enables workarounds for bugs in Sun's JDBC compliance test-
suite version 1.3

false 3.1.7

serverTimezone Override detection/mapping of timezone. Used when timezone
from server doesn't map to Java timezone

3.0.2

statementInterceptors A comma-delimited list of classes that implement
"com.mysql.jdbc.StatementInterceptor" that should be placed
"in between" query execution to influence the results. State-
mentInterceptors are "chainable", the results returned by the "cur-
rent" interceptor will be passed on to the next in in the chain,
from left-to-right order, as specified in this property.

5.1.1

strictFloatingPoint Used only in older versions of compliance test false 3.0.0

MySQL Connector/J

170

strictUpdates Should the driver do strict checking (all primary keys selected)
of updatable result sets (true, false, defaults to 'true')?

true 3.0.4

tinyInt1isBit Should the driver treat the datatype TINYINT(1) as the BIT
type (because the server silently converts BIT -> TINYINT(1)
when creating tables)?

true 3.0.16

transformedBitIsBoolean If the driver converts TINYINT(1) to a different type, should it
use BOOLEAN instead of BIT for future compatibility with
MySQL-5.0, as MySQL-5.0 has a BIT type?

false 3.1.9

treatUtilDateAsTimestamp Should the driver treat java.util.Date as a TIMESTAMP for the
purposes of PreparedStatement.setObject()?

true 5.0.5

ultraDevHack Create PreparedStatements for prepareCall() when required, be-
cause UltraDev is broken and issues a prepareCall() for _all_
statements? (true/false, defaults to 'false')

false 2.0.3

useGmtMillisForDatetimes Convert between session timezone and GMT before creating
Date and Timestamp instances (value of "false" is legacy beha-
vior, "true" leads to more JDBC-compliant behavior.

false 3.1.12

useHostsInPrivileges Add '@hostname' to users in Database-
MetaData.getColumn/TablePrivileges() (true/false), defaults to
'true'.

true 3.0.2

useInformationSchema When connected to MySQL-5.0.7 or newer, should the driver
use the INFORMATION_SCHEMA to derive information used
by DatabaseMetaData?

false 5.0.0

useJDBCCompliantTimezoneShift Should the driver use JDBC-compliant rules when converting
TIME/TIMESTAMP/DATETIME values' timezone information
for those JDBC arguments which take a java.util.Calendar argu-
ment? (Notice that this option is exclusive of the "use-
Timezone=true" configuration option.)

false 5.0.0

useLegacyDatetimeCode Use code for DATE/TIME/DATETIME/TIMESTAMP hand-
ling in result sets and statements that consistently handles
timezone conversions from client to server and back again, or
use the legacy code for these datatypes that has been in the
driver for backwards-compatibility?

true 5.1.6

useOldAliasMetadataBehavior Should the driver use the legacy behavior for "AS" clauses on
columns and tables, and only return aliases (if any) for Result-
SetMetaData.getColumnName() or ResultSet-
MetaData.getTableName() rather than the original column/table
name? In 5.0.x, the default value was true.

false 5.0.4

useOldUTF8Behavior Use the UTF-8 behavior the driver did when communicating
with 4.0 and older servers

false 3.1.6

useOnlyServerErrorMessages Do not prepend 'standard' SQLState error messages to error
messages returned by the server.

true 3.0.15

useSSPSCompatibleTimezoneShift If migrating from an environment that was using server-side
prepared statements, and the configuration property "useJDB-
CCompliantTimeZoneShift" set to "true", use compatible beha-
vior when not using server-side prepared statements when send-
ing TIMESTAMP values to the MySQL server.

false 5.0.5

useServerPrepStmts Use server-side prepared statements if the server supports them? false 3.1.0

useSqlStateCodes Use SQL Standard state codes instead of 'legacy' X/Open/SQL
state codes (true/false), default is 'true'

true 3.1.3

useStreamLengthsInPrepStmts Honor stream length parameter in PreparedStatement/Result-
Set.setXXXStream() method calls (true/false, defaults to 'true')?

true 3.0.2

useTimezone Convert time/date types between client and server timezones
(true/false, defaults to 'false')?

false 3.0.2

useUnbufferedInput Do not use BufferedInputStream for reading data from the serv-
er

true 3.0.11

yearIsDateType Should the JDBC driver treat the MySQL type "YEAR" as a
java.sql.Date, or as a SHORT?

true 3.1.9

zeroDateTimeBehavior What should happen when the driver encounters DATETIME
values that are composed entirely of zeroes (used by MySQL to
represent invalid dates)? Valid values are "exception", "round"

exception 3.1.4

MySQL Connector/J

171

and "convertToNull".

Connector/J also supports access to MySQL via named pipes on Windows NT/2000/XP using the NamedPipeSocketFactory as a
plugin-socket factory via the socketFactory property. If you do not use a namedPipePath property, the default of '\\.\pipe\MySQL'
will be used. If you use the NamedPipeSocketFactory, the host name and port number values in the JDBC url will be ig-
nored. You can enable this feature using:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

Named pipes only work when connecting to a MySQL server on the same physical machine as the one the JDBC driver is being
used on. In simple performance tests, it appears that named pipe access is between 30%-50% faster than the standard TCP/IP ac-
cess. However, this varies per system, and named pipes are slower than TCP/IP in many Windows configurations.

You can create your own socket factories by following the example code in
com.mysql.jdbc.NamedPipeSocketFactory, or com.mysql.jdbc.StandardSocketFactory.

4.4.2. JDBC API Implementation Notes
MySQL Connector/J passes all of the tests in the publicly-available version of Sun's JDBC compliance test suite. However, in
many places the JDBC specification is vague about how certain functionality should be implemented, or the specification allows
leeway in implementation.

This section gives details on a interface-by-interface level about how certain implementation decisions may affect how you use
MySQL Connector/J.

• Blob

Starting with Connector/J version 3.1.0, you can emulate Blobs with locators by adding the property 'emulateLocators=true' to
your JDBC URL. Using this method, the driver will delay loading the actual Blob data until you retrieve the other data and then
use retrieval methods (getInputStream(), getBytes(), and so forth) on the blob data stream.

For this to work, you must use a column alias with the value of the column to the actual name of the Blob, for example:

SELECT id, 'data' as blob_data from blobtable

For this to work, you must also follow these rules:

• The SELECT must also reference only one table, the table must have a primary key.

• The SELECT must alias the original blob column name, specified as a string, to an alternate name.

• The SELECT must cover all columns that make up the primary key.

The Blob implementation does not allow in-place modification (they are copies, as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, you should use the corresponding Prepared-
Statement.setBlob() or ResultSet.updateBlob() (in the case of updatable result sets) methods to save changes
back to the database.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about type conversion in the Knowledge Base art-
icle, Type Conversions Supported by MySQL Connector/J. To subscribe to MySQL Enterprise see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version 5.0 or newer via the
CallableStatement interface. Currently, the getParameterMetaData() method of CallableStatement is not
supported.

• Clob

The Clob implementation does not allow in-place modification (they are copies, as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, you should use the PreparedState-
ment.setClob() method to save changes back to the database. The JDBC API does not have a Result-
Set.updateClob() method.

MySQL Connector/J

172

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
https://kb.mysql.com/view.php?id=4929
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html

• Connection

Unlike older versions of MM.MySQL the isClosed() method does not ping the server to determine if it is alive. In accord-
ance with the JDBC specification, it only returns true if closed() has been called on the connection. If you need to determine
if the connection is still valid, you should issue a simple query, such as SELECT 1. The driver will throw an exception if the
connection is no longer valid.

• DatabaseMetaData

Foreign Key information (getImportedKeys()/getExportedKeys() and getCrossReference()) is only avail-
able from InnoDB tables. However, the driver uses SHOW CREATE TABLE to retrieve this information, so when other storage
engines support foreign keys, the driver will transparently support them as well.

• PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement feature. Because of this, the
driver does not implement getParameterMetaData() or getMetaData() as it would require the driver to have a com-
plete SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-encoded result sets are used when
the server supports them.

Take care when using a server-side prepared statement with large parameters that are set via setBinaryStream(),
setAsciiStream(), setUnicodeStream(), setBlob(), or setClob(). If you want to re-execute the statement
with any large parameter changed to a non-large parameter, it is necessary to call clearParameters() and set all paramet-
ers again. The reason for this is as follows:

• During both server-side prepared statements and client-side emulation, large data is exchanged only when Prepared-
Statement.execute() is called.

• Once that has been done, the stream used to read the data on the client side is closed (as per the JDBC spec), and cannot be
read from again.

• If a parameter changes from large to non-large, the driver must reset the server-side state of the prepared statement to allow
the parameter that is being changed to take the place of the prior large value. This removes all of the large data that has
already been sent to the server, thus requiring the data to be re-sent, via the setBinaryStream(), setAsciiS-
tream(), setUnicodeStream(), setBlob() or setClob() methods.

Consequently, if you want to change the type of a parameter to a non-large one, you must call clearParameters() and set
all parameters of the prepared statement again before it can be re-executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most efficient way to operate,
and due to the design of the MySQL network protocol is easier to implement. If you are working with ResultSets that have a
large number of rows or large values, and can not allocate heap space in your JVM for the memory required, you can tell the
driver to stream the results back one row at a time.

To enable this functionality, you need to create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE serves as a signal to the
driver to stream result sets row-by-row. After this any result sets created with the statement will be retrieved row-by-row.

There are some caveats with this approach. You will have to read all of the rows in the result set (or close it) before you can is-
sue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level locks or row-level locks in
some other storage engine such as InnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes (which implies that the
statement needs to complete first). As with most other databases, statements are not complete until all the results pending on the
statement are read or the active result set for the statement is closed.

Therefore, if using streaming results, you should process them as quickly as possible if you want to maintain concurrent access
to the tables referenced by the statement producing the result set.

• ResultSetMetaData

MySQL Connector/J

173

http://dev.mysql.com/doc/refman/5.0/en/show-create-table.html

The isAutoIncrement() method only works when using MySQL servers 4.0 and newer.

• Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier than 5.0.3, the setFetch-
Size() method has no effect, other than to toggle result set streaming as described above.

Connector/J 5.0.0 and later include support for both Statement.cancel() and Statement.setQueryTimeout().
Both require MySQL 5.0.0 or newer server, and require a separate connection to issue the KILL QUERY statement. In the case
of setQueryTimeout(), the implementation creates an additional thread to handle the timeout functionality.

Note

Failures to cancel the statement for setQueryTimeout() may manifest themselves as RuntimeException
rather than failing silently, as there is currently no way to unblock the thread that is executing the query being can-
celled due to timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so "setCursorName()" has no effect.

Connector/J 5.1.3 and later include two additional methods:

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to the MySQL serv-
er for a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or URLInputStream that repres-
ents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement, and will automatic-
ally be closed by the driver, so it needs to be reset before each call to execute*() that would cause the MySQL server to
request data to fulfill the request for LOAD DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data in response to a
LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set via setLocalInfileInputStream().

4.4.3. Java, JDBC and MySQL Types
MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numerical type can be converted to any of the
Java numerical types, although round-off, overflow, or loss of precision may occur.

Starting with Connector/J 3.1.0, the JDBC driver will issue warnings or throw DataTruncation exceptions as is required by the JD-
BC specification unless the connection was configured not to do so by using the property jdbcCompliantTruncation and setting it to
false.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties - Miscellaneous.

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and SET java.lang.String, java.io.InputStream,
java.io.Reader, java.sql.Blob,
java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION, NUMERIC,
DECIMAL, TINYINT, SMALLINT, MEDIUMINT, IN-
TEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Double, java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric data type that has less precision or
capacity than the MySQL data type you are converting to/from.

MySQL Connector/J

174

http://dev.mysql.com/doc/refman/5.0/en/kill.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html

The ResultSet.getObject() method uses the type conversions between MySQL and Java types, following the JDBC spe-
cification where appropriate. The value returned by ResultSetMetaData.GetColumnClassName() is also shown below.
For more information on the java.sql.Types classes see Java 2 Platform Types.

MySQL Types to Java Types for ResultSet.getObject().

MySQL Type Name Return value of GetColum-
nClassName

Returned as Java Class

BIT(1) (new in MySQL-5.0) BIT java.lang.Boolean

BIT(> 1) (new in MySQL-5.0) BIT byte[]

TINYINT TINYINT java.lang.Boolean if the configuration property tiny-
Int1isBit is set to true (the default) and the storage size is
1, or java.lang.Integer if not.

BOOL, BOOLEAN TINYINT See TINYINT, above as these are aliases for TINYINT(1), cur-
rently.

SMALLINT[(M)]
[UNSIGNED]

SMALLINT [UNSIGNED] java.lang.Integer (regardless if UNSIGNED or not)

MEDIUMINT[(M)]
[UNSIGNED]

MEDIUMINT [UNSIGNED] java.lang.Integer, if UNSIGNED java.lang.Long
(C/J 3.1 and earlier), or java.lang.Integer for C/J 5.0
and later

INT,INTEGER[(M)]
[UNSIGNED]

INTEGER [UNSIGNED] java.lang.Integer, if UNSIGNED java.lang.Long

BIGINT[(M)] [UNSIGNED] BIGINT [UNSIGNED] java.lang.Long, if UNSIGNED
java.math.BigInteger

FLOAT[(M,D)] FLOAT java.lang.Float

DOUBLE[(M,B)] DOUBLE java.lang.Double

DECIMAL[(M[,D])] DECIMAL java.math.BigDecimal

DATE DATE java.sql.Date

DATETIME DATETIME java.sql.Timestamp

TIMESTAMP[(M)] TIMESTAMP java.sql.Timestamp

TIME TIME java.sql.Time

YEAR[(2|4)] YEAR If yearIsDateType configuration property is set to false,
then the returned object type is java.sql.Short. If set to
true (the default) then an object of type java.sql.Date
(with the date set to January 1st, at midnight).

CHAR(M) CHAR java.lang.String (unless the character set for the column
is BINARY, then byte[] is returned.

VARCHAR(M) [BINARY] VARCHAR java.lang.String (unless the character set for the column
is BINARY, then byte[] is returned.

BINARY(M) BINARY byte[]

VARBINARY(M) VARBINARY byte[]

TINYBLOB TINYBLOB byte[]

TINYTEXT VARCHAR java.lang.String

BLOB BLOB byte[]

TEXT VARCHAR java.lang.String

MEDIUMBLOB MEDIUMBLOB byte[]

MEDIUMTEXT VARCHAR java.lang.String

LONGBLOB LONGBLOB byte[]

LONGTEXT VARCHAR java.lang.String

ENUM('value1','value2',...) CHAR java.lang.String

SET('value1','value2',...) CHAR java.lang.String

4.4.4. Using Character Sets and Unicode

MySQL Connector/J

175

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode form to the client charac-
ter encoding, including all queries sent via Statement.execute(), Statement.executeUpdate(), State-
ment.executeQuery() as well as all PreparedStatement and CallableStatement parameters with the exclusion of
parameters set using setBytes(), setBinaryStream(), setAsciiStream(), setUnicodeStream() and set-
Blob().

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which could either be automatically
detected from the server configuration, or could be configured by the user through the useUnicode and characterEncoding
properties.

Starting with MySQL Server 4.1, Connector/J supports a single character encoding between client and server, and any number of
character encodings for data returned by the server to the client in ResultSets.

The character encoding between client and server is automatically detected upon connection. The encoding used by the driver is
specified on the server via the character_set system variable for server versions older than 4.1.0 and charac-
ter_set_server for server versions 4.1.0 and newer. For more information, see Server Character Set and Collation.

To override the automatically-detected encoding on the client side, use the characterEncoding property in the URL used to
connect to the server.

When specifying character encodings on the client side, Java-style names should be used. The following table lists Java-style
names for MySQL character sets:

MySQL to Java Encoding Name Translations.

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS (or Cp932 or MS932 for MySQL Server < 4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

gb2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latin1 ISO8859_1

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

utf8 UTF-8

ucs2 UnicodeBig

Warning

Do not issue the query 'set names' with Connector/J, as the driver will not detect that the character set has changed,
and will continue to use the character set detected during the initial connection setup.

To allow multiple character sets to be sent from the client, the UTF-8 encoding should be used, either by configuring utf8 as the
default server character set, or by configuring the JDBC driver to use UTF-8 through the characterEncoding property.

4.4.5. Connecting Securely Using SSL
SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver and the server. The per-

MySQL Connector/J

176

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.0/en/charset-syntax.html#charset-server

formance penalty for enabling SSL is an increase in query processing time between 35% and 50%, depending on the size of the
query, and the amount of data it returns.

For SSL Support to work, you must have the following:

• A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not currently work with a JDK
that you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following JSSE bug: ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4273544.html

• A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL-4.0.4 or later, see Using
SSL for Secure Connections, for more information.

• A client certificate (covered later in this section)

The system works through two Java truststore files, one file contains the certificate information for the server (truststore in
the examples below). The other file contains the certificate for the client (keystore in the examples below). All Java truststore
files are password protected by supplying a suitable password to the keytool when you create the files. You need the file names
and associated passwords to create an SSL connection.

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL server CA Certificate is
located in the SSL subdirectory of the MySQL source distribution. This is what SSL will use to determine if you are communicat-
ing with a secure MySQL server. Alternatively, use the CA Certificate that you have generated or been provided with by your SSL
provider.

To use Java's keytool to create a truststore in the current directory , and import the server's CA certificate (cacert.pem), you
can do the following (assuming that keytool is in your path. The keytool should be located in the bin subdirectory of your
JDK or JRE):

shell> keytool -import -alias mysqlServerCACert \
-file cacert.pem -keystore truststore

You will need to enter the password when prompted for the keystore file. Interaction with keytool will look like this:

Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus,

O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus,

O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Serial number: 0
Valid from:

Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:

MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C

Trust this certificate? [no]: yes
Certificate was added to keystore

You then have two options, you can either import the client certificate that matches the CA certificate you just imported, or you can
create a new client certificate.

To import an existing certificate, the certificate should be in DER format. You can use openssl to convert an existing certificate
into the new format. For example:

shell> openssl x509 -outform DER -in client-cert.pem -out client.cert

You now need to import the converted certificate into your keystore using keytool:

shell> keytool -import -file client.cert -keystore keystore -alias mysqlClientCertificate

To generate your own client certificate, use keytool to create a suitable certificate and add it to the keystore file:

shell> keytool -genkey -keyalg rsa \
-alias mysqlClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keystore in the current directory.

You should respond with information that is appropriate for your situation:

Enter keystore password: *********
What is your first and last name?
[Unknown]: Matthews

MySQL Connector/J

177

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://dev.mysql.com/doc/refman/5.0/en/secure-connections.html
http://dev.mysql.com/doc/refman/5.0/en/secure-connections.html

What is the name of your organizational unit?
[Unknown]: Software Development

What is the name of your organization?
[Unknown]: MySQL AB

What is the name of your City or Locality?
[Unknown]: Flossmoor

What is the name of your State or Province?
[Unknown]: IL

What is the two-letter country code for this unit?
[Unknown]: US

Is <CN=Matthews, OU=Software Development, O=MySQL AB,
L=Flossmoor, ST=IL, C=US> correct?
[no]: y

Enter key password for <mysqlClientCertificate>
(RETURN if same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the following system properties
when you start your JVM, replacing path_to_keystore_file with the full path to the keystore file you created, path_to_truststore_file
with the path to the truststore file you created, and using the appropriate password values for each property. You can do this either
on the command line:

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=password

Or you can set the values directly within the application:

System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","password");
System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","password");

You will also need to set useSSL to true in your connection parameters for MySQL Connector/J, either by adding
useSSL=true to your URL, or by setting the property useSSL to true in the java.util.Properties instance you pass to
DriverManager.getConnection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the following key events:

...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }

Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........
0030: 0A 00 12 00 13 00 03 00 11 01 00
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1
RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »

202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }

Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}

Cipher Suite: { 0, 5 }
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00
main, READ: SSL v3.1 Handshake, length = 1712
...

JSSE provides debugging (to STDOUT) when you set the following system property: -Djavax.net.debug=all This will tell
you what keystores and truststores are being used, as well as what is going on during the SSL handshake and certificate exchange.
It will be helpful when trying to determine what is not working when trying to get an SSL connection to happen.

4.4.6. Using Master/Slave Replication with ReplicationConnection
Starting with Connector/J 3.1.7, we've made available a variant of the driver that will automatically send queries to a read/write

MySQL Connector/J

178

master, or a failover or round-robin loadbalanced set of slaves based on the state of Connection.getReadOnly() .

An application signals that it wants a transaction to be read-only by calling Connection.setReadOnly(true), this replica-
tion-aware connection will use one of the slave connections, which are load-balanced per-vm using a round-robin scheme (a given
connection is sticky to a slave unless that slave is removed from service). If you have a write transaction, or if you have a read that
is time-sensitive (remember, replication in MySQL is asynchronous), set the connection to be not read-only, by calling Connec-
tion.setReadOnly(false) and the driver will ensure that further calls are sent to the master MySQL server. The driver
takes care of propagating the current state of autocommit, isolation level, and catalog between all of the connections that it uses to
accomplish this load balancing functionality.

To enable this functionality, use the " com.mysql.jdbc.ReplicationDriver " class when configuring your application
server's connection pool or when creating an instance of a JDBC driver for your standalone application. Because it accepts the same
URL format as the standard MySQL JDBC driver, ReplicationDriver does not currently work with
java.sql.DriverManager -based connection creation unless it is the only MySQL JDBC driver registered with the
DriverManager .

Here is a short, simple example of how ReplicationDriver might be used in a standalone application.

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;
import com.mysql.jdbc.ReplicationDriver;
public class ReplicationDriverDemo {
public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();
Properties props = new Properties();
// We want this for failover on the slaves
props.put("autoReconnect", "true");
// We want to load balance between the slaves
props.put("roundRobinLoadBalance", "true");
props.put("user", "foo");
props.put("password", "bar");
//
// Looks like a normal MySQL JDBC url, with a
// comma-separated list of hosts, the first
// being the 'master', the rest being any number
// of slaves that the driver will load balance against
//
Connection conn =

driver.connect("jdbc:mysql://master,slave1,slave2,slave3/test",
props);

//
// Perform read/write work on the master
// by setting the read-only flag to "false"
//
conn.setReadOnly(false);
conn.setAutoCommit(false);
conn.createStatement().executeUpdate("UPDATE some_table");
conn.commit();
//
// Now, do a query from a slave, the driver automatically picks one
// from the list
//
conn.setReadOnly(true);
ResultSet rs =
conn.createStatement().executeQuery("SELECT a,b FROM alt_table");
.......

}
}

You may also want to investigate the Load Balancing JDBC Pool (lbpol) tool, which provides a wrapper around the standard JDBC
driver and allows you to use DB connection pools that includes checks for system failures and uneven load distribution. For more
information, see Load Balancing JDBC Pool (lbpool).

4.4.7. Mapping MySQL Error Numbers to SQLStates
The table below provides a mapping of the MySQL Error Numbers to SQL States

Table 4.1. Mapping of MySQL Error Numbers to SQLStates

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

102 ER_DUP S10 230

MySQL Connector/J

179

http://code.tailrank.com/lbpool

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

2 _KEY 00 00

103
7

ER_OUT
OFMEM
ORY

S10
01

HY
001

103
8

ER_OUT
_OF_SO
RT-
MEMOR
Y

S10
01

HY
001

104
0

ER_CON
_COUNT
_ERROR

080
04

080
04

104
2

ER_BAD
HOST
ERROR

080
04

08S
01

104
3

ER_HAN
DSHAK
E_ERRO
R

080
04

08S
01

104
4

ER_DBA
CCESS_
DENIED
_ERROR

S10
00

420
00

104
5

ER_ACC
ESS_DE
NIED_E
RROR

280
00

280
00

104
7

ER_UNK
NOWN_
COM_E
RROR

08S
01

HY
000

105
0

ER_TAB
LE_EXIS
TS_ERR
OR

S10
00

42S
01

105
1

ER_BAD
_TABLE
_ERROR

42S
02

42S
02

105
2

ER_NON
UNIQ
ERROR

S10
00

230
00

105
3

ER_SER
VER_SH
UT-
DOWN

S10
00

08S
01

105
4

ER_BAD
FIELD
ERROR

S00
22

42S
22

105
5

ER_WR
ONG_FI
ELD_WI
TH_GRO
UP

S10
09

420
00

105
6

ER_WR
ONG_G

S10
09

420
00

MySQL Connector/J

180

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

ROUP_F
IELD

105
7

ER_WR
ONG_SU
M_SELE
CT

S10
09

420
00

105
8

ER_WR
ONG_V
ALUE_C
OUNT

21S
01

21S
01

105
9

ER_TOO
LONG
IDENT

S10
09

420
00

106
0

ER_DUP
_FIELD
NAME

S10
09

42S
21

106
1

ER_DUP
_KEYN
AME

S10
09

420
00

106
2

ER_DUP
_ENTRY

S10
09

230
00

106
3

ER_WR
ONG_FI
ELD_SP
EC

S10
09

420
00

106
4

ER_PAR
SE_ERR
OR

420
00

420
00

106
5

ER_EMP
TY_QUE
RY

420
00

420
00

106
6

ER_NON
UNIQ_T
ABLE

S10
09

420
00

106
7

ER_INV
AL-
ID_DEF
AULT

S10
09

420
00

106
8

ER_MU
LTIPLE_
PRI_KE
Y

S10
09

420
00

106
9

ER_TOO
_MANY
_KEYS

S10
09

420
00

107
0

ER_TOO
_MANY
_KEY_P
ARTS

S10
09

420
00

107
1

ER_TOO
LONG
KEY

S10
09

420
00

107
2

ER_KEY
_COLU
MN_DO

S10
09

420
00

MySQL Connector/J

181

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

ES_NOT
_EXITS

107
3

ER_BLO
B_USED
_AS_KE
Y

S10
09

420
00

107
4

ER_TOO
_BIG_FI
ELDLEN
GTH

S10
09

420
00

107
5

ER_WR
ONG_A
UTO_KE
Y

S10
09

420
00

108
0

ER_FOR
CING_C
LOSE

S10
00

08S
01

108
1

ER_IPSO
CK_ERR
OR

08S
01

08S
01

108
2

ER_NO_
SUCH_I
NDEX

S10
09

42S
12

108
3

ER_WR
ONG_FI
ELD_TE
RMIN-
ATORS

S10
09

420
00

108
4

ER_BLO
BS_AND
_NO_TE
RMIN-
ATED

S10
09

420
00

109
0

ER_CAN
T_REM
OVE_AL
L_FIELD
S

S10
00

420
00

109
1

ER_CAN
T_DROP
FIELD
OR_KEY

S10
00

420
00

110
1

ER_BLO
B_CANT
HAVE
DE-
FAULT

S10
00

420
00

110
2

ER_WR
ONG_D
B_NAM
E

S10
00

420
00

110
3

ER_WR
ONG_T
ABLE_N
AME

S10
00

420
00

110 ER_TOO S10 420

MySQL Connector/J

182

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

4 _BIG_SE
LECT

00 00

110
6

ER_UNK
NOWN_
PRO-
CED-
URE

S10
00

420
00

110
7

ER_WR
ONG_PA
RAM-
COUNT_
TO_PRO
CED-
URE

S10
00

420
00

110
9

ER_UNK
NOWN_
TABLE

S10
00

42S
02

111
0

ER_FIEL
D_SPECI
FIED_T
WICE

S10
00

420
00

111
2

ER_UNS
UPPOR-
TED_EX
TEN-
SION

S10
00

420
00

111
3

ER_TAB
LE_MUS
T_HAVE
_COLU
MNS

S10
00

420
00

111
5

ER_UNK
NOWN_
CHAR-
AC-
TER_SE
T

S10
00

420
00

111
8

ER_TOO
_BIG_R
OWSIZE

S10
00

420
00

112
0

ER_WR
ONG_O
UTER_J
OIN

S10
00

420
00

112
1

ER_NUL
L_COLU
MN_IN_
INDEX

S10
00

420
00

112
9

ER_HOS
T_IS_BL
OCKED

080
04

HY
000

113
0

ER_HOS
T_NOT_
PRIV-
ILEGED

080
04

HY
000

113 ER_PAS S10 420

MySQL Connector/J

183

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

1 SWORD
_ANON
YM-
OUS_US
ER

00 00

113
2

ER_PAS
SWORD
_NOT_A
LLOWE
D

S10
00

420
00

113
3

ER_PAS
SWORD
_NO_M
ATCH

S10
00

420
00

113
6

ER_WR
ONG_V
ALUE_C
OUNT_
ON_RO
W

S10
00

21S
01

113
8

ER_INV
AL-
ID_USE_
OF_NUL
L

S10
00

420
00

113
9

ER_REG
EXP_ER
ROR

S10
00

420
00

114
0

ER_MIX
_OF_GR
OUP_FU
NC_AN
D_FIEL
DS

S10
00

420
00

114
1

ER_NON
EXIST-
ING_GR
ANT

S10
00

420
00

114
2

ER_TAB
LEAC-
CESS_D
ENIED_
ERROR

S10
00

420
00

114
3

ER_COL
UM-
NAC-
CESS_D
ENIED_
ERROR

S10
00

420
00

114
4

ER_ILLE
GAL_GR
ANT_FO
R_TABL
E

S10
00

420
00

114
5

ER_GRA
NT_WR
ONG_H

S10
00

420
00

MySQL Connector/J

184

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

OST_OR
_USER

114
6

ER_NO_
SUCH_T
ABLE

S10
00

42S
02

114
7

ER_NON
EXIST-
ING_TA
BLE_GR
ANT

S10
00

420
00

114
8

ER_NOT
_ALLO
WED_C
OM-
MAND

S10
00

420
00

114
9

ER_SYN
TAX_ER
ROR

S10
00

420
00

115
2

ER_ABO
RT-
ING_CO
NNEC-
TION

S10
00

08S
01

115
3

ER_NET
_PACKE
T_TOO_
LARGE

S10
00

08S
01

115
4

ER_NET
READ
ER-
ROR_FR
OM_PIP
E

S10
00

08S
01

115
5

ER_NET
_FCNTL
_ERROR

S10
00

08S
01

115
6

ER_NET
_PACKE
TS_OUT
_OF_OR
DER

S10
00

08S
01

115
7

ER_NET
_UNCO
MPRESS
_ERROR

S10
00

08S
01

115
8

ER_NET
READ
ERROR

S10
00

08S
01

115
9

ER_NET
READ
INTER-
RUPTED

S10
00

08S
01

116
0

ER_NET
_ERROR
_ON_W
RITE

S10
00

08S
01

MySQL Connector/J

185

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

116
1

ER_NET
_WRITE
_INTER
RUPTED

S10
00

08S
01

116
2

ER_TOO
LONG
STRING

S10
00

420
00

116
3

ER_TAB
LE_CAN
T_HAN
DLE_BL
OB

S10
00

420
00

116
4

ER_TAB
LE_CAN
T_HAN
DLE_AU
TO_INC
RE-
MENT

S10
00

420
00

116
6

ER_WR
ONG_C
OLUMN
_NAME

S10
00

420
00

116
7

ER_WR
ONG_K
EY_COL
UMN

S10
00

420
00

116
9

ER_DUP
_UNIQU
E

S10
00

230
00

117
0

ER_BLO
B_KEY_
WITHO
UT_LEN
GTH

S10
00

420
00

117
1

ER_PRI
MARY_
CANT_H
AVE_N
ULL

S10
00

420
00

117
2

ER_TOO
_MANY
_ROWS

S10
00

420
00

117
3

ER_REQ
UIRES_P
RIMAR
Y_KEY

S10
00

420
00

117
7

ER_CHE
CK_NO_
SUCH_T
ABLE

S10
00

420
00

117
8

ER_CHE
CK_NOT
_IMPLE
MEN-
TED

S10
00

420
00

MySQL Connector/J

186

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

117
9

ER_CAN
T_DO_T
HIS_DU
RING_A
N_TRAN
SAC-
TION

S10
00

250
00

118
4

ER_NE
W_ABO
RT-
ING_CO
NNEC-
TION

S10
00

08S
01

118
9

ER_MAS
TER_NE
T_READ

S10
00

08S
01

119
0

ER_MAS
TER_NE
T_WRIT
E

S10
00

08S
01

120
3

ER_TOO
_MANY
USER
CON-
NEC-
TIONS

S10
00

420
00

120
5

ER_LOC
K_WAIT
_TIMEO
UT

410
00

410
00

120
7

ER_REA
D_ONL
Y_TRAN
SAC-
TION

S10
00

250
00

121
1

ER_NO_
PERMIS-
SION_T
O_CREA
TE_USE
R

S10
00

420
00

121
3

ER_LOC
K_DEA
DLOCK

410
00

400
01

121
6

ER_NO_
REFER-
EN-
CED_RO
W

S10
00

230
00

121
7

ER_RO
W_IS_R
EFER-
ENCED

S10
00

230
00

121
8

ER_CON
NECT_T
O_MAS
TER

S10
00

08S
01

MySQL Connector/J

187

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

122
2

ER_WR
ONG_N
UM-
BER_OF
_COLU
MNS_IN
_SELEC
T

S10
00

210
00

122
6

ER_USE
R_LIMIT
_REACH
ED

S10
00

420
00

123
0

ER_NO_
DE-
FAULT

S10
00

420
00

123
1

ER_WR
ONG_V
ALUE_F
OR_VA
R

S10
00

420
00

123
2

ER_WR
ONG_T
YPE_FO
R_VAR

S10
00

420
00

123
4

ER_CAN
T_USE_
OP-
TION_H
ERE

S10
00

420
00

123
5

ER_NOT
_SUPPO
RTED_Y
ET

S10
00

420
00

123
9

ER_WR
ONG_FK
_DEF

S10
00

420
00

124
1

ER_OPE
RAND_
COLUM
NS

S10
00

210
00

124
2

ER_SUB
QUERY_
NO_1_R
OW

S10
00

210
00

124
7

ER_ILLE
GAL_RE
FER-
ENCE

S10
00

42S
22

124
8

ER_DER
IVED_M
UST_HA
VE_ALI
AS

S10
00

420
00

124
9

ER_SEL
ECT_RE
DUCED

S10
00

010
00

MySQL Connector/J

188

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

125
0

ER_TAB
LE-
NAME_
NOT_AL
LOWED
_HERE

S10
00

420
00

125
1

ER_NOT
_SUPPO
RTED_A
UTH_M
ODE

S10
00

080
04

125
2

ER_SPA
TIAL_C
ANT_H
AVE_N
ULL

S10
00

420
00

125
3

ER_COL
LA-
TION_C
HAR-
SET_MI
SMATC
H

S10
00

420
00

126
1

ER_WA
RN_TOO
_FEW_R
ECORDS

S10
00

010
00

126
2

ER_WA
RN_TOO
_MANY
_RECOR
DS

S10
00

010
00

126
3

ER_WA
RN_NUL
L_TO_N
OT-
NULL

S10
00

010
00

126
4

ER_WA
RN_DAT
A_OUT_
OF_RAN
GE

S10
00

010
00

126
5

ER_WA
RN_DAT
A_TRUN
CATED

S10
00

010
00

128
0

ER_WR
ONG_N
AME_F
OR_IND
EX

S10
00

420
00

128
1

ER_WR
ONG_N
AME_F
OR_CAT
ALOG

S10
00

420
00

128 ER_UNK S10 420

MySQL Connector/J

189

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

6 NOWN_
STOR-
AGE_EN
GINE

00 00

4.5. Connector/J Notes and Tips

4.5.1. Basic JDBC Concepts
This section provides some general JDBC background.

4.5.1.1. Connecting to MySQL Using the DriverManager Interface

When you are using JDBC outside of an application server, the DriverManager class manages the establishment of Connec-
tions.

The DriverManager needs to be told which JDBC drivers it should try to make Connections with. The easiest way to do this is
to use Class.forName() on the class that implements the java.sql.Driver interface. With MySQL Connector/J, the
name of this class is com.mysql.jdbc.Driver. With this method, you could use an external configuration file to supply the
driver class name and driver parameters to use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the main() method of your applica-
tion:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
// Notice, do not import com.mysql.jdbc.*
// or you will have problems!
public class LoadDriver {

public static void main(String[] args) {
try {

// The newInstance() call is a work around for some
// broken Java implementations
Class.forName("com.mysql.jdbc.Driver").newInstance();

} catch (Exception ex) {
// handle the error

}
}

}

After the driver has been registered with the DriverManager, you can obtain a Connection instance that is connected to a
particular database by calling DriverManager.getConnection():

Example 4.1. Connector/J: Obtaining a connection from the DriverManager

This example shows how you can obtain a Connection instance from the DriverManager. There are a few different signa-
tures for the getConnection() method. You should see the API documentation that comes with your JDK for more specific in-
formation on how to use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
Connection conn = null;
...
try {

conn =
DriverManager.getConnection("jdbc:mysql://localhost/test?" +

"user=monty&password=greatsqldb");
// Do something with the Connection
...

} catch (SQLException ex) {
// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}

MySQL Connector/J

190

Once a Connection is established, it can be used to create Statement and PreparedStatement objects, as well as re-
trieve metadata about the database. This is explained in the following sections.

4.5.1.2. Using Statements to Execute SQL

Statement objects allow you to execute basic SQL queries and retrieve the results through the ResultSet class which is de-
scribed later.

To create a Statement instance, you call the createStatement() method on the Connection object you have retrieved
via one of the DriverManager.getConnection() or DataSource.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the executeQuery(String) method
with the SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method returns the number of rows af-
fected by the update statement.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT, then you can use the ex-
ecute(String SQL) method. This method will return true if the SQL query was a SELECT, or false if it was an UPDATE,
INSERT, or DELETE statement. If the statement was a SELECT query, you can retrieve the results by calling the getResult-
Set() method. If the statement was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by
calling getUpdateCount() on the Statement instance.

Example 4.2. Connector/J: Using java.sql.Statement to execute a SELECT query

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.ResultSet;
// assume that conn is an already created JDBC connection (see previous examples)
Statement stmt = null;
ResultSet rs = null;
try {

stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT foo FROM bar");
// or alternatively, if you don't know ahead of time that
// the query will be a SELECT...
if (stmt.execute("SELECT foo FROM bar")) {

rs = stmt.getResultSet();
}
// Now do something with the ResultSet

}
catch (SQLException ex){

// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}
finally {

// it is a good idea to release
// resources in a finally{} block
// in reverse-order of their creation
// if they are no-longer needed
if (rs != null) {

try {
rs.close();

} catch (SQLException sqlEx) { } // ignore
rs = null;

}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException sqlEx) { } // ignore
stmt = null;

}
}

4.5.1.3. Using CallableStatements to Execute Stored Procedures

Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the java.sql.CallableStatement in-
terface is fully implemented with the exception of the getParameterMetaData() method.

For more information on MySQL stored procedures, please refer to http://dev.mysql.com/doc/mysql/en/stored-routines.html.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

MySQL Connector/J

191

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/delete.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/delete.html
http://dev.mysql.com/doc/mysql/en/stored-routines.html

Note

Current versions of MySQL server do not return enough information for the JDBC driver to provide result set
metadata for callable statements. This means that when using CallableStatement, ResultSetMetaData
may return NULL.

The following example shows a stored procedure that returns the value of inOutParam incremented by 1, and the string passed in
via inputParam as a ResultSet:

Example 4.3. Connector/J: Calling Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
INOUT inOutParam INT)

BEGIN
DECLARE z INT;
SET z = inOutParam + 1;
SET inOutParam = z;
SELECT inputParam;
SELECT CONCAT('zyxw', inputParam);

END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall() .

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter placeholders are not op-
tional:

Example 4.4. Connector/J: Using Connection.prepareCall()

import java.sql.CallableStatement;
...

//
// Prepare a call to the stored procedure 'demoSp'
// with two parameters
//
// Notice the use of JDBC-escape syntax ({call ...})
//
CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");
cStmt.setString(1, "abcdefg");

Note

Connection.prepareCall() is an expensive method, due to the metadata retrieval that the driver performs to
support output parameters. For performance reasons, you should try to minimize unnecessary calls to Connec-
tion.prepareCall() by reusing CallableStatement instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you created the stored procedure),
JDBC requires that they be specified before statement execution using the various registerOutputParameter() meth-
ods in the CallableStatement interface:

Example 4.5. Connector/J: Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//
//
// Registers the second parameter as output, and

MySQL Connector/J

192

// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter(2, Types.INTEGER);
//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However, CallableStatement also supports
setting parameters by name:

Example 4.6. Connector/J: Setting CallableStatement input parameters

...
//
// Set a parameter by index
//
cStmt.setString(1, "abcdefg");
//
// Alternatively, set a parameter using
// the parameter name
//
cStmt.setString("inputParameter", "abcdefg");
//
// Set the 'in/out' parameter using an index
//
cStmt.setInt(2, 1);
//
// Alternatively, set the 'in/out' parameter
// by name
//
cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods (executeUpdate(), ex-
ecuteQuery() or execute()), the most flexible method to call is execute(), as you do not need to know ahead of
time if the stored procedure returns result sets:

Example 4.7. Connector/J: Retrieving results and output parameter values

...
boolean hadResults = cStmt.execute();
//
// Process all returned result sets
//
while (hadResults) {

ResultSet rs = cStmt.getResultSet();
// process result set
...
hadResults = cStmt.getMoreResults();

}
//
// Retrieve output parameters
//
// Connector/J supports both index-based and
// name-based retrieval
//
int outputValue = cStmt.getInt(2); // index-based
outputValue = cStmt.getInt("inOutParam"); // name-based

...

4.5.1.4. Retrieving AUTO_INCREMENT Column Values

Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases that supported auto incre-
ment or identity columns. With older JDBC drivers for MySQL, you could always use a MySQL-specific method on the State-
ment interface, or issue the query SELECT LAST_INSERT_ID() after issuing an INSERT to a table that had an

MySQL Connector/J

193

http://dev.mysql.com/doc/refman/5.0/en/insert.html

AUTO_INCREMENT key. Using the MySQL-specific method call isn't portable, and issuing a SELECT to get the
AUTO_INCREMENT key's value requires another round-trip to the database, which isn't as efficient as possible. The following code
snippets demonstrate the three different ways to retrieve AUTO_INCREMENT values. First, we demonstrate the use of the new JD-
BC-3.0 method getGeneratedKeys() which is now the preferred method to use if you need to retrieve AUTO_INCREMENT
keys and have access to JDBC-3.0. The second example shows how you can retrieve the same value using a standard SELECT
LAST_INSERT_ID() query. The final example shows how updatable result sets can retrieve the AUTO_INCREMENT value
when using the insertRow() method.

Example 4.8. Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets assuming you have a
// Connection 'conn' to a MySQL database already
// available
stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

java.sql.ResultSet.CONCUR_UPDATABLE);
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//
stmt.executeUpdate(

"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')",
Statement.RETURN_GENERATED_KEYS);

//
// Example of using Statement.getGeneratedKeys()
// to retrieve the value of an auto-increment
// value
//
int autoIncKeyFromApi = -1;
rs = stmt.getGeneratedKeys();
if (rs.next()) {

autoIncKeyFromApi = rs.getInt(1);
} else {

// throw an exception from here
}
rs.close();
rs = null;
System.out.println("Key returned from getGeneratedKeys():"

+ autoIncKeyFromApi);
} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException ex) {
// ignore

}
}

}

Example 4.9. Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()

Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets.
stmt = conn.createStatement();
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("

MySQL Connector/J

194

http://dev.mysql.com/doc/refman/5.0/en/select.html

+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//
stmt.executeUpdate(

"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')");

//
// Use the MySQL LAST_INSERT_ID()
// function to do the same thing as getGeneratedKeys()
//
int autoIncKeyFromFunc = -1;
rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");
if (rs.next()) {

autoIncKeyFromFunc = rs.getInt(1);
} else {

// throw an exception from here
}
rs.close();
System.out.println("Key returned from " +

"'SELECT LAST_INSERT_ID()': " +
autoIncKeyFromFunc);

} finally {
if (rs != null) {

try {
rs.close();

} catch (SQLException ex) {
// ignore

}
}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException ex) {
// ignore

}
}

}

Example 4.10. Connector/J: Retrieving AUTO_INCREMENT column values in Updatable
ResultSets

Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets as well as an 'updatable'
// one, assuming you have a Connection 'conn' to
// a MySQL database already available
//
stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

java.sql.ResultSet.CONCUR_UPDATABLE);
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Example of retrieving an AUTO INCREMENT key
// from an updatable result set
//
rs = stmt.executeQuery("SELECT priKey, dataField "

+ "FROM autoIncTutorial");
rs.moveToInsertRow();
rs.updateString("dataField", "AUTO INCREMENT here?");
rs.insertRow();
//
// the driver adds rows at the end
//
rs.last();
//
// We should now be on the row we just inserted
//
int autoIncKeyFromRS = rs.getInt("priKey");
rs.close();
rs = null;
System.out.println("Key returned for inserted row: "

+ autoIncKeyFromRS);
} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore

MySQL Connector/J

195

}
}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException ex) {
// ignore

}
}

}

When you run the preceding example code, you should get the following output: Key returned from getGeneratedKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1 Key returned for inserted row: 2 You should be aware, that at times, it can
be tricky to use the SELECT LAST_INSERT_ID() query, as that function's value is scoped to a connection. So, if some other
query happens on the same connection, the value will be overwritten. On the other hand, the getGeneratedKeys() method is
scoped by the Statement instance, so it can be used even if other queries happen on the same connection, but not on the same
Statement instance.

4.5.2. Using Connector/J with J2EE and Other Java Frameworks
This section describes how to use Connector/J in several contexts.

4.5.2.1. General J2EE Concepts

This section provides general background on J2EE concepts that pertain to use of Connector/J.

4.5.2.1.1. Understanding Connection Pooling

Connection pooling is a technique of creating and managing a pool of connections that are ready for use by any thread that needs
them.

This technique of pooling connections is based on the fact that most applications only need a thread to have access to a JDBC con-
nection when they are actively processing a transaction, which usually take only milliseconds to complete. When not processing a
transaction, the connection would otherwise sit idle. Instead, connection pooling allows the idle connection to be used by some oth-
er thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a connection from the pool.
When the thread is finished using the connection, it returns it to the pool, so that it may be used by any other threads that want to
use it.

When the connection is loaned out from the pool, it is used exclusively by the thread that requested it. From a programming point
of view, it is the same as if your thread called DriverManager.getConnection() every time it needed a JDBC connection,
however with connection pooling, your thread may end up using either a new, or already-existing connection.

Connection pooling can greatly increase the performance of your Java application, while reducing overall resource usage. The main
benefits to connection pooling are:

• Reduced connection creation time

Although this is not usually an issue with the quick connection setup that MySQL offers compared to other databases, creating
new JDBC connections still incurs networking and JDBC driver overhead that will be avoided if connections are recycled.

• Simplified programming model

When using connection pooling, each individual thread can act as though it has created its own JDBC connection, allowing you
to use straight-forward JDBC programming techniques.

• Controlled resource usage

If you do not use connection pooling, and instead create a new connection every time a thread needs one, your application's re-
source usage can be quite wasteful and lead to unpredictable behavior under load.

Remember that each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client and
server side. Every connection limits how many resources there are available to your application as well as the MySQL server.
Many of these resources will be used whether or not the connection is actually doing any useful work!

Connection pools can be tuned to maximize performance, while keeping resource utilization below the point where your applica-
tion will start to fail rather than just run slower.

MySQL Connector/J

196

Luckily, Sun has standardized the concept of connection pooling in JDBC through the JDBC-2.0 Optional interfaces, and all major
application servers have implementations of these APIs that work fine with MySQL Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it via the Java Naming and
Directory Interface (JNDI). The following code shows how you might use a connection pool from an application deployed in a
J2EE application server:

Example 4.11. Connector/J: Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import javax.naming.InitialContext;
import javax.sql.DataSource;
public class MyServletJspOrEjb {

public void doSomething() throws Exception {
/*
* Create a JNDI Initial context to be able to
* lookup the DataSource
*
* In production-level code, this should be cached as
* an instance or static variable, as it can
* be quite expensive to create a JNDI context.
*
* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are
* using connection pooling in standalone Java code, you
* will have to create/configure datasources using whatever
* mechanisms your particular connection pooling library
* provides.
*/
InitialContext ctx = new InitialContext();
/*
* Lookup the DataSource, which will be backed by a pool
* that the application server provides. DataSource instances
* are also a good candidate for caching as an instance
* variable, as JNDI lookups can be expensive as well.
*/

DataSource ds =
(DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

/*
* The following code is what would actually be in your
* Servlet, JSP or EJB 'service' method...where you need
* to work with a JDBC connection.
*/
Connection conn = null;
Statement stmt = null;
try {

conn = ds.getConnection();
/*
* Now, use normal JDBC programming to work with
* MySQL, making sure to close each resource when you're
* finished with it, which allows the connection pool
* resources to be recovered as quickly as possible
*/

stmt = conn.createStatement();
stmt.execute("SOME SQL QUERY");
stmt.close();
stmt = null;
conn.close();
conn = null;

} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/

if (stmt != null) {
try {

stmt.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}
stmt = null;

}
if (conn != null) {

try {
conn.close();

} catch (sqlexception sqlex) {
// ignore -- as we can't do anything about it here

}
conn = null;

}
}

}
}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the DataSource, the rest of the code should
look familiar to anyone who has done JDBC programming in the past.

MySQL Connector/J

197

The most important thing to remember when using connection pooling is to make sure that no matter what happens in your code
(exceptions, flow-of-control, and so forth), connections, and anything created by them (such as statements or result sets) are closed,
so that they may be re-used, otherwise they will be stranded, which in the best case means that the MySQL server resources they
represent (such as buffers, locks, or sockets) may be tied up for some time, or worst case, may be tied up forever.

What Is the Best Size for my Connection Pool?

As with all other configuration rules-of-thumb, the answer is: it depends. Although the optimal size depends on anticipated load
and average database transaction time, the optimum connection pool size is smaller than you might expect. If you take Sun's Java
Petstore blueprint application for example, a connection pool of 15-20 connections can serve a relatively moderate load (600 con-
current users) using MySQL and Tomcat with response times that are acceptable.

To correctly size a connection pool for your application, you should create load test scripts with tools such as Apache JMeter or
The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of connections to be unboun-
ded, run a load test, and measure the largest amount of concurrently used connections. You can then work backward from there to
determine what values of minimum and maximum pooled connections give the best performance for your particular application.

4.5.2.2. Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at ht-
tp://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this document was writ-
ten.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is available to all applica-
tions installed in the container.

Next, Configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/server.xml in the con-
text that defines your web application:

<Context>
...
<Resource name="jdbc/MySQLDB"

auth="Container"
type="javax.sql.DataSource"/>

<!-- The name you used above, must match _exactly_ here!
The connection pool will be bound into JNDI with the name
"java:/comp/env/jdbc/MySQLDB"

-->
<ResourceParams name="jdbc/MySQLDB">
<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>
<!-- Don't set this any higher than max_connections on your

MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<parameter>
<name>maxActive</name>
<value>10</value>

</parameter>
<!-- You don't want to many idle connections hanging around

if you can avoid it, only enough to soak up a spike in
the load -->

<parameter>
<name>maxIdle</name>
<value>5</value>

</parameter>
<!-- Don't use autoReconnect=true, it's going away eventually

and it's a crutch for older connection pools that couldn't
test connections. You need to decide whether your application
is supposed to deal with SQLExceptions (hint, it should), and
how much of a performance penalty you're willing to pay
to ensure 'freshness' of the connection -->

<parameter>
<name>validationQuery</name>
<value>SELECT 1</value>

</parameter>
<!-- The most conservative approach is to test connections

before they're given to your application. For most applications
this is okay, the query used above is very small and takes
no real server resources to process, other than the time used
to traverse the network.
If you have a high-load application you'll need to rely on
something else. -->

<parameter>
<name>testOnBorrow</name>
<value>true</value>

</parameter>
<!-- Otherwise, or in addition to testOnBorrow, you can test

while connections are sitting idle -->
<parameter>
<name>testWhileIdle</name>
<value>true</value>

MySQL Connector/J

198

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

</parameter>
<!-- You have to set this value, otherwise even though

you've asked connections to be tested while idle,
the idle evicter thread will never run -->

<parameter>
<name>timeBetweenEvictionRunsMillis</name>
<value>10000</value>

</parameter>
<!-- Don't allow connections to hang out idle too long,

never longer than what wait_timeout is set to on the
server...A few minutes or even fraction of a minute
is sometimes okay here, it depends on your application
and how much spikey load it will see -->

<parameter>
<name>minEvictableIdleTimeMillis</name>
<value>60000</value>

</parameter>
<!-- Username and password used when connecting to MySQL -->
<parameter>
<name>username</name>
<value>someuser</value>
</parameter>
<parameter>
<name>password</name>
<value>somepass</value>
</parameter>
<!-- Class name for the Connector/J driver -->
<parameter>

<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>
<!-- The JDBC connection url for connecting to MySQL, notice

that if you want to pass any other MySQL-specific parameters
you should pass them here in the URL, setting them using the
parameter tags above will have no effect, you will also
need to use & to separate parameter values as the
ampersand is a reserved character in XML -->

<parameter>
<name>url</name>
<value>jdbc:mysql://localhost:3306/test</value>

</parameter>
</ResourceParams>

</Context>

In general, you should follow the installation instructions that come with your version of Tomcat, as the way you configure data-
sources in Tomcat changes from time-to-time, and unfortunately if you use the wrong syntax in your XML file, you will most
likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

4.5.2.3. Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server, copy the .jar file that
comes with Connector/J to the lib directory for your server configuration (which is usually called default). Then, in the same
configuration directory, in the subdirectory named deploy, create a datasource configuration file that ends with "-ds.xml", which
tells JBoss to deploy this file as a JDBC Datasource. The file should have the following contents:

<datasources>
<local-tx-datasource>

<!-- This connection pool will be bound into JNDI with the name
"java:/MySQLDB" -->

<jndi-name>MySQLDB</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>user</user-name>
<password>pass</password>
<min-pool-size>5</min-pool-size>
<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->
<max-pool-size>20</max-pool-size>
<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes is usually okay here,
it depends on your application
and how much spikey load it will see -->
<idle-timeout-minutes>5</idle-timeout-minutes>
<!-- If you're using Connector/J 3.1.8 or newer, you can use

our implementation of these to increase the robustness
of the connection pool. -->

<exception-sorter-class-name>
com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter

</exception-sorter-class-name>
<valid-connection-checker-class-name>

com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker
</valid-connection-checker-class-name>

</local-tx-datasource>
</datasources>

MySQL Connector/J

199

4.5.2.4. Using Connector/J with Spring

The Spring Framework is a Java-based application framework designed for assisting in application design by providing a way to
configure components. The technique used by Spring is a well known design pattern called Dependency Injection (see Inversion of
Control Containers and the Dependency Injection pattern). This article will focus on Java-oriented access to MySQL databases
with Spring 2.0. For those wondering, there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented programming (AOP). This is
one of the main benefits and the foundation for Spring's resource and transaction management. Spring also provides utilities for in-
tegrating resource management with JDBC and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up a MySQL data source
through Spring. Components within Spring use the "bean" terminology. For example, to configure a connection to a MySQL server
supporting the world sample database you might use:

<util:map id="dbProps">
<entry key="db.driver" value="com.mysql.jdbc.Driver"/>
<entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
<entry key="db.username" value="myuser"/>
<entry key="db.password" value="mypass"/>

</util:map>

In the above example we are assigning values to properties that will be used in the configuration. For the datasource configuration:

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>

</bean>

The placeholders are used to provide values for properties of this bean. This means that you can specify all the properties of the
configuration in one place instead of entering the values for each property on each bean. We do, however, need one more bean to
pull this all together. The last bean is responsible for actually replacing the placeholders with the property values.

<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="properties" ref="dbProps"/>
</bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to access it. The example below
will retrieve three random cities and their corresponding country using the data source we configured with Spring.

// Create a new application context. this processes the Spring config
ApplicationContext ctx =

new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context

DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {

// retrieve a list of three random cities
PreparedStatement ps = c.prepareStatement(

"select City.Name as 'City', Country.Name as 'Country' " +
"from City inner join Country on City.CountryCode = Country.Code " +
"order by rand() limit 3");

ResultSet rs = ps.executeQuery();
while(rs.next()) {

String city = rs.getString("City");
String country = rs.getString("Country");
System.out.printf("The city %s is in %s%n", city, country);

}
} catch (SQLException ex) {

// something has failed and we print a stack trace to analyse the error
ex.printStackTrace();
// ignore failure closing connection
try { c.close(); } catch (SQLException e) { }

} finally {
// properly release our connection
DataSourceUtils.releaseConnection(c, ds);

}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using DataSourceUtils instead of
the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages this resource in a way sim-

MySQL Connector/J

200

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

ilar to a container managed data source in a J2EE application server. When a connection is opened, it can be subsequently accessed
in other parts of the code if it is synchronized with a transaction. This makes it possible to treat different parts of your application as
transactional instead of passing around a database connection.

4.5.2.4.1. Using JdbcTemplate

Spring makes extensive use of the Template method design pattern (see Template Method Pattern). Our immediate focus will be on
the JdbcTemplate and related classes, specifically NamedParameterJdbcTemplate. The template classes handle obtain-
ing and releasing a connection for data access when one is needed.

The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access Object) class to retrieve
a random city given a country code.

public class Ex2JdbcDao {
/**
* Data source reference which will be provided by Spring.
*/
private DataSource dataSource;
/**
* Our query to find a random city given a country code. Notice
* the ":country" parameter towards the end. This is called a
* named parameter.
*/
private String queryString = "select Name from City " +

"where CountryCode = :country order by rand() limit 1";
/**
* Retrieve a random city using Spring JDBC access classes.
*/
public String getRandomCityByCountryCode(String cntryCode) {

// A template that allows using queries with named parameters
NamedParameterJdbcTemplate template =
new NamedParameterJdbcTemplate(dataSource);
// A java.util.Map is used to provide values for the parameters
Map params = new HashMap();
params.put("country", cntryCode);
// We query for an Object and specify what class we are expecting
return (String)template.queryForObject(queryString, params, String.class);

}
/**
* A JavaBean setter-style method to allow Spring to inject the data source.
* @param dataSource
*/
public void setDataSource(DataSource dataSource) {

this.dataSource = dataSource;
}

}

The focus in the above code is on the getRandomCityByCountryCode() method. We pass a country code and use the
NamedParameterJdbcTemplate to query for a city. The country code is placed in a Map with the key "country", which is the
parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean id="dao" class="code.Ex2JdbcDao">
<property name="dataSource" ref="dataSource"/>

</bean>

At this point, we can just grab a reference to the DAO from Spring and call getRandomCityByCountryCode().

// Create the application context
ApplicationContext ctx =
new ClassPathXmlApplicationContext("ex2appContext.xml");
// Obtain a reference to our DAO
Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");
String countryCode = "USA";
// Find a few random cities in the US
for(int i = 0; i < 4; ++i)

System.out.printf("A random city in %s is %s%n", countryCode,
dao.getRandomCityByCountryCode(countryCode));

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional JDBC classes including
Connection and PreparedStatement.

4.5.2.4.2. Transactional JDBC Access

You might be wondering how we can add transactions into our code if we do not deal directly with the JDBC classes. Spring
provides a transaction management package that not only replaces JDBC transaction management, but also allows declarative
transaction management (configuration instead of code).

In order to use transactional database access, we will need to change the storage engine of the tables in the world database. The

MySQL Connector/J

201

http://en.wikipedia.org/wiki/Template_method_pattern

downloaded script explicitly creates MyISAM tables which do not support transactional semantics. The InnoDB storage engine
does support transactions and this is what we will be using. We can change the storage engine with the following statements.

ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What this means is that we can
create a Java interface and only use the operations on this interface without any internal knowledge of what the actual implementa-
tion is. We will let Spring manage the implementation and with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer population);

}

This interface contains one method that will create a new city record in the database and return the id of the new record. Next you
need to create an implementation of this interface.

public class Ex3DaoImpl implements Ex3Dao {
protected DataSource dataSource;
protected SqlUpdate updateQuery;
protected SqlFunction idQuery;
public Integer createCity(String name, String countryCode,

String district, Integer population) {
updateQuery.update(new Object[] { name, countryCode,

district, population });
return getLastId();

}
protected Integer getLastId() {

return idQuery.run();
}

}

You can see that we only operate on abstract query objects here and do not deal directly with the JDBC API. Also, this is the com-
plete implementation. All of our transaction management will be dealt with in the configuration. To get the configuration started,
we need to create the DAO.

<bean id="dao" class="code.Ex3DaoImpl">
<property name="dataSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>

</bean>

Now you need to set up the transaction configuration. The first thing you must do is create transaction manager to manage the data
source and a specification of what transaction properties are required for the dao methods.

<bean id="transactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

</bean>
<tx:advice id="txAdvice" transaction-manager="transactionManager">

<tx:attributes>
<tx:method name="*"/>

</tx:attributes>
</tx:advice>

The preceding code creates a transaction manager that handles transactions for the data source provided to it. The txAdvice uses
this transaction manager and the attributes specify to create a transaction for all methods. Finally you need to apply this advice with
an AOP pointcut.

<aop:config>
<aop:pointcut id="daoMethods"

expression="execution(* code.Ex3Dao.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>

</aop:config>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To make use of this, you only
have to retrieve the dao from the application context and call a method on the dao instance.

Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is all configured with Spring.
This is a very powerful notion and regarded as one of the most beneficial features of Spring.

MySQL Connector/J

202

4.5.2.4.3. Connection Pooling

In many sitations, such as web applications, there will be a large number of small database transactions. When this is the case, it
usually makes sense to create a pool of database connections available for web requests as needed. Although MySQL does not
spawn an extra process when a connection is made, there is still a small amount of overhead to create and set up the connection.
Pooling of connections also alleviates problems such as collecting large amounts of sockets in the TIME_WAIT state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source configuration in the application
context. There are a number of configurations that we can use. The first example is based on the Jakarta Commons DBCP library.
The example below replaces the source configuration that was based on DriverManagerDataSource with DBCP's Ba-
sicDataSource.

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>
<property name="initialSize" value="3"/>

</bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections to the database instead of
creating a new connection every time one is requested. We have also set a parameter here called initialSize. This tells DBCP
that we want three connections in the pool when it is created.

Another way to configure connection pooling is to configure a data source in our J2EE application server. Using JBoss as an ex-
ample, you can set up the MySQL connection pool by creating a file called mysql-local-ds.xml and placing it in the server/
default/deploy directory in JBoss. Once we have this setup, we can use JNDI to look it up. With Spring, this lookup is very simple.
The data source configuration looks like this.

<jee:jndi-lookup id="dataSource" jndi-name="java:MySQL_DS"/>

4.5.2.5. Using Connector/J with GlassFish

4.5.3. Common Problems and Solutions
There are a few issues that seem to be commonly encountered often by users of MySQL Connector/J. This section deals with their
symptoms, and their resolutions.

Questions

• 4.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

• 4.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 4.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 4.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 4.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result set is not updatable.

• 4.5.3.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection paramters are correct.

• 4.5.3.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed
STACKTRACE:
java.net.SocketException: Software caused connection abort: recv failed

MySQL Connector/J

203

http://jakarta.apache.org/commons/dbcp/

at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

• 4.5.3.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL data-
base. Under heavy loads I am getting a error and stack trace, but these only occur after a fixed period of heavy activity.

• 4.5.3.9: When using gcj an java.io.CharConversionException is raised when working with certain character se-
quences.

• 4.5.3.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails to
update the table and raises an exception.

• 4.5.3.11: You get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size you want to insert via JD-
BC is safely below the max_allowed_packet size.

Questions and Answers

4.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Domain Sockets. Therefore,
when MySQL Connector/J connects to MySQL, the security manager in MySQL server will use its grant tables to determine
whether the connection should be allowed.

You must add the necessary security credentials to the MySQL server for this to happen, using the GRANT statement to your
MySQL Server. See GRANT Syntax, for more information.

Note

Testing your connectivity with the mysql command-line client will not work unless you add the --host flag, and
use something other than localhost for the host. The mysql command-line client will use Unix domain sockets if
you use the special host name localhost. If you are testing connectivity to localhost, use 127.0.0.1 as the
host name instead.

Warning

Changing privileges and permissions improperly in MySQL can potentially cause your server installation to not have
optimal security properties.

4.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Section 4.2, “Connector/J Installation”.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the location of the Connector/J
driver.

4.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "--skip-networking" option set, or your MySQL

MySQL Connector/J

204

http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.0/en/grant.html
http://dev.mysql.com/doc/refman/5.0/en/grant.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-description.html#option_mysql_host

server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the .class files for the applet.
This means that MySQL must run on the same machine (or you must have some sort of port re-direction) for this to work. This also
means that you will not be able to test applets from your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix domain sockets. TCP/IP
communication with MySQL might be affected if MySQL was started with the "--skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "--skip-networking" option set (the Debian Linux package of MySQL server does this for ex-
ample), you need to comment it out in the file /etc/mysql/my.cnf or /etc/my.cnf. Of course your my.cnf file might also exist in the
data directory of your MySQL server, or anywhere else (depending on how MySQL was compiled for your system). Binaries cre-
ated by us always look in /etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you will need to have the
firewall configured to allow TCP/IP connections from the host where your Java code is running to the MySQL server on the port
that MySQL is listening to (by default, 3306).

4.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that handles stale connections or
use the "autoReconnect" parameter (see Section 4.4.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties
for Connector/J”).

Also, you should be catching SQLExceptions in your application and dealing with them, rather than propagating them all the way
until your application exits, this is just good programming practice. MySQL Connector/J will set the SQLState (see
java.sql.SQLException.getSQLState() in your APIDOCS) to "08S01" when it encounters network-connectivity is-
sues during the processing of a query. Your application code should then attempt to re-connect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 4.12. Connector/J: Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
//
// How many times do you want to retry the transaction
// (or at least _getting_ a connection)?
//
int retryCount = 5;
boolean transactionCompleted = false;
do {

try {
conn = getConnection(); // assume getting this from a

// javax.sql.DataSource, or the
// java.sql.DriverManager

conn.setAutoCommit(false);
//
// Okay, at this point, the 'retry-ability' of the
// transaction really depends on your application logic,
// whether or not you're using autocommit (in this case
// not), and whether you're using transacational storage
// engines
//
// For this example, we'll assume that it's _not_ safe
// to retry the entire transaction, so we set retry
// count to 0 at this point
//
// If you were using exclusively transaction-safe tables,
// or your application could recover from a connection going
// bad in the middle of an operation, then you would not
// touch 'retryCount' here, and just let the loop repeat
// until retryCount == 0.
//
retryCount = 0;
stmt = conn.createStatement();
String query = "SELECT foo FROM bar ORDER BY baz";
rs = stmt.executeQuery(query);
while (rs.next()) {
}
rs.close();
rs = null;
stmt.close();
stmt = null;
conn.commit();
conn.close();
conn = null;
transactionCompleted = true;

} catch (SQLException sqlEx) {
//
// The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 40001 for deadlock.

MySQL Connector/J

205

//
// Only retry if the error was due to a stale connection,
// communications problem or deadlock
//
String sqlState = sqlEx.getSQLState();
if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {

retryCount--;
} else {

retryCount = 0;
}

} finally {
if (rs != null) {

try {
rs.close();

} catch (SQLException sqlEx) {
// You'd probably want to log this . . .

}
}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException sqlEx) {
// You'd probably want to log this as well . . .

}
}
if (conn != null) {

try {
//
// If we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done
try {

conn.rollback();
} finally {

conn.close();
}

} catch (SQLException sqlEx) {
//
// If we got an exception here, something
// pretty serious is going on, so we better
// pass it up the stack, rather than just
// logging it. . .
throw sqlEx;

}
}

}
} while (!transactionCompleted && (retryCount > 0));

}

Note

Use of the autoReconnect option is not recommended because there is no safe method of reconnecting to the
MySQL server without risking some corruption of the connection state or database state information. Instead, you
should use a connection pool which will enable your application to connect to the MySQL server using an available
connection from the pool. The autoReconnect facility is deprecated, and may be removed in a future release.

4.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result set is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have come from queries on
tables that have at least one primary key, the query must select every primary key and the query can only span one table (that is, no
joins). This is outlined in the JDBC specification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is unable to guarantee that it
can identify the correct rows within the result set to be updated without having a unique reference to each row. There is no require-
ment to have a unique field on a table if you are using UPDATE or DELETE statements on a table where you can individually spe-
cify the criteria to be matched using a WHERE clause.

4.5.3.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection paramters are correct.

Make sure that the skip-networking option has not been enabled on your server. Connector/J must be able to communicate
with your server over TCP/IP, named sockets are not supported. Also ensure that you are not filtering connections through a Fire-
wall or other network security system. For more information, see Can't connect to [local] MySQL server.

4.5.3.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed
STACKTRACE:
java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)

MySQL Connector/J

206

http://dev.mysql.com/doc/refman/5.0/en/update.html
http://dev.mysql.com/doc/refman/5.0/en/delete.html
http://dev.mysql.com/doc/refman/5.0/en/common-errors.html#can-not-connect-to-server

at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

The error probably indicates that you are using a older version of the Connector/J JDBC driver (2.0.14 or 3.0.x) and you are trying
to connect to a MySQL server with version 4.1x or newer. The older drivers are not compatible with 4.1 or newer of MySQL as
they do not support the newer authentication mechanisms.

It is likely that the older version of the Connector/J driver exists within your application directory or your CLASSPATH includes
the older Connector/J package.

4.5.3.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL
database. Under heavy loads I am getting a error and stack trace, but these only occur after a fixed period of heavy activity.

This is a JBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the time taken for transactions
to complete can increase, and the error is caused because you have exceeded the predefined timeout.

You can increase the timeout value by setting the TransactionTimeout attribute to the TransactionManagerService
within the /conf/jboss-service.xml file (pre-4.0.3) or /deploy/jta-service.xml for JBoss 4.0.3 or later. See
TransactionTimeoute within the JBoss wiki for more information.

4.5.3.9: When using gcj an java.io.CharConversionException is raised when working with certain character se-
quences.

This is a known issue with gcj which raises an exception when it reaches an unknown character or one it cannot convert. You
should add useJvmCharsetConverters=true to your connection string to force character conversion outside of the gcj
libraries, or try a different JDK.

4.5.3.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails
to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary key. If there is no
match then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database may mean that the values
never match, and hence the update fails. The issue will affect all queries, not just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point column in your primary key
use DOUBLE or DECIMAL types in place of FLOAT.

4.5.3.11: You get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size you want to insert via JD-
BC is safely below the max_allowed_packet size.

This is because the hexEscapeBlock() method in com.mysql.jdbc.PreparedStatement.streamToBytes() may
almost double the size of your data.

4.6. Connector/J Support

4.6.1. Connector/J Community Support
Sun Microsystems, Inc. provides assistance to the user community by means of its mailing lists. For Connector/J related issues, you
can get help from experienced users by using the MySQL and Java mailing list. Archives and subscription information is available
online at http://lists.mysql.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See MySQL
Mailing Lists.

Community support from experienced users is also available through the JDBC Forum. You may also find help from other users in
the other MySQL Forums, located at http://forums.mysql.com. See MySQL Community Support at the MySQL Forums.

4.6.2. How to Report Connector/J Bugs or Problems
The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database. This database is public, and
can be browsed and searched by anyone. If you log in to the system, you will also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to <security@mysql.com>.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report,
containing a full test case for the bug, makes it very likely that we will fix the bug in the next release.

MySQL Connector/J

207

http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet
http://lists.mysql.com/java
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/forums.html
http://bugs.mysql.com/

This section will help you write your report correctly so that you do not waste your time doing things that may not help us much or
at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any bug that we are able to re-
peat has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to one containing too little.
People often omit facts because they think they know the cause of a problem and assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less troublesome to write a couple more
lines in your report than to wait longer for the answer if we must ask you to provide information that was missing from the initial
report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or MySQL used, and (b) not
fully describing the platform on which Connector/J is installed (including the JVM version, and the platform type and version num-
ber that MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very often we get questions
like, “Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version, or that a
bug described in a report has already been fixed in newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything without knowing the operat-
ing system and the version number of the platform.

If at all possible, you should create a repeatable, stanalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class, create your own class that
inherits from com.mysql.jdbc.util.BaseBugReport and override the methods setUp(), tearDown() and
runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed to demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, you should use one of the variants of the getConnection() method to create a JDBC con-
nection to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a connection already exists, that
connection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (that is, there is more than one
connection involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the given URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl() as well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage, boolean expres-
sion) methods to create conditions that must be met in your testcase demonstrating the behavior you are expecting (vs. the beha-
vior you are observing, which is why you are most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run method:

public static void main(String[] args) throws Exception {
new MyBugReport().run();

}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting, upload it with your bug re-
port to http://bugs.mysql.com/.

4.6.3. Connector/J Change History

MySQL Connector/J

208

http://bugs.mysql.com/
http://bugs.mysql.com/

The Connector/J Change History (Changelog) is located with the main Changelog for MySQL. See Appendix D, MySQL Connect-
or/J Change History.

MySQL Connector/J

209

Chapter 5. MySQL Connector/MXJ
MySQL Connector/MXJ is a Java Utility package for deploying and managing a MySQL database. Deploying and using MySQL
can be as easy as adding an additional parameter to the JDBC connection url, which will result in the database being started when
the first connection is made. This makes it easy for Java developers to deploy applications which require a database by reducing in-
stallation barriers for their end-users.

MySQL Connector/MXJ makes the MySQL database appear to be a java-based component. It does this by determining what plat-
form the system is running on, selecting the appropriate binary, and launching the executable. It will also optionally deploy an ini-
tial database, with any specified parameters.

Included are instructions for use with a JDBC driver and deploying as a JMX MBean to JBoss.

You can download sources and binaries from: http://dev.mysql.com/downloads/connector/mxj/

This a beta release and feedback is welcome and encouraged.

Please send questions or comments to the MySQL and Java mailing list.

5.1. Connector/MXJ Overview
Connector/MXJ consists of a Java class, a copy of the mysqld binary for a specific list of platforms, and associated files and sup-
port utilities. The Java class controls the initialization of an instance of the embedded mysqld binary, and the ongoing manage-
ment of the mysqld process. The entire sequence and management can be controlled entirely from within Java using the Connect-
or/MXJ Java classes. You can see an overview of the contents of the Connector/MXJ package in the figure below.

It is important to note that Connector/MXJ is not an embedded version of MySQL, or a version of MySQL written as part of a Java
class. Connector/MXJ works through the use of an embedded, compiled binary of mysqld as would normally be used when de-
ploying a standard MySQL installation.

It is the Connector/MXJ wrapper, support classes and tools, that enable Connector/MXJ to appear as a MySQL instance.

When Connector/MXJ is initialized, the corresponding mysqld binary for the current platform is extracted, along with a pre-
configured data directed. Both are contained within the Connector/MXJ JAR file. The mysqld instance is then started, with any
additional options as specified during the initialization, and the MySQL database becomes accessible.

Because Connector/MXJ works in combination with Connector/J, you can access and integrate with the MySQL instance through a
JDBC connection. When you have finished with the server, the instance is terminated, and, by default, any data created during the
session is retained within the temporary directory created when the instance was started.

Connector/MXJ and the embedded mysqld instance can be deployed in a number of environments where relying on an existing
database, or installing a MySQL instance would be impossible, including CD-ROM embedded database applications and temporary
database requirements within a Java-based application environment.

210

http://dev.mysql.com/downloads/connector/mxj/
http://lists.mysql.com/java

5.2. Connector/MXJ Versions

• Connector/MXJ 5.x, currently in beta status, includes mysqld version 5.x and includes binaries for Linux x86, Mac OS X
PPC, Windows XP/NT/2000 x86 and Solaris SPARC. Connector/MXJ 5.x requires the Connector/J 5.x package.

The exact version of mysqld included depends on the version of Connector/MXJ

1. Connector/MXJ v5.0.3 included MySQL v5.0.22

2. Connector/MXJ v5.0.4 includes MySQL v5.0.27 (Community) or MySQL v5.0.32 (Enterprise)

3. Connector/MXJ v5.0.6 includes MySQL 5.0.37 (Community)

4. Connector/MXJ v5.0.7 includes MySQL 5.0.41 (Community) or MySQL 5.0.42 (Enterprise)

5. Connector/MXJ v5.0.8 includes MySQL 5.0.45 (Community) or MySQL 5.0.46 (Enterprise)

6. Connector/MXJ v5.0.9 includes MySQL 5.0.51a (Community) or MySQL 5.0.54 (Enterprise)

• Connector/MXJ 1.x includes mysqld version 4.1.13 and includes binaries for Linux x86, Windows XP/NT/2000 x86 and Sol-
aris SPARC. Connector/MXJ 1.x requires the Connector/J 3.x package.

A summary of the different MySQL versions supplied with each Connector/MXJ release are shown in the table.

Connector/MXJ Version MySQL Version(s)

5.0.8 5.0.45 (CS), 5.0.46 (ES)

5.0.7 5.0.41 (CS), 5.0.42 (ES)

5.0.6 5.0.37 (CS), 5.0.40 (ES)

5.0.5 5.0.37 (CS), 5.0.36 (ES)

5.0.4 5.0.27 (CS), 5.0.32 (ES)

5.0.3 5.0.22

5.0.2 5.0.19

This guide provides information on the Connector/MXJ 5.x release. For information on using the older releases, please see the doc-
umentation included with the appropriate distribution.

5.3. Connector/MXJ Installation
Connector/MXJ does not have a installation application or process, but there are some steps you can follow to make the installation
and deployment of Connector/MXJ easier.

Before you start, there are some baseline requirements for

• Java Runtime Environment (v1.4.0 or newer) if you are only going to deploy the package.

• Java Development Kit (v1.4.0 or newer) if you want to build Connector/MXJ from source.

• Connector/J 5.0 or newer.

Depending on your target installation/deployment environment you may also require:

• JBoss - 4.0rc1 or newer

• Apache Tomcat - 5.0 or newer

• Sun's JMX reference implementation version 1.2.1 (from http://java.sun.com/products/JavaManagement/)

5.3.1. Supported Platforms
Connector/MXJ is compatible with any platform supporting Java and MySQL. By default, Connector/MXJ incorporates the

MySQL Connector/MXJ

211

http://java.sun.com/products/JavaManagement/

mysqld binary for a select number of platforms which differs by version. The following platforms have been tested and working
as deployment platforms. Support for all the platforms listed below is not included by default.

• Linux (i386)

• FreeBSD (i386)

• Windows NT (x86), Windows 2000 (x86), Windows XP (x86), Windows Vista (x86)

• Solaris 8, SPARC 32-bit (compatible with Solaris 8, Solaris 9 and Solaris 10 on SPARC 32-bit and 64-bit platforms)

• Mac OS X (PowerPC and Intel)

The Connector/MXJ 5.0.8 release includes mysqld binaries for the following platforms by as standard:

• Linux (i386)

• Windows (x86), compatible with Windows NT, Windows 2000, Windows XP , Windows Vista

• Solaris 8, SPARC 32-bit (compatible with Solaris 8, Solaris 9 and Solaris 10 on SPARC 32-bit and 64-bit platforms)

• Mac OS X (PowerPC and Intel)

For more information on packaging your own Connector/MXJ with the platforms you require, see Section 5.6.1, “Creating your
own Connector/MXJ Package”

5.3.2. Connector/MXJ Base Installation
Because there is no formal installation process, the method, installation directory, and access methods you use for Connector/MXJ
are entirely up to your individual requirements.

To perform a basic installation, choose a target directory for the files included in the Connector/MXJ package. On Unix/Linux sys-
tems you may opt to use a directory such as /usr/local/connector-mxj; On Windows, you may want to install the files in
the base directory, C:\Connector-MXJ, or within the Program Files directory.

To install the files, for a Connector/MXJ 5.0.4 installation:

1. Download the Connector/MXJ package, either in Tar/Gzip format (ideal for Unix/Linux systems) or Zip format (Windows).

2. Extract the files from the package. This will create a directory mysql-connector-mxj-gpl-[ver]. Copy and option-
ally rename this directory to your desired location.

3. For best results, you should update your global CLASSPATH variable with the location of the required jar files.

Within Unix/Linux you can do this globally by editing the global shell profile, or on a user by user basis by editing their indi-
vidual shell profile.

On Windows 2000, Windows NT and Windows XP, you can edit the global CLASSPATH by editing the Environment
Variables configured through the System control panel.

For Connector/MXJ 5.0.6 and later you need the following JAR files in your CLASSPATH:

1. mysql-connector-mxj-gpl-[ver].jar — contains the main Connector/MXJ classes.

2. mysql-connector-mxj-gpl-[ver]-db-files.jar — contains the embedded mysqld and database files.

3. aspectjrt.jar — the AspectJ runtime library, located in lib/aspectjrt.jar in the Connector/MXJ package.

4. mysql-connector-java-[ver]-bin.jar — Connector/J, see Chapter 4, MySQL Connector/J.

For Connector/MXJ 5.0.4 and later you need the following JAR files in your CLASSPATH:

1. connector-mxj.jar — contains the main Connector/MXJ classes.

MySQL Connector/MXJ

212

2. connector-mxj-db-files.jar — contains the embedded mysqld and database files.

3. aspectjrt.jar — the AspectJ runtime library, located in lib/aspectjrt.jar in the Connector/MXJ package.

4. mysql-connector-mxj-gpl-[ver].jar — Connector/J, see Chapter 4, MySQL Connector/J.

For Connector/MXJ 5.0.3 and earlier, you need the following JAR files:

1. connector-mxj.jar

2. aspectjrt.jar — the AspectJ runtime library, located in lib/aspectjrt.jar in the Connector/MXJ package.

3. mysql-connector-mxj-gpl-[ver].jar — Connector/J, see Chapter 4, MySQL Connector/J.

5.3.3. Connector/MXJ Quick Start Guide
Once you have extracted the Connector/MXJ and Connector/J components you can run one of the sample applications that initiates
a MySQL instance. You can test the installation by running the ConnectorMXJUrlTestExample:

shell> java ConnectorMXJUrlTestExample
jdbc:mysql:mxj://localhost:3336/our_test_app?server.basedir»

=/var/tmp/test-mxj&createDatabaseIfNotExist=true&server.initialize-user=true
[/var/tmp/test-mxj/bin/mysqld][--no-defaults][--port=3336][--socket=mysql.sock]»

[--basedir=/var/tmp/test-mxj][--datadir=/var/tmp/test-mxj/data]»
[--pid-file=/var/tmp/test-mxj/data/MysqldResource.pid]

[MysqldResource] launching mysqld (driver_launched_mysqld_1)
InnoDB: The first specified data file ./ibdata1 did not exist:
InnoDB: a new database to be created!
080220 9:40:20 InnoDB: Setting file ./ibdata1 size to 10 MB
InnoDB: Database physically writes the file full: wait...
080220 9:40:20 InnoDB: Log file ./ib_logfile0 did not exist: new to be created
InnoDB: Setting log file ./ib_logfile0 size to 5 MB
InnoDB: Database physically writes the file full: wait...
080220 9:40:20 InnoDB: Log file ./ib_logfile1 did not exist: new to be created
InnoDB: Setting log file ./ib_logfile1 size to 5 MB
InnoDB: Database physically writes the file full: wait...
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
080220 9:40:21 InnoDB: Started; log sequence number 0 0
080220 9:40:21 [Note] /var/tmp/test-mxj/bin/mysqld: ready for connections.
Version: '5.0.51a' socket: 'mysql.sock' port: 3336 MySQL Community Server (GPL)
[MysqldResource] mysqld running as process: 2238

SELECT VERSION()

5.0.51a

[MysqldResource] stopping mysqld (process: 2238)
080220 9:40:27 [Note] /var/tmp/test-mxj/bin/mysqld: Normal shutdown
080220 9:40:27 InnoDB: Starting shutdown...
080220 9:40:29 InnoDB: Shutdown completed; log sequence number 0 43655
080220 9:40:29 [Note] /var/tmp/test-mxj/bin/mysqld: Shutdown complete
[MysqldResource] shutdown complete

The above output shows an instance of MySQL starting, the necessary files being created (log files, InnoDB data files) and the
MySQL database entering the running state. The instance is then shutdown by Connector/MXJ before the example terminates.

Warning

You should avoid running your Connector/MXJ application as the root user, because this will cause the mysqld to
also be executed with root privileges. For more information, see How to Run MySQL as a Normal User.

5.3.4. Deploying Connector/MXJ using Driver Launch
Connector/MXJ and Connector/J work together to enable you to launch an instance of the mysqld server through the use of a
keyword in the JDBC connection string. Deploying Connector/MXJ within a Java application can be automated through this meth-
od, making the deployment of Connector/MXJ a simple process:

1. Download and unzip Connector/MXJ, add mysql-connector-mxj-gpl-[ver].jar to the CLASSPATH.

If you are using Connector/MXJ v5.0.4 or later you will also need to add the mysql-connect-
or-mxj-gpl-[ver]-db-files.jar file to your CLASSPATH.

MySQL Connector/MXJ

213

http://dev.mysql.com/doc/refman/5.0/en/changing-mysql-user.html

2. To the JDBC connection string, embed the mxj keyword, for example: jdbc:mysql:mxj://localhost:PORT/DB-
NAME.

For more details, see Section 5.4, “Connector/MXJ Configuration”.

5.3.5. Deploying Connector/MXJ within JBoss
For deployment within a JBoss environment, you must configure the JBoss environment to use the Connector/MXJ component
within the JDBC parameters:

1. Download Connector/MXJ and copy the mysql-connector-mxj-gpl-[ver].jar file to the
$JBOSS_HOME/server/default/lib directory.

If you are using Connector/MXJ v5.0.4 or later you will also need to copy the mysql-connect-
or-mxj-gpl-[ver]-db-files.jar file to $JBOSS_HOME/server/default/lib.

2. Download Connector/J and copy the mysql-connector-java-5.1.5-bin.jar file to the
$JBOSS_HOME/server/default/lib directory.

3. Create an MBean service xml file in the $JBOSS_HOME/server/default/deploy directory with any attributes set, for
instance the datadir and autostart.

4. Set the JDBC parameters of your web application to use:

String driver = "com.mysql.jdbc.Driver";
String url = "jdbc:mysql:///test?propertiesTransform="+

"com.mysql.management.jmx.ConnectorMXJPropertiesTransform";
String user = "root";
String password = "";
Class.forName(driver);
Connection conn = DriverManager.getConnection(url, user, password);

You may wish to create a separate users and database table spaces for each application, rather than using "root and test".

We highly suggest having a routine backup procedure for backing up the database files in the datadir.

5.3.6. Verifying Installation using JUnit
The best way to ensure that your platform is supported is to run the JUnit tests. These will test the Connector/MXJ classes and the
associated components.

5.3.6.1. JUnit Test Requirements

The first thing to do is make sure that the components will work on the platform. The MysqldResource class is really a wrapper
for a native version of MySQL, so not all platforms are supported. At the time of this writing, Linux on the i386 architecture has
been tested and seems to work quite well, as does OS X v10.3. There has been limited testing on Windows and Solaris.

Requirements:

1. JDK-1.4 or newer (or the JRE if you aren't going to be compiling the source or JSPs).

2. MySQL Connector/J version 5.0 or newer (from http://dev.mysql.com/downloads/connector/j/) installed and available via
your CLASSPATH.

3. The javax.management classes for JMX version 1.2.1, these are present in the following application servers:

• JBoss - 4.0rc1 or newer.

• Apache Tomcat - 5.0 or newer.

• Sun's JMX reference implementation version 1.2.1 (from http://java.sun.com/products/JavaManagement/).

4. JUnit 3.8.1 (from http://www.junit.org/).

If building from source, All of the requirements from above, plus:

MySQL Connector/MXJ

214

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_datadir
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_datadir
http://dev.mysql.com/downloads/connector/j/
http://java.sun.com/products/JavaManagement/
http://www.junit.org/

1. Ant version 1.5 or newer (download from http://ant.apache.org/).

5.3.6.2. Running the JUnit Tests

1. The tests attempt to launch MySQL on the port 3336. If you have a MySQL running, it may conflict, but this isn't very likely
because the default port for MySQL is 3306. However, You may set the "c-mxj_test_port" Java property to a port of your
choosing. Alternatively, you may wish to start by shutting down any instances of MySQL you have running on the target ma-
chine.

The tests suppress output to the console by default. For verbose output, you may set the "c-mxj_test_silent" Java property to
"false".

2. To run the JUnit test suite, the $CLASSPATH must include the following:

• JUnit

• JMX

• Connector/J

• MySQL Connector/MXJ

3. If connector-mxj.jar is not present in your download, unzip MySQL Connector/MXJ source archive.

cd mysqldjmx
ant dist

Then add $TEMP/cmxj/stage/connector-mxj/connector-mxj.jar to the CLASSPATH.

4. if you have junit, execute the unit tests. From the command line, type:

java com.mysql.management.AllTestsSuite

The output should look something like this:

...

...

..........
Time: 259.438
OK (101 tests)

Note that the tests are a bit slow near the end, so please be patient.

5.4. Connector/MXJ Configuration

5.4.1. Running as part of the JDBC Driver
A feature of the MySQL Connector/J JDBC driver is the ability to specify a connection to an embedded Connector/MXJ instance
through the use of the mxj keyword in the JDBC connection string.

In the following example, we have a program which creates a connection, executes a query, and prints the result to the System.out.
The MySQL database will be deployed and started as part of the connection process, and shutdown as part of the finally block.

You can find this file in the Connector/MXJ package as src/ConnectorMXJUrlTestExample.java.

import java.io.File;
import java.sql.Connection;
import java.sql.DriverManager;
import com.mysql.management.driverlaunched.ServerLauncherSocketFactory;
import com.mysql.management.util.QueryUtil;
public class ConnectorMXJUrlTestExample {
public static String DRIVER = "com.mysql.jdbc.Driver";
public static String JAVA_IO_TMPDIR = "java.io.tmpdir";
public static void main(String[] args) throws Exception {
File ourAppDir = new File(System.getProperty(JAVA_IO_TMPDIR));
File databaseDir = new File(ourAppDir, "test-mxj");
int port = Integer.parseInt(System.getProperty("c-mxj_test_port", "3336"));
String dbName = "our_test_app";

MySQL Connector/MXJ

215

http://ant.apache.org/

String url = "jdbc:mysql:mxj://localhost:" + port + "/" + dbName //
+ "?" + "server.basedir=" + databaseDir //
+ "&" + "createDatabaseIfNotExist=true"//
+ "&" + "server.initialize-user=true" //

;
System.out.println(url);
String userName = "alice";
String password = "q93uti0opwhkd";
Class.forName(DRIVER);
Connection conn = null;
try {
conn = DriverManager.getConnection(url, userName, password);
String sql = "SELECT VERSION()";
String queryForString = new QueryUtil(conn).queryForString(sql);
System.out.println("------------------------");
System.out.println(sql);
System.out.println("------------------------");
System.out.println(queryForString);
System.out.println("------------------------");
System.out.flush();
Thread.sleep(100); // wait for System.out to finish flush

} finally {
try {
if (conn != null)

conn.close();
} catch (Exception e) {
e.printStackTrace();

}
ServerLauncherSocketFactory.shutdown(databaseDir, null);

}
}

}

To run the above program, be sure to have connector-mxj.jar and Connector/J in the CLASSPATH. Then type:

java ConnectorMXJTestExample

5.4.2. Running within a Java Object
If you have a java application and wish to “embed” a MySQL database, make use of the
com.mysql.management.MysqldResource class directly. This class may be instantiated with the default (no argument)
constructor, or by passing in a java.io.File object representing the directory you wish the server to be "unzipped" into. It may also
be instantiated with printstreams for "stdout" and "stderr" for logging.

Once instantiated, a java.util.Map, the object will be able to provide a java.util.Map of server options appropriate for
the platform and version of MySQL which you will be using.

The MysqldResource enables you to "start" MySQL with a java.util.Map of server options which you provide, as well as
"shutdown" the database. The following example shows a simplistic way to embed MySQL in an application using plain java ob-
jects.

You can find this file in the Connector/MXJ package as src/ConnectorMXJObjectTestExample.java.

import java.io.File;
import java.sql.Connection;
import java.sql.DriverManager;
import java.util.HashMap;
import java.util.Map;
import com.mysql.management.MysqldResource;
import com.mysql.management.MysqldResourceI;
import com.mysql.management.util.QueryUtil;
public class ConnectorMXJObjectTestExample {

public static final String DRIVER = "com.mysql.jdbc.Driver";
public static final String JAVA_IO_TMPDIR = "java.io.tmpdir";
public static void main(String[] args) throws Exception {

File ourAppDir = new File(System.getProperty(JAVA_IO_TMPDIR));
File databaseDir = new File(ourAppDir, "mysql-mxj");
int port = Integer.parseInt(System.getProperty("c-mxj_test_port",

"3336"));
String userName = "alice";
String password = "q93uti0opwhkd";
MysqldResource mysqldResource = startDatabase(databaseDir, port,

userName, password);
Class.forName(DRIVER);
Connection conn = null;
try {

String dbName = "our_test_app";
String url = "jdbc:mysql://localhost:" + port + "/" + dbName //

+ "?" + "createDatabaseIfNotExist=true"//
;
conn = DriverManager.getConnection(url, userName, password);
String sql = "SELECT VERSION()";
String queryForString = new QueryUtil(conn).queryForString(sql);
System.out.println("------------------------");
System.out.println(sql);
System.out.println("------------------------");

MySQL Connector/MXJ

216

System.out.println(queryForString);
System.out.println("------------------------");
System.out.flush();
Thread.sleep(100); // wait for System.out to finish flush

} finally {
try {

if (conn != null) {
conn.close();

}
} catch (Exception e) {

e.printStackTrace();
}
try {

mysqldResource.shutdown();
} catch (Exception e) {

e.printStackTrace();
}

}
}
public static MysqldResource startDatabase(File databaseDir, int port,

String userName, String password) {
MysqldResource mysqldResource = new MysqldResource(databaseDir);
Map database_options = new HashMap();
database_options.put(MysqldResourceI.PORT, Integer.toString(port));
database_options.put(MysqldResourceI.INITIALIZE_USER, "true");
database_options.put(MysqldResourceI.INITIALIZE_USER_NAME, userName);
database_options.put(MysqldResourceI.INITIALIZE_PASSWORD, password);
mysqldResource.start("test-mysqld-thread", database_options);
if (!mysqldResource.isRunning()) {

throw new RuntimeException("MySQL did not start.");
}
System.out.println("MySQL is running.");
return mysqldResource;

}
}

5.4.3. Setting server options
Of course there are many options we may wish to set for a MySQL database. These options may be specified as part of the JDBC
connection string simply by prefixing each server option with server.. In the following example we set two driver parameters
and two server parameters:

String url = "jdbc:mysql://" + hostColonPort + "/"
+ "?"
+ "cacheServerConfiguration=true"
+ "&"
+ "useLocalSessionState=true"
+ "&"
+ "server.basedir=/opt/myapp/db"
+ "&"
+ "server.datadir=/mnt/bigdisk/myapp/data";

Starting with Connector/MXJ 5.0.6 you can use the initializer-user property to a connection string. If set to true, the de-
fault anonymous and root users will be removed and the user/password combination from the connection URL will be used to cre-
ate a new user. For example:

String url = "jdbc:mysql:mxj://localhost:" + port
+ "/alice_db"
+ "?server.datadir=" + dataDir.getPath()
+ "&server.initialize-user=true"
+ "&createDatabaseIfNotExist=true"
;

5.5. Connector/MXJ Reference
The following sections include detailed information on the different API interfaces to Connector/MXJ.

5.5.1. MysqldResource Constructors
The MysqldResource class supports three different constructor forms:

• public MysqldResource(File baseDir, File dataDir, String mysqlVersionString, Print-
Stream out, PrintStream err)

Enables you to set the base directory, data directory, select a server by its version string, standard out and standard error.

• public MysqldResource(File baseDir, File dataDir, String mysqlVersionString)

MySQL Connector/MXJ

217

Enables you to set the base directory, data directory and select a server by its version string. Output for standard out and stand-
ard err are directed to System.out and System.err.

• public MysqldResource(File baseDir, File dataDir)

Enables you to set the base directory and data directory. The default MySQL version is selected, and output for standard out
and standard err are directed to System.out and System.err.

• public MysqldResource(File baseDir);

Allows the setting of the "basedir" to deploy the MySQL files to. Output for standard out and standard err are directed to Sys-
tem.out and System.err.

• public MysqldResource();

The basedir is defaulted to a subdirectory of the java.io.tempdir. Output for standard out and standard err are directed to Sys-
tem.out and System.err;

5.5.2. MysqldResource Methods
MysqldResource API includes the following methods:

• void start(String threadName, Map mysqldArgs);

Deploys and starts MySQL. The "threadName" string is used to name the thread which actually performs the execution of the
MySQL command line. The map is the set of arguments and their values to be passed to the command line.

• void shutdown();

Shuts down the MySQL instance managed by the MysqldResource object.

• Map getServerOptions();

Returns a map of all the options and their current (or default, if not running) options available for the MySQL database.

• boolean isRunning();

Returns true if the MySQL database is running.

• boolean isReadyForConnections();

Returns true once the database reports that is ready for connections.

• void setKillDelay(int millis);

The default “Kill Delay” is 30 seconds. This represents the amount of time to wait between the initial request to shutdown and
issuing a “force kill” if the database has not shutdown by itself.

• void addCompletionListenser(Runnable listener);

Allows for applications to be notified when the server process completes. Each ''listener'' will be fired off in its own thread.

• String getVersion();

Returns the version of MySQL.

• void setVersion(int MajorVersion, int minorVersion, int patchLevel);

The standard distribution comes with only one version of MySQL packaged. However, it is possible to package multiple ver-
sions, and specify which version to use.

5.6. Connector/MXJ Notes and Tips
This section contains notes and tips on using the Connector/MXJ component within your applications.

5.6.1. Creating your own Connector/MXJ Package

MySQL Connector/MXJ

218

If you want to create a custom Connector/MXJ package that includes a specific mysqld version or platform then you must extract
and rebuild the mysql-connector-mxj.jar (Connector/MXJ v5.0.3 or earlier) or mysql-connect-
or-mxj-gpl-[ver]-db-files.jar (Connector/MXJ v5.0.4 or later) file.

First, you should create a new directory into which you can extract the current connector-mxj.jar:

shell> mkdir custom-mxj
shell> cd custom-mxj
shell> jar -xf connector-mxj.jar
shell> ls
5-0-22/
ConnectorMXJObjectTestExample.class
ConnectorMXJUrlTestExample.class
META-INF/
TestDb.class
com/
kill.exe

If you are using Connector/MXJ v5.0.4 or later, you should unpack the connector-mxj-db-files.jar:

shell> mkdir custom-mxj
shell> cd custom-mxj
shell> jar -xf connector-mxj-db-files.jar
shell> ls
5-0-51a/
META-INF/
connector-mxj.properties

The MySQL version directory, 5-0-22 or 5-0-51a in the preceding examples, contains all of the files used to create an instance
of MySQL when Connector/MXJ is executed. All of the files in this directory are required for each version of MySQL that you
want to embed. Note as well the format of the version number, which uses hyphens instead of periods to separate the version num-
ber components.

Within the version specific directory are the platform specific directories, and archives of the data and share directory required
by MySQL for the various platforms. For example, here is the listing for the default Connector/MXJ package:

shell>> ls
Linux-i386/
META-INF/
Mac_OS_X-ppc/
SunOS-sparc/
Win-x86/
com/
data_dir.jar
share_dir.jar
win_share_dir.jar

Platform specific directories are listed by their OS and platform - for example the mysqld for Mac OS X PowerPC is located
within the Mac_OS_X-ppc directory. You can delete directories from this location that you do not require, and add new director-
ies for additional platforms that you want to support.

To add a platform specific mysqld, create a new directory with the corresponding name for your operating system/platform. For
example, you could add a directory for Mac OS X/Intel using the directory Mac_OS_X-i386.

On Unix systems, you can determine the platform using uname:

shell> uname -p
i386

In Connector/MXJ v5.0.9 and later, an additional platform-map.properties file is used to associate a specific platform and
operating system combination with the directory in which the mysqld for that combination is located. The determined operating
system and platform are on the left, and the directory name where the appropriate mysqld is located is on the right. You can see a
sample of the file below:

Linux-i386=Linux-i386
Linux-x86=Linux-i386
Linux-i686=Linux-i386
Linux-x86_64=Linux-i386
Linux-ia64=Linux-i386
#Linux-ppc=Linux-ppc
#Linux-ppc64=Linux-ppc
Mac_OS_X-i386=Mac_OS_X-i386
Mac_OS_X-ppc=Mac_OS_X-ppc
Rhapsody-PowerPC=Mac_OS_X-ppc
#Mac_OS-PowerPC=
#macos-PowerPC=
#MacOS-PowerPC=
SunOS-sparc=SunOS-sparc
Solaris-sparc=SunOS-sparc
SunOS-x86=SunOS-x86
Solaris-x86=SunOS-x86

MySQL Connector/MXJ

219

FreeBSD-x86=FreeBSD-x86
Windows_Vista-x86=Win-x86
Windows_2003-x86=Win-x86
Windows_XP-x86=Win-x86
Windows_2000-x86=Win-x86
Windows_NT-x86=Win-x86
Windows_NT_(unknown)-x86=Win-x86

Now you need to download or compile mysqld for the MySQL version and platform you want to include in your custom con-
nector-mxj.jar package into the new directory.

Create a file called version.txt in the OS/platform directory you have just created that contains the version string/path of the
mysqld binary. For example:

mysql-5.0.22-osx10.3-i386/bin/mysqld

You can now recreate the connector-mxj.jar file with the added mysqld:

shell> cd custom-mxj
shell> jar -cf ../connector-mxj.jar *

For Connector/MXJ v5.0.4 and later, you should repackage to the connector-mxj-db-files.jar:

shell> cd custom-mxj
shell> jar -cf ../mysql-connector-mxj-gpl-[ver]-db-files.jar *

You should test this package using the steps outlined in Section 5.3.3, “Connector/MXJ Quick Start Guide”.

Note

Because the mysql-connector-mxj-gpl-[ver]-db-files.jar file is separate from the main Connector/
MXJ classes you can distribute different mysql-connector-mxj-gpl-[ver]-db-files.jar files to differ-
ent hotsts or for different projects without having to create a completely new main mysql-connect-
or-mxj-gpl-[ver].jar file for each one.

5.6.2. Deploying Connector/MXJ with a pre-configured database
To include a pre-configured/populated database within your Connector/MXJ JAR file you must create a custom data_dir.jar
file, as included within the main connector-mxj.jar (Connector/MXJ 5.0.3 or earlier) or mysql-connect-
or-mxj-gpl-[ver]-db-files.jar (Connector/MXJ 5.0.4 or later) file:

1. First extract the connector-mxj.jar or mysql-connector-gpl-[ver]-db-files.jar file, as outlined in the
previous section (see Section 5.6.1, “Creating your own Connector/MXJ Package”).

2. First, create your database and populate the database with the information you require in an existing instance of MySQL - in-
cluding Connector/MXJ instances. Data file formats are compatible across platforms.

3. Shutdown the instance of MySQL.

4. Create a JAR file of the data directory and databases that you want to include your Connector/MXJ package. You should in-
clude the mysql database, which includes user authentication information, in addition to the specific databases you want to
include. For example, to create a JAR of the mysql and mxjtest databases:

shell> jar -cf ../data_dir.jar mysql mxjtest

5. For Connector/MXJ 5.0.3 or earlier, copy the data_dir.jar file into the extracted connector-mxj.jar directory, and
then create an archive for connector-mxj.jar.

For Connector/MXJ 5.0.4 or later, copy the data_dir.jar file into the extracted mysql-connect-
or-mxj-gpl-[ver]-db-files.jar directory, and then create an archive for mysql-connect-
or-mxj-db-gpl-[ver]--files.jar.

Note that if you are create databases using the InnoDB engine, you must include the ibdata.* and ib_logfile* files within
the data_dir.jar archive.

5.6.3. Running within a JMX Agent (custom)

MySQL Connector/MXJ

220

As a JMX MBean, MySQL Connector/MXJ requires a JMX v1.2 compliant MBean container, such as JBoss version 4. The MBean
will uses the standard JMX management APIs to present (and allow the setting of) parameters which are appropriate for that plat-
form.

If you are not using the SUN Reference implementation of the JMX libraries, you should skip this section. Or, if you are deploying
to JBoss, you also may wish to skip to the next section.

We want to see the MysqldDynamicMBean in action inside of a JMX agent. In the com.mysql.management.jmx.sunri
package is a custom JMX agent with two MBeans:

1. the MysqldDynamicMBean, and

2. a com.sun.jdmk.comm.HtmlAdaptorServer, which provides a web interface for manipulating the beans inside of a JMX agent.

When this very simple agent is started, it will allow a MySQL database to be started and stopped with a web browser.

1. Complete the testing of the platform as above.

• current JDK, JUnit, Connector/J, MySQL Connector/MXJ

• this section requires the SUN reference implementation of JMX

• PATH, JAVA_HOME, ANT_HOME, CLASSPATH

2. If not building from source, skip to next step

rebuild with the "sunri.present"

ant -Dsunri.present=true dist
re-run tests:
java junit.textui.TestRunner com.mysql.management.AllTestsSuite

3. launch the test agent from the command line:

java com.mysql.management.jmx.sunri.MysqldTestAgentSunHtmlAdaptor &

4. from a browser:

http://localhost:9092/

5. under MysqldAgent,

select "name=mysqld"

6. Observe the MBean View

7. scroll to the bottom of the screen press the STARTMYSQLD button

8. click Back to MBean View

9. scroll to the bottom of the screen press STOPMYSQLD button

10. kill the java process running the Test Agent (jmx server)

5.6.4. Deployment in a standard JMX Agent environment (JBoss)
Once there is confidence that the MBean will function on the platform, deploying the MBean inside of a standard JMX Agent is the
next step. Included are instructions for deploying to JBoss.

1. Ensure a current version of java development kit (v1.4.x), see above.

• Ensure JAVA_HOME is set (JBoss requires JAVA_HOME)

MySQL Connector/MXJ

221

• Ensure JAVA_HOME/bin is in the PATH (You will NOT need to set your CLASSPATH, nor will you need any of the
jars used in the previous tests).

2. Ensure a current version of JBoss (v4.0RC1 or better)

http://www.jboss.org/index.html
select "Downloads"
select "jboss-4.0.zip"
pick a mirror
unzip ~/dload/jboss-4.0.zip
create a JBOSS_HOME environment variable set to the unzipped directory
unix only:
cd $JBOSS_HOME/bin
chmod +x *.sh

3. Deploy (copy) the connector-mxj.jar to $JBOSS_HOME/server/default/lib.

4. Deploy (copy) mysql-connector-java-3.1.4-beta-bin.jar to $JBOSS_HOME/server/default/lib.

5. Create a mxjtest.war directory in $JBOSS_HOME/server/default/deploy.

6. Deploy (copy) index.jsp to $JBOSS_HOME/server/default/deploy/mxjtest.war.

7. Create a mysqld-service.xml file in $JBOSS_HOME/server/default/deploy.

<?xml version="1.0" encoding="UTF-8"?>
<server>
<mbean code="com.mysql.management.jmx.jboss.JBossMysqldDynamicMBean"

name="mysql:type=service,name=mysqld">
<attribute name="datadir">/tmp/xxx_data_xxx</attribute>
<attribute name="autostart">true</attribute>
</mbean>
</server>

8. Start jboss:

• on unix: $JBOSS_HOME/bin/run.sh

• on windows: %JBOSS_HOME%\bin\run.bat

Be ready: JBoss sends a lot of output to the screen.

9. When JBoss seems to have stopped sending output to the screen, open a web browser to: ht-
tp://localhost:8080/jmx-console

10. Scroll down to the bottom of the page in the mysql section, select the bulleted mysqld link.

11. Observe the JMX MBean View page. MySQL should already be running.

12. (If "autostart=true" was set, you may skip this step.) Scroll to the bottom of the screen. You may press the INVOKE button to
stop (or start) MySQL observe Operation completed successfully without a return value. Click
Back to MBean View

13. To confirm MySQL is running, open a web browser to http://localhost:8080/mxjtest/ and you should see that

SELECT 1

returned with a result of

1

14. Guided by the $JBOSS_HOME/server/default/deploy/mxjtest.war/index.jsp you will be able to use
MySQL in your Web Application. There is a test database and a root user (no password) ready to experiment with. Try
creating a table, inserting some rows, and doing some selects.

15. Shut down MySQL. MySQL will be stopped automatically when JBoss is stopped, or: from the browser, scroll down to the
bottom of the MBean View press the stop service INVOKE button to halt the service. Observe Operation completed
successfully without a return value. Using ps or task manager see that MySQL is no longer running

As of 1.0.6-beta version is the ability to have the MBean start the MySQL database upon start up. Also, we've taken advantage of
the JBoss life-cycle extension methods so that the database will gracefully shut down when JBoss is shutdown.

MySQL Connector/MXJ

222

5.7. Connector/MXJ Support
There are a wide variety of options available for obtaining support for using Connector/MXJ. You should contact the Connector/
MXJ community for help before reporting a potential bug or problem. See Section 5.7.1, “Connector/MXJ Community Support”.

5.7.1. Connector/MXJ Community Support
Sun Microsystems, Inc. provides assistance to the user community by means of a number of mailing lists and web based forums.

You can find help and support through the MySQL and Java mailing list.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See MySQL
Mailing Lists.

Community support from experienced users is also available through the MyODBC Forum. You may also find help from other
users in the other MySQL Forums, located at http://forums.mysql.com. See MySQL Community Support at the MySQL Forums.

5.7.2. How to Report Connector/MXJ Problems
If you encounter difficulties or problems with Connector/MXJ, contact the Connector/MXJ community Section 5.7.1,
“Connector/MXJ Community Support”.

If reporting a problem, you should ideally include the following information with the email:

• Operating system and version

• Connector/MXJ version

• MySQL server version

• Copies of error messages or other unexpected output

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix the problem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

5.7.3. Connector/MXJ Change History
The Connector/MXJ Change History (Changelog) is located with the main Changelog for MySQL. See Appendix E, MySQL Con-
nector/MXJ Change History.

MySQL Connector/MXJ

223

http://lists.mysql.com/java
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/forums.html
http://bugs.mysql.com/

Chapter 6. MySQL Connector/C++
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

MySQL Connector/C++ is a MySQL database connector for C++.

The MySQL Connector/C++ is licensed under the terms of the GPL, like most MySQL Connectors. There are special exceptions to
the terms and conditions of the GPL as it is applied to this software, see FLOSS License Exception. If you need a non-GPL license
for commercial distribution please contact us.

The MySQL Connector/C++ is compatible with the JDBC 4.0 API. However, MySQL Connector/C++ does not implement all of
the JDBC 4.0 API. The MySQL Connector/C++ current version features the following classes:

• Connection

• DatabaseMetaData

• Driver

• PreparedStatement

• ResultSet

• ResultSetMetaData

• Savepoint

• Statement

The JDBC 4.0 API defines approximately 450 methods for the above mentioned classes. MySQL Connector/C++ implements
around 80% of these and makes them available in the preview release.

The Beta release has been successfully compiled and tested on the following platforms:

AIX

• 5.2 (PPC32, PPC64)

• 5.3 (PPC32, PPC64)

FreeBSD

• 6.0 (x86, x86_64)

HPUX

• 11.11 (PA-RISC 32bit, PA-RISC 64bit)

Linux

• Debian 3.1 (PPC32, x86)

• FC4 (x86)

• RHEL 3 (ia64, x86, x86_64)

• RHEL 4 (ia64, x86, x86_64)

• RHEL 5 (ia64, x86, x86_64)

224

• SLES 9 (ia64, x86, x86_64)

• SLES 10 (ia64, x86_64)

• SuSE 10.3, (x86_64)

• Ubuntu 8.04 (x86)

• Ubuntu 8.10 (x86_64)

Mac

• MacOSX 10.3 (PPC32, PPC64)

• MacOSX 10.4 (PPC32, PPC64, x86)

• MacOSX 10.5 (PPC32, PPC64, x86, x86_64)

SunOS

• Solaris 8 (SPARC32, SPARC64, x86)

• Solaris 9 (SPARC32, SPARC64, x86)

• Solaris 10 (SPARC32, SPARC64, x86, x86_64)

Windows

• XP Professional (32bit)

• 2003 (64bit)

Future versions will run on all platforms supported by the MySQL Server.

Note

MySQL Connector/C++ supports MySQL 5.1 and later.

Note

MySQL Connector/C++ supports only Microsoft Visual Studio 2003 and above on Windows.

MySQL Connector/C++ Download

You can download the source code for the MySQL Connector/C++ preview release at the download site.

MySQL Connector/C++ Source repository

The latest development version is also available through Launchpad.

Bazaar is used for the MySQL Connector/C++ code repository. You can check out the source code using the bzr command line
tool:

shell> bzr branch lp:~mysql/mysql-connector-cpp/trunk .

The source of the 1.0.3alpha release is available from the following branch:

shell> bzr branch lp:~andrey-mysql/mysql-connector-cpp/v1_0_3

The source of the 1.0.2alpha release is available from the following branch:

shell> bzr branch lp:~andrey-mysql/mysql-connector-cpp/v1_0_2

The source of the 1.0.1alpha release is available from the following branch:

MySQL Connector/C++

225

http://downloads.mysql.com/forge/connector_cpp_preview
https://launchpad.net/mysql-connector-cpp

shell> bzr branch lp:~andrey-mysql/mysql-connector-cpp/v1_0_1

Binary distributions

Starting with 1.0.4 Beta, binary distributions will be made available in addition to source code releases. The releases available are
shown below.

Microsoft Windows platform:

• Without installer, a Zip file

• MSI installer package

Other platforms:

• Compressed GNU TAR archive (tar.gz)

Note

Note that source packages are available for all platforms in the Compressed GNU TAR archive (tar.gz) format.

MySQL Connector/C++ Advantages

Using MySQL Connector/C++ instead of the MySQL C API (MySQL Client Library) offers the following advantages for C++
users:

• Convenience of pure C++, no C function calls required

• Supports an industry standard API, JDBC 4.0

• Supports the object-oriented programming paradigm

• Reduces development time

• MySQL Connector/C++ is licensed under the GPL with the FLOSS License Exception

• MySQL Connector/C++ is available under a commercial license upon request

MySQL Connector/C++ Status

MySQL Connector/C++ is available as a development preview version. We kindly ask users and developers to try it out and
provide us with feedback. We do not encourage you to use it in production environments.

Note that MySQL Workbench is successfully using MySQL Connector/C++.

Note

Sun Microsystems does not provide formal support for MySQL Connector/C++.

If you have any queries please contact us.

6.1. MySQL Connector/C++ Binary Installation
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

Caution

One problem that can occur is when the tools you use to build your application are not compatible with the tools used
to build the binary versions of MySQL Connector/C++. Ideally you need to build your application with the same tools
that were used to build the MySQL Connector/C++ binaries. To help with this the following resources are provided.

All distributions contain a README file, which contains platform-specific notes. At the end of the README file con-

MySQL Connector/C++

226

tained in the binary distribution you will find the settings used to build the binaries. If you experience build-related is-
sues on a platform, it may help to check the settings used on the platform to build the binary.

For your convenience the same information, but more frequently updated, can be found on the MySQL Forge site.

A better solution is to build your MySQL Connector/C++ libraries from the source code, using the same tools that you
use for building your application. This ensures compatibility.

Archive Package

Unpack the archive into an appropriate directory. If you plan to use a dynamically linked version of MySQL Connector/C++, make
sure that your system can reference the MySQL Client Library. Consult your operating system documentation on how do modify
and expand the search path for libraries. In case you cannot modify the library search path it may help to copy your application, the
MySQL Connector/C++ library and the MySQL Client Library into the same directory. Most systems search for libraries in the
current directory.

Windows MSI Installer

Windows users can choose between two binary packages:

1. Without installer (unzip in C:\)

2. Windows MSI Installer (x86)

Using the MSI Installer may be the easiest solution. Running the MSI Installer does not require any administrative permissions as it
simply copies files.

Figure 6.1. Windows Installer Welcome Screen

MySQL Connector/C++

227

 http://forge.mysql.com/wiki/Connector_C%2B%2B_Binary_Builds

Figure 6.2. Windows Installer Overview Screen

The “Typical” installation consists of all required header files and the Release libraries. The only available “Custom” installation
option allows you to install additional Debug versions of the connector libraries.

Figure 6.3. Windows Installer Custom Setup Screen

MySQL Connector/C++

228

6.2. MySQL Connector/C++ Source Installation
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

The MySQL Connector/C++ is based on the MySQL Client Library (MySQL C API). MySQL Connector/C++ is linked against the
MySQL Client Library. You need to have the MySQL Client Library installed in order to compile MySQL Connector/C++.

You also need to have the cross-platform build tool CMake 2.4, or newer, and GLib 2.2.3 or newer installed. Check the README
file included with the distribution for platform specific notes on building for Windows and SunOS.

Typically the MySQL Client Library is installed when the MySQL Server is installed. However, check your operating system doc-
umentation for other installation options.

6.2.1. Building source on Unix, Solaris and Mac OS X

1. Run CMake to build a Makefile:

shell> me@host:/path/to/mysql-connector-cpp> cmake .
-- Check for working C compiler: /usr/local/bin/gcc
-- Check for working C compiler: /usr/local/bin/gcc -- works
[...]
-- Generating done
-- Build files have been written to: /path/to/mysql-connector-cpp/

On non-Windows systems, CMake first checks to see if the CMake variable MYSQL_CONFIG_EXECUTABLE is set. If it is
not found CMake will try to locate mysql_config in the default locations.

If you have any problems with the configure process please check the troubleshooting instructions below.

MySQL Connector/C++

229

2. Use make to build the libraries. First make sure you have a clean build:

shell> me@host:/path/to/mysql-connector-cpp> make clean

Then build the connector:

me@host:/path/to/mysql-connector-cpp> make
[1%] Building CXX object »
driver/CMakeFiles/mysqlcppconn.dir/mysql_connection.o
[3%] Building CXX object »
driver/CMakeFiles/mysqlcppconn.dir/mysql_constructed_resultset.o
[...]
[100%] Building CXX object examples/CMakeFiles/statement.dir/statement.o
Linking CXX executable statement

If all goes well, you will find the MySQL Connector/C++ library in /path/to/cppconn/libmysqlcppconn.so.

3. Finally make sure the header and library files are installed to their correct locations:

make install

Unless you have changed this in the configuration step, the header files will be copied to the directory /
usr/local/include. The header files copied are mysql_connection.h and mysql_driver.h.

Again, unless you have specified otherwise, the library files will be copied to /usr/local/lib. The files copied are
libmysqlcppcon.so, the dynamic library, and libmysqlcppconn-static.a, the static library.

If you encounter any errors, please first carry out the checks shown below:

1. CMake options: MySQL installation path, debug version and more

In case of configure and/or compile problems check the list of CMake options:

shell> me@host:/path/to/mysql-connector-cpp> cmake -L
[...]
CMAKE_BACKWARDS_COMPATIBILITY:STRING=2.4
CMAKE_BUILD_TYPE:STRING=
CMAKE_INSTALL_PREFIX:PATH=/usr/local
EXECUTABLE_OUTPUT_PATH:PATH=
LIBRARY_OUTPUT_PATH:PATH=
MYSQLCPPCONN_GCOV_ENABLE:BOOL=0
MYSQLCPPCONN_TRACE_ENABLE:BOOL=0
MYSQL_CONFIG_EXECUTABLE:FILEPATH=/usr/bin/mysql_config

For example, if your MySQL Server installation path is not /usr/local/mysql and you want to build a debug version of
the MySQL Connector/C++ use:

shell> me@host:/path/to/mysql-connector-cpp> cmake »
-D CMAKE_BUILD_TYPE:STRING=Debug »
-D MYSQL_CONFIG_EXECUTABLE=/path/to/my/mysql/server/bin/mysql_config .

2. Verify your settings with cmake -L:

shell> me@host:/path/to/mysql-connector-cpp> cmake -L
[...]
CMAKE_BACKWARDS_COMPATIBILITY:STRING=2.4
CMAKE_BUILD_TYPE:STRING=
CMAKE_INSTALL_PREFIX:PATH=/usr/local
EXECUTABLE_OUTPUT_PATH:PATH=
LIBRARY_OUTPUT_PATH:PATH=
MYSQLCPPCONN_GCOV_ENABLE:BOOL=0
MYSQLCPPCONN_TRACE_ENABLE:BOOL=0
MYSQL_CONFIG_EXECUTABLE=/path/to/my/mysql/server/bin/mysql_config

Proceed by carrying out a make clean command followed by a make command, as described above.

6.2.2. Building on Windows

Note

Please note the only compiler formally supported for Windows is Microsoft Visual Studio 2003 and above.

MySQL Connector/C++

230

The basic steps for building the connector on Windows are the same as for Unix. It is important to use CMake 2.6.2 or newer to
generate build files for your compiler and to invoke the compiler.

Note

On Windows, mysql_config is not present, so CMake will attempt to retrieve the location of MySQL from the en-
vironment variable $ENV{MYSQL_DIR}. If MYSQL_DIR is not set, CMake will then proceed to check for MySQL
in the following locations: $ENV{ProgramFiles}/MySQL/*/include, and
$ENV{SystemDrive}/MySQL/*/include.

CMake makes it easy for you to try out other compilers. However, you may experience compile warnings, compile errors or linking
issues not detected by Visual Studio. Patches are gratefully accepted to fix issues with other compilers.

Consult the CMake manual or check cmake --help to find out which build systems are supported by your CMake version:

C:\>cmake --help
cmake version 2.6-patch 2
Usage
[...]
Generators
The following generators are available on this platform:
Borland Makefiles = Generates Borland makefiles.
MSYS Makefiles = Generates MSYS makefiles.
MinGW Makefiles = Generates a make file for use with

mingw32-make.
NMake Makefiles = Generates NMake makefiles.
Unix Makefiles = Generates standard UNIX makefiles.
Visual Studio 6 = Generates Visual Studio 6 project files.
Visual Studio 7 = Generates Visual Studio .NET 2002 project

files.
Visual Studio 7 .NET 2003 = Generates Visual Studio .NET 2003 project

files.
Visual Studio 8 2005 = Generates Visual Studio .NET 2005 project

files.
Visual Studio 8 2005 Win64 = Generates Visual Studio .NET 2005 Win64

project files.
Visual Studio 9 2008 = Generates Visual Studio 9 2008 project fil
Visual Studio 9 2008 Win64 = Generates Visual Studio 9 2008 Win64 proje

files.
[...]

It is likely that your CMake binary will support more compilers, known by CMake as generators, than supported by MySQL Con-
nector/C++. We have built the connector using the following generators:

• Microsoft Visual Studio 8 (Visual Studio 2005)

• Microsoft Visual Studio 9 (Visual Studio 2008, Visual Studio 2008 Express)

• NMake

Please see the building instructions for Unix, Solaris and Mac OS X for troubleshooting and configuration hints.

The steps to build the connector are given below:

1. Run CMake to generate build files for your generator:

Visual Studio

C:\path_to_mysql_cpp>cmake -G "Visual Studio 9 2008"
-- Check for working C compiler: cl
-- Check for working C compiler: cl -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: cl
-- Check for working CXX compiler: cl -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- ENV{MYSQL_DIR} =
-- MySQL Include dir: C:/Programme/MySQL/MySQL Server 5.1/include
-- MySQL Library : C:/Progams/MySQL/MySQL Server 5.1/lib/opt/mysqlclient.lib
-- MySQL Library dir: C:/Progams/MySQL/MySQL Server 5.1/lib/opt
-- MySQL CFLAGS:
-- MySQL Link flags:
-- MySQL Include dir: C:/Progams/MySQL/MySQL Server 5.1/include
-- MySQL Library dir: C:/Progams/MySQL/MySQL Server 5.1/lib/opt
-- MySQL CFLAGS:
-- MySQL Link flags:
-- Configuring cppconn
-- Configuring test cases
-- Looking for isinf

MySQL Connector/C++

231

-- Looking for isinf - not found
-- Looking for isinf
-- Looking for isinf - not found.
-- Looking for finite
-- Looking for finite - not found.
-- Configuring C/J junit tests port
-- Configuring examples
-- Configuring done
-- Generating done
-- Build files have been written to: C:\path_to_mysql_cpp
C:\path_to_mysql_cpp>dir *.sln *.vcproj
[...]
19.11.2008 12:16 23.332 MYSQLCPPCONN.sln
[...]
19.11.2008 12:16 27.564 ALL_BUILD.vcproj
19.11.2008 12:16 27.869 INSTALL.vcproj
19.11.2008 12:16 28.073 PACKAGE.vcproj
19.11.2008 12:16 27.495 ZERO_CHECK.vcproj

NMake

C:\path_to_mysql_cpp>cmake -G "NMake Makefiles"
-- The C compiler identification is MSVC
-- The CXX compiler identification is MSVC
[...]
-- Build files have been written to: C:\path_to_mysql_cpp

2. Use your compiler to build MySQL Connector/C++

Visual Studio - GUI

Open the newly generated project files in the Visual Studio GUI or use a Visual Studio command line to build the driver. The
project files contain a variety of different configurations. Among them debug and non-debug versions.

Visual Studio - NMake

C:\path_to_mysql_cpp>nmake
Microsoft (R) Program Maintenance Utility Version 9.00.30729.01
Copyright (C) Microsoft Corporation. All rights reserved.
Scanning dependencies of target mysqlcppconn
[2%] Building CXX object driver/CMakeFiles/mysqlcppconn.dir/mysql_connection.obj
mysql_connection.cpp
[...]
Linking CXX executable statement.exe
[100%] Built target statement

6.3. MySQL Connector/C++ Building Windows applications with Mi-
crosoft Visual Studio

MySQL Connector/C++ is available as a static or dynamic library to use with your application. This section looks at how to link
the library to your application.

Note

To avoid potential crashes the build configuration of MySQL Connector/C++ should match the build configuration of
the application using it. For example, do not use the release build of MySQL Connector/C++ with a debug build of
the client application.

Static library

The MySQL Connector/C++ static library file is mysqlcppconn-static.lib. This needs to be statically linked with your ap-
plication. You also need to link against the files libmysql.dll and libmysql.lib. Once linking has been successfully com-
pleted, the application will require access to libmysql.dll at run time.

Dynamic library

The MySQL Connector/C++ dynamic library file is mysqlcppconn.dll. In order to build your client application you need to
link it with the file mysqlcppconn.lib. At run time the application will require access to the files mysqlcppconn.dll and
libmysql.dll.

Building a MySQL Connector/C++ application with Microsoft Visual Studio

Initially, the procedure for building an application to use either the static or dynamic library is the same. You then carry out some
additional steps depending on whether you want to build your application to use the static or dynamic library.

MySQL Connector/C++

232

1. Select FILE, NEW, PROJECT from the main menu.

Figure 6.4. Creating a new project

2. In the wizard select VISUAL C++, WIN32. From VISUAL STUDIO INSTALLED TEMPLATES select the application type WIN32
CONSOLE APPLICATION. Enter a name for the application, and then click OK, to move to the Win32 Application Wizard.

Figure 6.5. The New Project dialog box

MySQL Connector/C++

233

3. In the Win32 Application Wizard, click on APPLICATION SETTINGS and ensure the defaults are selected. The radio button
CONSOLE APPLICATION, and the checkbox PRECOMPILED HEADERS will be selected. Click FINISH to close the wizard.

Figure 6.6. The Win32 Application Wizard

MySQL Connector/C++

234

4. From the drop down list box on the toolbar, change from the default DEBUG build to the RELEASE build.

Figure 6.7. Selecting the Release build

5. From the main menu select PROJECT, PROPERTIES. This can also be accessed using the hot key ALT + F7.

Figure 6.8. Selecting Project Properties from the main menu

MySQL Connector/C++

235

6. Under CONFIGURATION PROPERTIES, open the tree view.

7. Select C++, GENERAL in the tree view.

Figure 6.9. Setting properties

MySQL Connector/C++

236

8. You now need to ensure that Visual Studio can find the MySQL include directory. This directory includes header files that can
optionally be installed when installing MySQL Server.

Figure 6.10. MySQL include directory

MySQL Connector/C++

237

9. Then in the ADDITIONAL INCLUDE DIRECTORIES text field, add the MySQL include/ directory.

Figure 6.11. Select Directory dialog

MySQL Connector/C++

238

10. You will also need to set the location of additional libraries that Visual Studio will need in order to build the application.
These are located in the MySQL lib/opt directory, a sub-directory of the MySQL Server installation directory.

Figure 6.12. Typical contents of MySQL lib/opt directory

11. In the tree view open LINKER, GENERAL, ADDITIONAL LIBRARY DIRECTORIES.

MySQL Connector/C++

239

Figure 6.13. Additional Library Directories

12. Add the lib/opt directory into the ADDITIONAL LIBRARY DIRECTORIES text field. This allows the library file
libmysql.lib to be found.

Figure 6.14. Additional Library Directories dialog

MySQL Connector/C++

240

The remaining steps depend on whether you are building an application to use the MySQL Connector/C++ static or dynamic lib-
rary. If you are building your application to use the dynamic library go here. If you are building your application to use the static
library, carry out the following steps:

1. Then open LINKER, INPUT, ADDITIONAL DEPENDENCIES.

Figure 6.15.

MySQL Connector/C++

241

2. Enter mysqlcppconn-static.lib and libmysql.lib.

Figure 6.16. Adding additional dependencies

MySQL Connector/C++

242

3. By default CPPCONN_PUBLIC_FUNC is defined to declare functions to be compatible with an application that calls a DLL.
If building an application to call the static library, you must ensure that function prototypes are compatible with this. In this
case CPPCONN_PUBLIC_FUNC needs to be defined to be an empty string, so that functions are declared with the correct pro-
totype.

In the PROJECT, PROPERTIES tree view, under C++, PREPROCESSOR, enter CPPCONN_PUBLIC_FUNC= into the PREPRO-
CESSOR DEFINITIONS text field.

Figure 6.17. Setting the CPPCONN_PUBLIC_FUNC define

MySQL Connector/C++

243

Note

Make sure you enter CPPCONN_PUBLIC_FUNC= and not CPPCONN_PUBLIC_FUNC, as it needs to be defined as
an empty string.

If building an application to use the MySQL Connector/C++ dynamically linked library carry out these steps:

1. Under LINKER, INPUT, add mysqlcppconn.lib into the ADDITIONAL DEPENDENCIES text field.

2. The application will need to access the MySQL Connector/C++ Dynamic Linked Library at run time. Therefore, mysqlcp-
pconn.dll needs to be in the same directory as the application executable, or somewhere on the system's path.

Copy mysqlcppconn.dll to the same directory as the application. Alternatively, extend the PATH environment variable
using SET PATH=%PATH%;C:\path\to\cpp. Alternatively, you can copy mysqlcppconn.dll to the Windows in-
stallation Directory, typically c:\windows.

6.4. MySQL Connector/C++ Building Linux applications with Net-
Beans

This section describes how you can build MySQL Connector/C++ applications for Linux using the NetBeans IDE.

Figure 6.18. The NetBeans IDE

MySQL Connector/C++

244

Note

To avoid potential crashes the build configuration of MySQL Connector/C++ should match the build configuration of
the application using it. For example, do not use the release build of MySQL Connector/C++ with a debug build of
the client application.

1. The first step of building your application is to create a new project. Select FILE, NEW PROJECT. Choose a C/C++ APPLICA-
TION and click NEXT.

2. Give the project a name and click FINISH. A new project is created.

3. In the PROJECTS tab, right-click on SOURCE FILES and select NEW, then MAIN C++ FILE....

4. Change the filename, or simply select the defaults and click FINISH to add the new file to the project.

5. You now need to add some working code to you main source file. Explore your MySQL Connector/C++ installation and nav-
igate to the examples directory.

6. Select a suitable example such as standalone_example_docs1.cpp. Copy all the code in this file, and use it to replace
the code in your existing main source file. Amend the code to reflect the connection properties required for your test database.
You now have a working example that will access a MySQL database using MySQL Connector/C++.

7. You will notice that at this point NetBeans is showing some errors in the source code. This is because you need to direct Net-
Beans to the necessary header files that need to be included. Select FILE, PROJECT PROPERTIES from the main menu.

8. In the CATEGORIES: tree view panel, navigate to BUILD, C++ COMPILER.

9. In the GENERAL panel, select INCLUDE DIRECTORIES.

10. Click the ... button.

11. Click ADD and then navigate to the directory where the MySQL Connector/C++ header files are located. This will be /
usr/local/include unless you have installed the files to a different location. Click SELECT. Click OK.

MySQL Connector/C++

245

Figure 6.19. Setting the header include directory

12. Click OK again to close the PROJECT PROPERTIES dialog.

At this point you have created a NetBeans project, containing a single C++ source file. You have also ensured that the necessary in-
clude files are accessible. Before continuing, you need to decide whether your project is to use the MySQL Connector/C++ static or
dynamic library. The project settings are slightly different in each case, as you need to link against a different library.

Using the static library

If you intend to use the static library you will need to link against two library files, libmysqlcppconn-static.a and
libmysqlclient.a. The locations of the files will depend on your setup, but typically the former will be found in /
usr/local/lib and the latter in /usr/lib. Note the file libmysqlclient.a is not part of MySQL Connector/C++, but is
the MySQL Client Library file distributed with MySQL Server. Remember, the MySQL Client Library is an optional component as
part of the MySQL Server installation process. Note the MySQL Client Library is also available as part of the new MySQL Con-
nector/C distribution.

1. The first step is to set the project to link the necessary library files. Select FILE, PROJECT PROPERTIES from the main menu.

2. In the CATEGORES: tree view navigate to LINKER.

3. In the GENERAL panel select ADDITIONAL LIBRARY DIRECTORIES. Click the ... button.

4. Select and add the /usr/lib and /usr/local/lib directories.

5. In the same panel add the two library files required for static linking as discussed earlier. The properties panel should then
look similar to the following screenshot:

Figure 6.20. Setting the static library directories and file names

MySQL Connector/C++

246

6. Click OK to close the PROJECT PROPERTIES dialog.

Using the dynamic library

If you require your application to use the MySQL Connector/C++ dynamic library, you simply need to link your project with a
single library file, libmysqlcppconn.so. The location of this file will depend on how you configured your installation of
MySQL Connector/C++, but will typically be /usr/local/lib.

1. The first step is to set the project to link the necessary library file. Select FILE, PROJECT PROPERTIES from the main menu.

2. In the CATEGORIES: tree view navigate to LINKER.

3. In the GENERAL panel select ADDITIONAL LIBRARY DIRECTORIES. Click the ... button.

4. Select and add the /usr/local/lib directories.

5. In the same panel add the library file required for static linking as discussed earlier. The properties panel should then look sim-
ilar to the following screenshot:

Figure 6.21. Setting the dynamic library directory and file name

MySQL Connector/C++

247

6. Click OK to close the Project Properties dialog.

Having configured your project you can build it by selecting RUN, BUILD MAIN PROJECT from the main menu. You can then run
the project using RUN, RUN MAIN PROJECT.

On running the application you should see a screen similar to the following (this is actually the static version of the application
shown):

Figure 6.22. The example application running

MySQL Connector/C++

248

Note

Note the above settings and procedures were carried out for the default Debug configuration. If you want to create a
Release configuration you will need to select that configuration before setting the Project Properties.

6.5. MySQL Connector/C++ Getting Started: Usage Examples
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

The download package contains usage examples in the directory examples/. The examples explain the basic usage of the follow-
ing classes:

• Connection

• Driver

• PreparedStatement

• ResultSet

• ResultSetMetaData

• Statement

The examples cover:

• Using the Driver class to connect to MySQL

• Creating tables, inserting rows, fetching rows using (simple) statements

• Creating tables, inserting rows, fetching rows using prepared statements

MySQL Connector/C++

249

• Hints for working around prepared statement limitations

• Accessing result set meta data

The examples in this document are only code snippets. The code snippets provide a brief overview on the API. They are not com-
plete programs. Please check the examples/ directory of your MySQL Connector/C++ installation for complete programs.
Please also read the README file in the examples/ directory. Note to test the example code you will first need to edit the ex-
amples.h file in the examples/ directory, to add your connection information. Then simply rebuild the code by issuing a
make command.

The examples in the examples/ directory include:

• examples/connect.cpp:

How to create a connection, insert data into MySQL and handle exceptions.

• examples/connection_meta_schemaobj.cpp:

How to obtain meta data associated with a connection object, for example, a list of tables, databases, MySQL version, connect-
or version.

• examples/debug.cpp:

How to activate and deactivate the MySQL Connector/C++ debug protocol.

• examples/exceptions.cpp:

A closer look at the exceptions thrown by the connector and how to fetch error information.

• examples/prepared_statements.cpp:

How to run Prepared Statements including an example how to handle SQL commands that cannot be prepared by the MySQL
Server.

• examples/resultset.cpp:

How to fetch data and iterate over the result set (cursor).

• examples/resultset_meta.cpp:

How to obtain meta data associated with a result set, for example, number of columns and column types.

• examples/resultset_types.cpp:

Result sets returned from meta data methods - this is more a test than much of an example.

• examples/standalone_example.cpp:

Simple standalone program not integrated into regular CMake builds.

• examples/statements.cpp:

How to run SQL commands without using Prepared Statements.

• examples/cpp_trace_analyzer.cpp:

This example shows how to filter the output of the debug trace. Please see the inline comments for further documentation. This
script is unsupported.

6.5.1. MySQL Connector/C++ Connecting to MySQL
A connection to MySQL is established by retrieving an instance of sql::Connection from a
sql::mysql::MySQL_Driver object. A sql::mysql::MySQL_Driver object is returned by
sql::mysql::MySQL_Driver::get_mysql_driver_instance().

sql::mysql::MySQL_Driver *driver;
sql::Connection *con;
driver = sql::mysql::MySQL_Driver::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "user", "password");
delete con;

MySQL Connector/C++

250

Make sure that you free the sql::Connection object as soon as you do not need it any more. But do not explicitly free the con-
nector object!

6.5.2. MySQL Connector/C++ Running a simple query
For running simple queries you can use the methods sql::Statement::execute(),
sql::Statement::executeQuery() and sql::Statement::executeUpdate(). The method
sql::Statement::execute() should be used if your query does not return a result set or if your query returns more than
one result set. See the examples/ directory for more on this.

sql::mysql::MySQL_Driver *driver;
sql::Connection *con;
sql::Statement *stmt
driver = sql::mysql::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "user", "password");
stmt = con->createStatement();
stmt->execute("USE " EXAMPLE_DB);
stmt->execute("DROP TABLE IF EXISTS test");
stmt->execute("CREATE TABLE test(id INT, label CHAR(1))");
stmt->execute("INSERT INTO test(id, label) VALUES (1, 'a')");
delete stmt;
delete con;

Note that you have to free sql::Statement and sql::Connection objects explicitly using delete.

6.5.3. MySQL Connector/C++ Fetching results
The API for fetching result sets is identical for (simple) statments and prepared statements. If your query returns one result set you
should use sql::Statement::executeQuery() or sql::PreparedStatement::executeQuery() to run your
query. Both methods return sql::ResultSet objects. The preview version does buffer all result sets on the client to support
cursors.

// ...
sql::Connection *con;
sql::Statement *stmt
sql::ResultSet *res;
// ...
stmt = con->createStatement();
// ...
res = stmt->executeQuery("SELECT id, label FROM test ORDER BY id ASC");
while (res->next()) {
// You can use either numeric offsets...
cout << "id = " <&;t; res->getInt(0);
// ... or column names for accessing results. »
The latter is recommended.

cout << ", label = '" << »
res->getString("label") << "'" << endl;

}
delete res;
delete stmt;
delete con;

Note that you have to free sql::Statement, sql::Connection and sql::ResultSet objects explicitly using delete.

The usage of cursors is demonstrated in the examples contained in the download package.

6.5.4. MySQL Connector/C++ Using Prepared Statements
If you are not familiar with Prepared Statements on MySQL have an extra look at the source code comments and explanations in
the file examples/prepared_statement.cpp.

sql::PreparedStatement is created by passing a SQL query to sql::Connection::prepareStatement(). As
sql::PreparedStatement is derived from sql::Statement, you will feel familiar with the API once you have learned
how to use (simple) statements (sql::Statement). For example, the syntax for fetching results is identical.

// ...
sql::Connection *con;
sql::PreparedStatement *prep_stmt
// ...
prep_stmt = con->prepareStatement("INSERT INTO test(id, label) VALUES (?, ?)");
prep_stmt->setInt(1, 1);
prep_stmt->setString(2, "a");
prep_stmt->execute();
prep_stmt->setInt(1, 2);
prep_stmt->setString(2, "b");
prep_stmt->execute();
delete prep_stmt;
delete con;

MySQL Connector/C++

251

As usual, you have to free sql::PreparedStatement and sql::Connection objects explicitly.

6.5.5. MySQL Connector/C++ Complete Example 1
The following code shows a complete example of how to use MySQL Connector/C++:

/* Copyright 2008 Sun Microsystems, Inc.
This program is free software; you can redistribute it and/or modify
it under only the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTIONS-CONNECTOR-C++ in the directory of this
software distribution.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Standard C++ includes */
#include <stdlib.h>
#include <iostream>
/*
Include directly the different
headers from cppconn/ and mysql_driver.h + mysql_util.h
(and mysql_connection.h). This will reduce your build time!

*/
#include "mysql_connection.h"
#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
using namespace std;
int main(void)
{
cout << endl;
cout << "Running 'SELECT 'Hello World!' »

AS _message'..." << endl;
try {
sql::Driver *driver;
sql::Connection *con;
sql::Statement *stmt;
sql::ResultSet *res;
/* Create a connection */
driver = get_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
/* Connect to the MySQL test database */
con->setSchema("test");
stmt = con->createStatement();
res = stmt->executeQuery("SELECT 'Hello World!' AS _message");
while (res->next()) {
cout << "\t... MySQL replies: ";
/* Access column data by alias or column name */
cout << res->getString("_message") << endl;
cout << "\t... MySQL says it again: ";
/* Access column fata by numeric offset, 1 is the first column */
cout << res->getString(1) << endl;

}
delete res;
delete stmt;
delete con;

} catch (sql::SQLException &e) {
cout << "# ERR: SQLException in " << __FILE__;
cout << "(" << __FUNCTION__ << ") on line " »

<< __LINE__ << endl;
cout << "# ERR: " << e.what();
cout << " (MySQL error code: " << e.getErrorCode();
cout << ", SQLState: " << e.getSQLState() << ")" << endl;

}
cout << endl;
return EXIT_SUCCESS;
}

6.5.6. MySQL Connector/C++ Complete Example 2
The following code shows a complete example of how to use MySQL Connector/C++:

/* Copyright 2008 Sun Microsystems, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTIONS-CONNECTOR-C++ in the directory of this
software distribution.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

MySQL Connector/C++

252

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Standard C++ includes */
#include <stdlib.h>
#include <iostream>
/*
Include directly the different
headers from cppconn/ and mysql_driver.h + mysql_util.h
(and mysql_connection.h). This will reduce your build time!

*/
#include "mysql_connection.h"
#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
#include <cppconn/prepared_statement.h>
using namespace std;
int main(void)
{
cout << endl;
cout << "Let's have MySQL count from 10 to 1..." << endl;
try {
sql::Driver *driver;
sql::Connection *con;
sql::Statement *stmt;
sql::ResultSet *res;
sql::PreparedStatement *pstmt;
/* Create a connection */
driver = get_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
/* Connect to the MySQL test database */
con->setSchema("test");
stmt = con->createStatement();
stmt->execute("DROP TABLE IF EXISTS test");
stmt->execute("CREATE TABLE test(id INT)");
delete stmt;
/* '?' is the supported placeholder syntax */
pstmt = con->prepareStatement("INSERT INTO test(id) VALUES (?)");
for (int i = 1; i <= 10; i++) {
pstmt->setInt(1, i);
pstmt->executeUpdate();

}
delete pstmt;
/* Select in ascending order */
pstmt = con->prepareStatement("SELECT id FROM test ORDER BY id ASC");
res = pstmt->executeQuery();
/* Fetch in reverse = descending order! */
res->afterLast();
while (res->previous())
cout << "\t... MySQL counts: " << res->getInt("id") << endl;

delete res;
delete pstmt;
delete con;

} catch (sql::SQLException &e) {
cout << "# ERR: SQLException in " << __FILE__;
cout << "(" << __FUNCTION__ << ") on line " »

<< __LINE__ << endl;
cout << "# ERR: " << e.what();
cout << " (MySQL error code: " << e.getErrorCode();
cout << ", SQLState: " << e.getSQLState() << »

")" << endl;
}
cout << endl;
return EXIT_SUCCESS;
}

6.6. MySQL Connector/C++ Debug Tracing
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

Although a debugger can be used to debug your application, you may find it beneficial to turn on the debug traces of the connector.
Some problems happen randomly which makes them difficult to debug using a debugger. In such cases debug traces and protocol
files are more useful because they allow you to trace the activities of all instances of your program.

DTrace is a very powerful technology to trace any application without having to develop an extra trace module for your applica-
tion. Unfortunately, DTrace is currently only available on OpenSolaris, Solaris, MacOS 10.5 and FreeBSD.

The MySQL Connector/C++ can write two trace files:

1. Trace file generated by the MySQL Client Library

MySQL Connector/C++

253

2. Trace file generated internally by MySQL Connector/C++

The first trace file can be generated by the underlying MySQL Client Library (libmysql). To enable this trace the connector will
call the C-API function mysql_debug() internally. Only debug versions of the MySQL Client Library are capable of writing a
trace file. Therefore you need to compile MySQL Connector/C++ against a debug version of the library, if you want utilize this
trace. The trace shows the internal function calls and the addresses of internal objects as you can see below:

>mysql_stmt_init
| >_mymalloc
| | enter: Size: 816
| | exit: ptr: 0x68e7b8
| <_mymalloc | >init_alloc_root
| | enter: root: 0x68e7b8
| | >_mymalloc
| | | enter: Size: 2064
| | | exit: ptr: 0x68eb28
[...]

The second trace is the MySQL Connector/C++ internal trace. It is available with debug and non-debug builds of the connector as
long as you have enabled the tracing module at compile time using cmake -DMYSQLCPPCONN_TRACE_ENABLE:BOOL=1. By
default, the tracing functionality is not available and calls to trace functions are removed by the preprocessor.

Compiling the connector with tracing functionality enabled will cause two additional tracing function calls per each connector
function call. You will need to run your own benchmark to find out how much this will impact the performance of your application.

A simple test using a loop running 30,000 INSERT SQL statements showed no significant real-time impact. The two variants of
this application using a trace enabled and trace disabled version of the connector performed equally well. The run time measured in
real-time was not significantly impacted as long as writing a debug trace was not enabled. However, there will be a difference in
the time spent in the application. When writing a debug trace the IO subsystem may become a bottleneck.

In summary, use connector builds with tracing enabled carefully. Trace enabled versions may cause higher CPU usage even if the
overall run time of your application is not impacted significantly.

| INF: Tracing enabled
<MySQL_Connection::setClientOption
>MySQL_Prepared_Statement::setInt
| INF: this=0x69a2e0
| >MySQL_Prepared_Statement::checkClosed
| <MySQL_Prepared_Statement::checkClosed
| <MySQL_Prepared_Statement::setInt
[...]

The example from examples/debug.cpp demonstrates how to activate the debug traces in your program. Currently they can
only be activated through API calls. The traces are controlled on a per-connection basis. You can use the setClientOp-
tions() method of a connection object to activate and deactivate the generation of a trace. The MySQL Client Library trace is al-
ways written into a file, whereas the connector's protocol messages are printed to standard out.

sql::Driver *driver;
int on_off = 1;
/* Using the Driver to create a connection */
driver = get_driver_instance();
std::auto_ptr< sql::Connection > con(driver->connect(host, user, pass));
/*
Activate debug trace of the MySQL Client Library (C-API)
Only available with a debug build of the MySQL Client Library!
*/
con->setClientOption("libmysql_debug", "d:t:O,client.trace");
/*
Tracing is available if you have compiled the driver using
cmake -DMYSQLCPPCONN_TRACE_ENABLE:BOOL=1
*/
con->setClientOption("client_trace", &on_off);

6.7. MySQL Connector/C++ References
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

See the JDBC overview for information on JDBC 4.0. Please also check the examples/ directory of the download package.

Notes on using the MySQL Connector/C++ API

• DatabaseMetaData::supportsBatchUpdates() returns true because MySQL supports batch updates in general.
However, no API calls for batch updates are provided by the MySQL Connector/C++ API.

MySQL Connector/C++

254

http://java.sun.com/products/jdbc/overview.html

• Two non-JDBC methods have been introduced for fetching and setting unsigned integers: getUInt64() and getUInt().
These are available for ResultSet and Prepared_Statement:

• ResultSet::getUInt64()

• ResultSet::getUInt()

• Prepared_Statement::setUInt64()

• Prepared_Statement::setUInt()

The corresponding getLong() and setLong() methods have been removed.

• The method DatabaseMetaData::getColumns() has 23 columns in its result set, rather than the 22 columns defined by
JDBC. The first 22 columns are as described in the JDBC documentation, but column 23 is new:

23. IS_AUTOINCREMENT: String which is “YES” if the column is an auto-increment column. Otherwise the string contains
“NO”.

• MySQL Connector/C++ may return different metadata for the same column.

When you have any column that accepts a charset and a collation in its specification and you specify a binary collation, such as:

CHAR(250) CHARACTER SET 'latin1' COLLATE 'latin1_bin'

The server sets the BINARY flag in the result set metadata of this column. The method ResultSet-
Metadata::getColumnTypeName() uses the metadata and will report, due to the BINARY flag, that the column type
name is BINARY. This is illustrated below:

mysql> create table varbin(a varchar(20) character set utf8 collate utf8_bin);
Query OK, 0 rows affected (0.00 sec)
mysql> select * from varbin;
Field 1: `a`
Catalog: `def`
Database: `test`
Table: `varbin`
Org_table: `varbin`
Type: VAR_STRING
Collation: latin1_swedish_ci (8)
Length: 20
Max_length: 0
Decimals: 0
Flags: BINARY
0 rows in set (0.00 sec)
mysql> select * from information_schema.columns where table_name='varbin'\G
*************************** 1. row ***************************

TABLE_CATALOG: NULL
TABLE_SCHEMA: test
TABLE_NAME: varbin
COLUMN_NAME: a

ORDINAL_POSITION: 1
COLUMN_DEFAULT: NULL

IS_NULLABLE: YES
DATA_TYPE: varchar

CHARACTER_MAXIMUM_LENGTH: 20
CHARACTER_OCTET_LENGTH: 60

NUMERIC_PRECISION: NULL
NUMERIC_SCALE: NULL

CHARACTER_SET_NAME: utf8
COLLATION_NAME: utf8_bin

COLUMN_TYPE: varchar(20)
COLUMN_KEY:

EXTRA:
PRIVILEGES: select,insert,update,references

COLUMN_COMMENT:
1 row in set (0.01 sec)

However, INFORMATION_SCHEMA gives no hint in its COLUMNS table that metadata will contain the BINARY flag. Data-
baseMetaData::getColumns() uses INFORMATION_SCHEMA. It will report the type name CHAR for the same
column. Note, a different type code is also returned.

• The MySQL Connector/C++ class sql::DataType defines the following JDBC standard data types: UNKNOWN, BIT,
TINYINT, SMALLINT, MEDIUMINT, INTEGER, BIGINT, REAL, DOUBLE, DECIMAL, NUMERIC, CHAR, BINARY,
VARCHAR, VARBINARY, LONGVARCHAR, LONGVARBINARY, TIMESTAMP, DATE, TIME, GEOMETRY, ENUM, SET, SQL-
NULL.

However, the following JDBC standard data types are not supported by MySQL Connector/C++: ARRAY, BLOB, CLOB, DIS-
TINCT, FLOAT, OTHER, REF, STRUCT.

• When inserting or updating BLOB or TEXT columns, MySQL Connector/C++ developers are advised not to use set-

MySQL Connector/C++

255

String(). Instead it is recommended that the dedicated API function setBlob() be used instead.

The use of setString() can cause a Packet too large error message. The error will occur if the length of the string passed to
the connector using setString() exceeds max_allowed_packet (minus a few bytes reserved in the protocol for control
purposes). This situation is not handled in MySQL Connector/C++, as this could lead to security issues, such as extremely large
memory allocation requests due to malevolently long strings.

However, if setBlob() is used, this problem does not arise. This is because setBlob() takes a streaming approach based
on std::istream. When sending the data from the stream to MySQL Server, MySQL Connector/C++ will split the stream
into chunks appropriate for MySQL Server and observe the max_allowed_packet setting currently being used.

Caution

When using setString() it is not possible to set max_packet_size to a value large enough for the string, pri-
or to passing it to MySQL Connector/C++. The MySQL 6.0 documentation for max_packet_size states: “As of
MySQL 6.0.9, the session value of this variable is read only. Before 6.0.9, setting the session value is allowed but has
no effect.”

This difference with the JDBC specification ensures that MySQL Connector/C++ is not vulnerable to memory flooding attacks.

• In general MySQL Connector/C++ works with MySQL 5.0, but it is not completely supported. Some methods may not be
available when connecting to MySQL 5.0. This is because the Information Schema is used to obtain the requested information.
There are no plans to improve the support for 5.0 because the current GA version of MySQL Server is 5.1. As a new product,
MySQL Connector/C++ is primarily targeted at the MySQL Server GA version that was available on its release.

The following methods will throw a sql::MethodNotImplemented exception when you connect to MySQL earlier than
5.1.0:

• DatabaseMetadata::getCrossReference()

• DatabaseMetadata::getExportedKeys()

• MySQL Connector/C++ includes a method Connection::getClientOption() which is not included in the JDBC API
specification. The prototype is:

void getClientOption(const std::string & optionName, void * optionValue)

The method can be used to check the value of connection properties set when establishing a database connection. The values
are returned through the optionValue argument passed to the method with the type void *.

Currently, getClientOption() supports fetching the optionValue of the following options:

• metadataUseInfoSchema

• defaultStatementResultType

• defaultPreparedStatementResultType
The connection option metadataUseInfoSchema controls whether to use the Information_Schemata for returning
the meta data of SHOW commands. In the case of metadataUseInfoSchema the optionValue argument should be inter-
preted as a boolean upon return.

In the case of both defaultStatementResultType and defaultPreparedStatementResultType, the op-
tionValue argument should be interpreted as an integer upon return.

The connection property can be either set when establishing the connection through the connection property map or using
void Connection::setClientOption(const std::string & optionName, const void * option-
Value) where optionName is assigned the value metadataUseInfoSchema.

Some examples are given below:

int defaultStmtResType;
int defaultPStmtResType;
conn->getClientOption("defaultStatementResultType", (void *) &defaultStmtResType);
conn->getClientOption("defaultPreparedStatementResultType", (void *) &defaultPStmtResType);
bool isInfoSchemaUsed;
conn->getClientOption("metadataUseInfoSchema", (void *) &isInfoSchemaUsed);

• MySQL Connector/C++ also supports the following methods not found in the JDBC API standard:

std::string MySQL_Connection::getSessionVariable(const std::string & varname)

MySQL Connector/C++

256

http://dev.mysql.com/doc/refman/5.1/en/packet-too-large.html
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_max_allowed_packet

void MySQL_Connection::setSessionVariable(const std::string & varname, const std::string & value)

Note that both methods are members of the MySQL_Connection class. The methods get and set MySQL session variables.

setSessionVariable() is equivalent to executing:

SET SESSION <varname> = <value>

getSessionVariable() is equivalent to executing the following and fetching the first return value:

SHOW SESSION VARIABLES LIKE "<varname>"

You can use “%” and other placeholders in <varname>, if the underlying MySQL server supports this.

6.8. MySQL Connector/C++ Known Bugs and Issues
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

Note

Please report bugs through MySQL Bug System .

Known bugs:

None.

Known issues:

• When linking against a static library for 1.0.3 on Windows you need to define CPPDBC_PUBLIC_FUNC either in the compiler
options (preferable) or with /D "CPPCONN_PUBLIC_FUNC=". You can also explicitly define it in your code by placing
#define CPPCONN_PUBLIC_FUNC before the header inclusions.

• Generally speaking C++ library binaries are less portable than C library binaries. Issues can be caused by name mangling, dif-
ferent Standard Template Library (STL) versions and using different compilers and linkers for linking against the libraries than
were used for building the library itself.

Even a small change in the compiler version can, but does not have to, cause problems. If you obtain error messages, that you
suspect are related to binary incompatibilities, build MySQL Connector/C++ from source, using the same compiler and linker
that you will use to build and link your application.

Due to the variations between Linux distributions, compiler and linker versions and STL versions, it is not possible to provide
binaries for each and every possible configuration. However, the MySQL Connector/C++ binary distributions contain a
README file that describes the environment and settings used to build the binary versions of the libraries.

• To avoid potential crashes the build configuration of MySQL Connector/C++ should match the build configuration of the ap-
plication using it. For example, do not use the release build of MySQL Connector/C++ with a debug build of the client applica-
tion.

See also the MySQL Connector/C++ Changelogs which can be found here Appendix G, MySQL Connector/C++ Change History.

6.9. MySQL Connector/C++ Feature requests
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

You can suggest new features in the first instance by joining the mailing list or forum and talking with the developers directly. See
Section 6.10, “MySQL Connector/C++ Support”

The following feature requests are currently being worked on:

MySQL Connector/C++

257

bugs.mysql.com

• C++ references for Statements, ResultSets, and exceptions, are being considered, instead of pointers to heap memory.
This reduces the exception handling burden for the programmer.

• Adopt STL (suggestions are welcome).

• JDBC compliance: datatype interfaces and support through ResultSet:getType() and PreparedState-
ment:bind(). Introduce sql::Blob, sql::Clob, sql::Date, sql::Time, sql::Timestamp, sql::URL. Sup-
port get|setBlob(), get|setClob(), get|setDate(), get|setTime(), get|setTimestamp(),
get|setURL()

• Add support for all C-API connection options. Improved support for mysql_options.

• Add connect method which supports passing options using HashMaps.

• Create Windows installer.

6.10. MySQL Connector/C++ Support
Caution

Please note, official support is not available for the beta version of MySQL Connector/C++.

For general discussion of the MySQL Connector/C++ please use the C/C++ community forum or join the MySQL Connector/C++
mailing list.

Bugs can be reported at the MySQL bug website.

For Licensing questions, and to purchase MySQL Products and Services, please Contact MySQL

The MySQL Connector/C++ Changelogs can be found here Appendix G, MySQL Connector/C++ Change History

6.11. MySQL Connector/C++ FAQ
Questions

• 6.11.1: What is MySQL Connector/C++?

• 6.11.2: Which MySQL Server version(s) is MySQL Connector/C++ compatible with?

• 6.11.3: Does MySQL Connector/C++ implement the client-server protocol?

• 6.11.4: Are any MySQL products using MySQL Connector/C++?

Questions and Answers

6.11.1: What is MySQL Connector/C++?

MySQL Connector/C++ is a MySQL database connector for C++. It allows you develop applications in C++ that connect to the
MySQL Server. MySQL Connector/C++ is compatible with the JDBC 4.0 API.

6.11.2: Which MySQL Server version(s) is MySQL Connector/C++ compatible with?

MySQL Connector/C++ fully supports MySQL Server version 5.1 and later.

6.11.3: Does MySQL Connector/C++ implement the client-server protocol?

No. MySQL Connector/C++ uses the MySQL Client Library for the client-server communication.

6.11.4: Are any MySQL products using MySQL Connector/C++?

Yes, MySQL Workbench and MySQL Connector/OpenOffice.org.

MySQL Connector/C++

258

http://forums.mysql.com/list.php?167
http://lists.mysql.com
http://lists.mysql.com
http://bugs.mysql.com
http://www.mysql.com/buy-mysql/

Chapter 7. MySQL Connector/OpenOffice.org
MySQL Connector/OpenOffice.org is a native MySQL database connector for OpenOffice.org. Currently, it is in preview status
and supports OpenOffice.org 2.4 only. It can be used to connect OpenOffice.org applications to a MySQL server.

Before MySQL Connector/OpenOffice.org became available you would have to use MySQL Connector/J (JDBC) or MySQL Con-
nector/ODBC to connect to a MySQL server.

Connector/OpenOffice.org is a community project, although Sun Microsystems actively contributes code. The source code for
Connector/OpenOffice.org is available under GPL with the FLOSS License Exception.

In the future a closed-source StarOffice version of Connector/OpenOffice.org will be made available.

Advantages

Using MySQL Connector/OpenOffice.org has the following advantages:

• Easy installation through the OpenOffice.org Extension Manager.

• Seamless integration into OpenOffice.org.

• No need to go through an additional Connector installation routine (ODBC/JDBC)

• No need to configure or register an additional Connector (ODBC)

• No need to install or configure a driver manager (ODBC)

Status

MySQL Connector/OpenOffice.org is available as a development preview version. We kindly ask users and developers to try it out
and provide us with feedback. We do not encourage you to use it in production environments, though.

Note

Sun Microsystems does not provide formal support for Connector/OpenOffice.org.

If you have any queries please contact us through our mailing list at <users@dba.openoffice.org>

7.1. Installation

1. Install or upgrade to OpenOffice.org 2.4.

2. Download MySQL Connector/OpenOffice.org from The OpenOffice.org download site. Save the file, mysql-nat-
ive-win32.oxt or mysql-native-linux.oxt, respectively, to a location of your choice, for example My Docu-
ments or ~/Documents.

3. Add the .oxt extension through the Extension Manager of OpenOffice.org. In OpenOffice.org, select TOOLS, EXTENSION
MANAGER... and specify the .oxt file as a new extension. When done, MySQL Connector/OpenOffice.org will show up as a
new extension under MY EXTENSIONS.

Figure 7.1. Adding an extension

259

http://downloads.mysql.com/forge/openoffice_preview

4. Restart OpenOffice.org.

7.2. Getting Started: Connecting to MySQL
MySQL Connector/OpenOffice.org allows you to access the MySQL Server and its schemata from the OpenOffice.org suite. Cur-
rently the connector is in preview status, and only OpenOffice.org 2.4 is supported.

The following example demonstrates the creation of a new OpenOffice.org Base database which uses a local MySQL Server for
storage and the new connector for connecting.

1. Select the database

Create a new database by selecting FILE, NEW, DATABASE. This starts a wizard that allows you to create a new, open an exist-
ing, or connect to existing database. Select the latter option. From the drop-down list, select MySQL native driver. Click NEXT
>>.

Figure 7.2. Selecting the database

MySQL Connector/OpenOffice.org

260

2. Fill in the connection settings

Under MYSQL NATIVE DRIVER, fill in the host name, and optionally a database name, and port name, for example:

localhost/test

This will connect to a MySQL server running on the local host and select the test database. Note that is you do not specify a
database the process below will still work, and all databases will be available for selection.

On Linux, you may have to specify an IP number and a port number instead, due to a limitation in Connector/OpenOffice.org.
You have to do so if your MySQL socket file is not /tmp/mysql.sock. Enter your data using the format illustrated in the
following example:

127.0.0.1:3006/test

This will connect to a MySQL server running on the local host, but do so via TCP/IP using 3306 as the port number. Click
NEXT >>.

Figure 7.3. Entering connection settings

MySQL Connector/OpenOffice.org

261

3. Fill in credentials

If you are using MySQL server's anonymous account without a password, you do not have to fill in anything in this step. Oth-
erwise, fill in your MySQL user name and check the password checkbox. Note, for security reasons, you should not normally
use the anonymous account without a password.

Figure 7.4. Setting up user authentication

MySQL Connector/OpenOffice.org

262

You can now test your connection to the MySQL database server by clicking the TEST CONNECTION button. Check the check-
box if you do not want OpenOffice.org to ask you for your password again in the current session. Testing the connection is op-
tional, although recommended.

Figure 7.5. Entering user credentials

Click NEXT >>.

4. Finish the wizard

Leave the default settings and click FINISH. You will be forwarded to the OpenOffice.org Base main window. Note that you
can invoke the wizard again at any point by right-clicking in the TABLES section of the BASE main window and selecting
DATABASE, CONNECTION TYPE.

7.3. Getting Started: Usage Examples
Listing Tables

In the DATABASE area of the BASE main window, select TABLES. If this is the first time you are accessing the database you will be
prompted for your credentials (user name and password); you can store these settings for your current Base session.

Figure 7.6. Listing tables

MySQL Connector/OpenOffice.org

263

Depending on your connection settings you will now see all databases with all their tables, or just the database you have specified
in the connection settings.

7.4. References
See the OpenOffice.org website for documentation of the office suite and its Extension Manager.

7.5. Known Bugs
If you discover a bug in Connector/OpenOffice.org please add it to this list and send an email to
<users@dba.openoffice.org>. You need to be logged in with an OpenOffice.org account for both; see the project mailing
list for details.

7.6. Contact
To discuss the new MySQL Connector/OpenOffice.org, please subscribe to the mailing list <users@dba.openoffice.org>.
It is a low-volume list with less than 10 mails per day.

MySQL Connector/OpenOffice.org

264

http://www.openoffice.org/
http://wiki.services.openoffice.org/wiki/Database/Drivers/MySQL_Native#Known_issues
http://dba.openoffice.org/servlets/ProjectMailingListList
http://dba.openoffice.org/servlets/ProjectMailingListList

Chapter 8. MySQL PHP API
PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web pages. It is available for most
operating systems and Web servers, and can access most common databases, including MySQL. PHP may be run as a separate pro-
gram or compiled as a module for use with the Apache Web server.

PHP actually provides two different MySQL API extensions:

• mysql: Available for PHP versions 4 and 5, this extension is intended for use with MySQL versions prior to MySQL 4.1. This
extension does not support the improved authentication protocol used in MySQL 4.1, nor does it support prepared statements or
multiple statements. If you wish to use this extension with MySQL 4.1, you will likely want to configure the MySQL server to
use the --old-passwords option (see Client does not support authentication protocol). This exten-
sion is documented on the PHP Web site at http://php.net/mysql.

• Section 8.2, “MySQL Improved Extension (Mysqli)” - Stands for “MySQL, Improved”; this extension is available only in
PHP 5. It is intended for use with MySQL 4.1.1 and later. This extension fully supports the authentication protocol used in
MySQL 5.0, as well as the Prepared Statements and Multiple Statements APIs. In addition, this extension provides an ad-
vanced, object-oriented programming interface. You can read the documentation for the mysqli extension at ht-
tp://php.net/mysqli. Helpful article can be found at http://devzone.zend.com/node/view/id/686 and ht-
tp://devzone.zend.com/node/view/id/687.

If you're experiencing problems with enabling both the mysql and the mysqli extension when building PHP on Linux yourself,
see Section 8.6, “Enabling Both mysql and mysqli in PHP”.

The PHP distribution and documentation are available from the PHP Web site.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about MySQL and PHP in the Knowledge Base
articles found at PHP. Access to the MySQL Knowledge Base collection of articles is one of the advant-
ages of subscribing to MySQL Enterprise. For more information, see ht-
tp://www.mysql.com/products/enterprise/knowledgebase.html.

Portions of this section are Copyright (c) 1997-2008 the PHP Documentation Group This material may be distributed only subject
to the terms and conditions set forth in the Creative Commons Attribution 3.0 License or later. A copy of the Creative Commons
Attribution 3.0 license is distributed with this manual. The latest version is presently available at This material may be distributed
only subject to the terms and conditio\ ns set forth in the Open Publication License, v1.0.8 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

8.1. MySQL
Copyright 1997-2008 the PHP Documentation Group.

These functions allow you to access MySQL database servers. More information about MySQL can be found at ht-
tp://www.mysql.com/.

Documentation for MySQL can be found at http://dev.mysql.com/doc/.

8.1.1. Installing/Configuring
Copyright 1997-2008 the PHP Documentation Group.

8.1.1.1. Requirements

Copyright 1997-2008 the PHP Documentation Group.

In order to have these functions available, you must compile PHP with MySQL support.

8.1.1.2. Installation

Copyright 1997-2008 the PHP Documentation Group.

For compiling, simply use the --with-mysql[=DIR] configuration option where the optional [DIR] points to the MySQL in-
stallation directory.

Although this MySQL extension is compatible with MySQL 4.1.0 and greater, it doesn't support the extra functionality that these
versions provide. For that, use the MySQLi extension.

265

http://dev.mysql.com/doc/refman/5.0/en/common-errors.html#old-client
http://php.net/mysql
http://php.net/mysqli
http://php.net/mysqli
http://devzone.zend.com/node/view/id/686
http://devzone.zend.com/node/view/id/687
http://devzone.zend.com/node/view/id/687
http://www.php.net/
https://kb.mysql.com/search.php?cat=search&category=23
http://www.mysql.com/products/enterprise/knowledgebase.html
http://www.mysql.com/products/enterprise/knowledgebase.html
http://www.opencontent.org/openpub/
http://www.mysql.com/
http://www.mysql.com/
http://dev.mysql.com/doc/

If you would like to install the mysql extension along with the mysqli extension you have to use the same client library to avoid any
conflicts.

8.1.1.2.1. Installation on Linux Systems

Copyright 1997-2008 the PHP Documentation Group.

8.1.1.2.1.1. PHP 4

Copyright 1997-2008 the PHP Documentation Group.

The option --with-mysql is enabled by default. This default behavior may be disabled with the --without-mysql config-
ure option. If MySQL is enabled without specifying the path to the MySQL install DIR, PHP will use the bundled MySQL client
libraries.

Users who run other applications that use MySQL (for example, auth-mysql) should not use the bundled library, but rather specify
the path to MySQL's install directory, like so: --with-mysql=/path/to/mysql. This will force PHP to use the client librar-
ies installed by MySQL, thus avoiding any conflicts.

8.1.1.2.1.2. PHP 5+

Copyright 1997-2008 the PHP Documentation Group.

MySQL is not enabled by default, nor is the MySQL library bundled with PHP. Read this FAQ for details on why. Use the -
-with-mysql[=DIR] configure option to include MySQL support. You can download headers and libraries from MySQL.

8.1.1.2.2. Installation on Windows Systems

Copyright 1997-2008 the PHP Documentation Group.

8.1.1.2.2.1. PHP 4

Copyright 1997-2008 the PHP Documentation Group.

The PHP MySQL extension is compiled into PHP.

8.1.1.2.2.2. PHP 5+

Copyright 1997-2008 the PHP Documentation Group.

MySQL is no longer enabled by default, so the php_mysql.dll DLL must be enabled inside of php.ini. Also, PHP needs ac-
cess to the MySQL client library. A file named libmysql.dll is included in the Windows PHP distribution and in order for
PHP to talk to MySQL this file needs to be available to the Windows systems PATH. See the FAQ titled "How do I add my PHP
directory to the PATH on Windows" for information on how to do this. Although copying libmysql.dll to the Windows sys-
tem directory also works (because the system directory is by default in the system's PATH), it's not recommended.

As with enabling any PHP extension (such as php_mysql.dll), the PHP directive extension_dir should be set to the directory
where the PHP extensions are located. See also the Manual Windows Installation Instructions. An example extension_dir value for
PHP 5 is c:\php\ext

Note

If when starting the web server an error similar to the following occurs: "Unable to load dynamic lib-
rary './php_mysql.dll'", this is because php_mysql.dll and/or libmysql.dll cannot be found by
the system.

8.1.1.2.3. MySQL Installation Notes

Copyright 1997-2008 the PHP Documentation Group.

Warning

Crashes and startup problems of PHP may be encountered when loading this extension in conjunction with the recode
extension. See the recode extension for more information.

Note

If you need charsets other than latin (default), you have to install external (not bundled) libmysql with compiled char-
set support.

MySQL PHP API

266

http://www.php.net/manual/en/faq.databases.mysql.php5.php
http://www.mysql.com/
http://www.php.net/manual/en/faq.installation.addtopath.php
http://www.php.net/manual/en/faq.installation.addtopath.php
http://www.php.net/manual/en/ini.extension-dir.php
http://www.php.net/manual/en/install.windows.manual.php
http://www.php.net/manual/en/ref.recode.php

8.1.1.3. Runtime Configuration

Copyright 1997-2008 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 8.1. MySQL Configuration Options

Name Default Changeable Changelog

mysql.allow_persistent "1" PHP_INI_SYSTEM

mysql.max_persistent "-1" PHP_INI_SYSTEM

mysql.max_links "-1" PHP_INI_SYSTEM

mysql.trace_mode "0" PHP_INI_ALL Available since PHP 4.3.0.

mysql.default_port NULL PHP_INI_ALL

mysql.default_socket NULL PHP_INI_ALL Available since PHP 4.0.1.

mysql.default_host NULL PHP_INI_ALL

mysql.default_user NULL PHP_INI_ALL

mysql.default_password NULL PHP_INI_ALL

mysql.connect_timeout "60" PHP_INI_ALL PHP_INI_SYSTEM in PHP <=
4.3.2. Available since PHP
4.3.0.

For further details and definitions of the PHP_INI_* constants, see the ini.

Here's a short explanation of the configuration directives.

mysql.allow_persistent
boolean

Whether to allow persistent connections to MySQL.

mysql.max_persistent in-
teger

The maximum number of persistent MySQL connections per process.

mysql.max_links integer The maximum number of MySQL connections per process, including persistent connections.

mysql.trace_mode boolean Trace mode. When mysql.trace_mode is enabled, warnings for table/index scans, non
free result sets, and SQL-Errors will be displayed. (Introduced in PHP 4.3.0)

mysql.default_port string The default TCP port number to use when connecting to the database server if no other port
is specified. If no default is specified, the port will be obtained from the MYSQL_TCP_PORT
environment variable, the mysql-tcp entry in /etc/services or the compile-time
MYSQL_PORT constant, in that order. Win32 will only use the MYSQL_PORT constant.

mysql.default_socket
string

The default socket name to use when connecting to a local database server if no other socket
name is specified.

mysql.default_host string The default server host to use when connecting to the database server if no other host is spe-
cified. Doesn't apply in SQL safe mode.

mysql.default_user string The default user name to use when connecting to the database server if no other name is spe-
cified. Doesn't apply in SQL safe mode.

mysql.default_password
string

The default password to use when connecting to the database server if no other password is
specified. Doesn't apply in SQL safe mode.

mysql.connect_timeout in-
teger

Connect timeout in seconds. On Linux this timeout is also used for waiting for the first an-
swer from the server.

8.1.1.4. Resource Types

Copyright 1997-2008 the PHP Documentation Group.

There are two resource types used in the MySQL module. The first one is the link identifier for a database connection, the second a
resource which holds the result of a query.

MySQL PHP API

267

http://www.php.net/manual/en/ini.php
http://www.php.net/manual/en/features.persistent-connections.php
http://www.php.net/manual/en/ini.sql.safe-mode.php
http://www.php.net/manual/en/ini.sql.safe-mode.php
http://www.php.net/manual/en/ini.sql.safe-mode.php

8.1.2. Predefined Constants
Copyright 1997-2008 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either been compiled into
PHP or dynamically loaded at runtime.

Since PHP 4.3.0 it is possible to specify additional client flags for the mysql_connect and mysql_pconnect functions. The
following constants are defined:

Table 8.2. MySQL client constants

Constant Description

MYSQL_CLIENT_COMPRESS Use compression protocol

MYSQL_CLIENT_IGNORE_SPACE Allow space after function names

MYSQL_CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of wait_timeout) of
inactivity before closing the connection.

MYSQL_CLIENT_SSL Use SSL encryption. This flag is only available with version 4.x
of the MySQL client library or newer. Version 3.23.x is bundled
both with PHP 4 and Windows binaries of PHP 5.

The function mysql_fetch_array uses a constant for the different types of result arrays. The following constants are defined:

Table 8.3. MySQL fetch constants

Constant Description

MYSQL_ASSOC Columns are returned into the array having the fieldname as the
array index.

MYSQL_BOTH Columns are returned into the array having both a numerical in-
dex and the fieldname as the array index.

MYSQL_NUM Columns are returned into the array having a numerical index to
the fields. This index starts with 0, the first field in the result.

8.1.3. Examples
Copyright 1997-2008 the PHP Documentation Group.

8.1.3.1. Basic

This simple example shows how to connect, execute a query, print resulting rows and disconnect from a MySQL database.

Example 8.1. MySQL extension overview example

Copyright 1997-2008 the PHP Documentation Group.

<?php
// Connecting, selecting database
$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')

or die('Could not connect: ' . mysql_error());
echo 'Connected successfully';
mysql_select_db('my_database') or die('Could not select database');

// Performing SQL query
$query = 'SELECT * FROM my_table';
$result = mysql_query($query) or die('Query failed: ' . mysql_error());

// Printing results in HTML
echo "<table>\n";
while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {

echo "\t<tr>\n";
foreach ($line as $col_value) {

echo "\t\t<td>$col_value</td>\n";
}
echo "\t</tr>\n";

}
echo "</table>\n";

// Free resultset

MySQL PHP API

268

mysql_free_result($result);

// Closing connection
mysql_close($link);
?>

8.1.4. MySQL Functions
Copyright 1997-2008 the PHP Documentation Group.

Note

Most MySQL functions accept link_identifier as the last optional parameter. If it is not provided, last opened
connection is used. If it doesn't exist, connection is tried to establish with default parameters defined in php.ini. If
it is not successful, functions return FALSE .

8.1.4.1. mysql_affected_rows

Copyright 1997-2008 the PHP Documentation Group.

• mysql_affected_rows

Get number of affected rows in previous MySQL operation

Description

int mysql_affected_rows(resource link_identifier);

Get the number of affected rows by the last INSERT, UPDATE, REPLACE or DELETE query associated with
link_identifier.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns the number of affected rows on success, and -1 if the last query failed.

If the last query was a DELETE query with no WHERE clause, all of the records will have been deleted from the table but this
function will return zero with MySQL versions prior to 4.1.2.

When using UPDATE, MySQL will not update columns where the new value is the same as the old value. This creates the possib-
ility that mysql_affected_rows may not actually equal the number of rows matched, only the number of rows that were liter-
ally affected by the query.

The REPLACE statement first deletes the record with the same primary key and then inserts the new record. This function returns
the number of deleted records plus the number of inserted records.

Examples

Example 8.2. mysql_affected_rows example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

MySQL PHP API

269

/* this should return the correct numbers of deleted records */
mysql_query('DELETE FROM mytable WHERE id < 10');
printf("Records deleted: %d\n", mysql_affected_rows());

/* with a where clause that is never true, it should return 0 */
mysql_query('DELETE FROM mytable WHERE 0');
printf("Records deleted: %d\n", mysql_affected_rows());
?>

The above example will output something similar to:

Records deleted: 10
Records deleted: 0

Example 8.3. mysql_affected_rows example using transactions

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

/* Update records */
mysql_query("UPDATE mytable SET used=1 WHERE id < 10");
printf ("Updated records: %d\n", mysql_affected_rows());
mysql_query("COMMIT");
?>

The above example will output something similar to:

Updated Records: 10

Notes

Transactions

If you are using transactions, you need to call mysql_affected_rows after your INSERT, UPDATE, or DE-
LETE query, not after the COMMIT.

SELECT Statements

To retrieve the number of rows returned by a SELECT, it is possible to use mysql_num_rows.

See Also

mysql_num_rows
mysql_info

8.1.4.2. mysql_change_user

Copyright 1997-2008 the PHP Documentation Group.

• mysql_change_user

MySQL PHP API

270

Change logged in user of the active connection

Description

int mysql_change_user(string user,
string password,
string database,
resource link_identifier);

mysql_change_user changes the logged in user of the current active connection, or the connection given by the optional
link_identifier parameter. If a database is specified, this will be the current database after the user has been changed. If the
new user and password authorization fails, the current connected user stays active.

This function is deprecated and no longer exists in PHP.

Parameters

user The new MySQL username.

password The new MySQL password.

database The MySQL database. If not specified, the current selected database is used.

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

ChangeLog

Version Description

3.0.14 This function was removed from PHP.

Notes

Requirements

This function requires MySQL 3.23.3 or higher.

See Also

mysql_connect
mysql_select_db
mysql_query

8.1.4.3. mysql_client_encoding

Copyright 1997-2008 the PHP Documentation Group.

• mysql_client_encoding

Returns the name of the character set

Description

string mysql_client_encoding(resource link_identifier);

MySQL PHP API

271

Retrieves the character_set variable from MySQL.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns the default character set name for the current connection.

Examples

Example 8.4. mysql_client_encoding example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$charset = mysql_client_encoding($link);

echo "The current character set is: $charset\n";
?>

The above example will output something similar to:

The current character set is: latin1

See Also

mysql_set_charset
mysql_real_escape_string

8.1.4.4. mysql_close

Copyright 1997-2008 the PHP Documentation Group.

• mysql_close

Close MySQL connection

Description

bool mysql_close(resource link_identifier);

mysql_close closes the non-persistent connection to the MySQL server that's associated with the specified link identifier. If
link_identifier isn't specified, the last opened link is used.

Using mysql_close isn't usually necessary, as non-persistent open links are automatically closed at the end of the script's execu-
tion. See also freeing resources.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by

MySQL PHP API

272

http://www.php.net/manual/en/language.types.resource.self-destruct.php

mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.5. mysql_close example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

The above example will output:

Connected successfully

Notes

Note

mysql_close will not close persistent links created by mysql_pconnect.

See Also

mysql_connect
mysql_free_result

8.1.4.5. mysql_connect

Copyright 1997-2008 the PHP Documentation Group.

• mysql_connect

Open a connection to a MySQL Server

Description

resource mysql_connect(string server,
string username,
string password,
bool new_link,
int client_flags);

Opens or reuses a connection to a MySQL server.

Parameters

server The MySQL server. It can also include a port number. e.g. "hostname:port" or a path to a

MySQL PHP API

273

local socket e.g. ":/path/to/socket" for the localhost.

If the PHP directive mysql.default_host is undefined (default), then the default value is 'local-
host:3306'. In SQL safe mode, this parameter is ignored and value 'localhost:3306' is always
used.

username The username. Default value is defined by mysql.default_user. In SQL safe mode, this para-
meter is ignored and the name of the user that owns the server process is used.

password The password. Default value is defined by mysql.default_password. In SQL safe mode, this
parameter is ignored and empty password is used.

new_link If a second call is made to mysql_connect with the same arguments, no new link will be
established, but instead, the link identifier of the already opened link will be returned. The
new_link parameter modifies this behavior and makes mysql_connect always open a
new link, even if mysql_connect was called before with the same parameters. In SQL
safe mode, this parameter is ignored.

client_flags The client_flags parameter can be a combination of the following constants: 128
(enable LOAD DATA LOCAL handling), MYSQL_CLIENT_SSL ,
MYSQL_CLIENT_COMPRESS , MYSQL_CLIENT_IGNORE_SPACE or
MYSQL_CLIENT_INTERACTIVE . Read the section about Table 8.2, “MySQL client con-
stants” for further information. In SQL safe mode, this parameter is ignored.

Return Values

Returns a MySQL link identifier on success, or FALSE on failure.

ChangeLog

Version Description

4.3.0 Added the client_flags parameter.

4.2.0 Added the new_link parameter.

3.0.10 Added support for ":/path/to/socket" with server.

3.0.0 Added support for ":port" with server.

Examples

Example 8.6. mysql_connect example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

Example 8.7. mysql_connect example using hostname:port syntax

<?php
// we connect to example.com and port 3307
$link = mysql_connect('example.com:3307', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);

// we connect to localhost at port 3307
$link = mysql_connect('127.0.0.1:3307', 'mysql_user', 'mysql_password');

MySQL PHP API

274

http://www.php.net/manual/en/ini.mysql.default-host.php
http://www.php.net/manual/en/ini.sql.safe-mode.php
http://www.php.net/manual/en/ini.mysql.default-user.php
http://www.php.net/manual/en/ini.sql.safe-mode.php
http://www.php.net/manual/en/ini.mysql.default-password.php
http://www.php.net/manual/en/ini.sql.safe-mode.php
http://www.php.net/manual/en/ini.sql.safe-mode.php
http://www.php.net/manual/en/ini.sql.safe-mode.php
http://www.php.net/manual/en/ini.sql.safe-mode.php

if (!$link) {
die('Could not connect: ' . mysql_error());

}
echo 'Connected successfully';
mysql_close($link);
?>

Example 8.8. mysql_connect example using ":/path/to/socket" syntax

<?php
// we connect to localhost and socket e.g. /tmp/mysql.sock

//variant 1: ommit localhost
$link = mysql_connect(':/tmp/mysql', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);

// variant 2: with localhost
$link = mysql_connect('localhost:/tmp/mysql.sock', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

Notes

Note

Whenever you specify "localhost" or "localhost:port" as server, the MySQL client library will override this and try to
connect to a local socket (named pipe on Windows). If you want to use TCP/IP, use "127.0.0.1" instead of "localhost".
If the MySQL client library tries to connect to the wrong local socket, you should set the correct path as
ini.mysql.default-host in your PHP configuration and leave the server field blank.

Note

The link to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by explicitly
calling mysql_close.

Note

You can suppress the error message on failure by prepending a @ to the function name.

Note

Error "Can't create TCP/IP socket (10106)" usually means that the variables_order configure directive doesn't contain
character E. On Windows, if the environment is not copied the SYSTEMROOT environment variable won't be avail-
able and PHP will have problems loading Winsock.

See Also

mysql_pconnect
mysql_close

8.1.4.6. mysql_create_db

Copyright 1997-2008 the PHP Documentation Group.

• mysql_create_db

Create a MySQL database

MySQL PHP API

275

http://www.php.net/manual/en/ini.mysql.default-host.php
http://www.php.net/manual/en/language.operators.errorcontrol.php
http://www.php.net/manual/en/ini.variables-order.php

Description

bool mysql_create_db(string database_name,
resource link_identifier);

mysql_create_db attempts to create a new database on the server associated with the specified link identifier.

Parameters

database_name The name of the database being created.

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.9. mysql_create_db alternative example

The function mysql_create_db is deprecated. It is preferable to use mysql_query to issue a sql CREATE DATABASE state-
ment instead.

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}

$sql = 'CREATE DATABASE my_db';
if (mysql_query($sql, $link)) {

echo "Database my_db created successfully\n";
} else {

echo 'Error creating database: ' . mysql_error() . "\n";
}
?>

The above example will output something similar to:

Database my_db created successfully

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_createdb

Note

This function will not be available if the MySQL extension was built against a MySQL 4.x client library.

See Also

mysql_query
mysql_select_db

MySQL PHP API

276

8.1.4.7. mysql_data_seek

Copyright 1997-2008 the PHP Documentation Group.

• mysql_data_seek

Move internal result pointer

Description

bool mysql_data_seek(resource result,
int row_number);

mysql_data_seek moves the internal row pointer of the MySQL result associated with the specified result identifier to point to
the specified row number. The next call to a MySQL fetch function, such as mysql_fetch_assoc, would return that row.

row_number starts at 0. The row_number should be a value in the range from 0 to mysql_num_rows - 1. However if the res-
ult set is empty (mysql_num_rows == 0), a seek to 0 will fail with a E_WARNING and mysql_data_seek will return
FALSE .

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

row_number The desired row number of the new result pointer.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.10. mysql_data_seek example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
$db_selected = mysql_select_db('sample_db');
if (!$db_selected) {

die('Could not select database: ' . mysql_error());
}
$query = 'SELECT last_name, first_name FROM friends';
$result = mysql_query($query);
if (!$result) {

die('Query failed: ' . mysql_error());
}
/* fetch rows in reverse order */
for ($i = mysql_num_rows($result) - 1; $i >= 0; $i--) {

if (!mysql_data_seek($result, $i)) {
echo "Cannot seek to row $i: " . mysql_error() . "\n";
continue;

}

if (!($row = mysql_fetch_assoc($result))) {
continue;

}

echo $row['last_name'] . ' ' . $row['first_name'] . "
\n";
}

mysql_free_result($result);
?>

Notes

Note

MySQL PHP API

277

http://www.php.net/manual/en/errorfunc.constants.errorlevels.e-warning.php

The function mysql_data_seek can be used in conjunction only with mysql_query, not with
mysql_unbuffered_query.

See Also

mysql_query
mysql_num_rows
mysql_fetch_row
mysql_fetch_assoc
mysql_fetch_array
mysql_fetch_object

8.1.4.8. mysql_db_name

Copyright 1997-2008 the PHP Documentation Group.

• mysql_db_name

Get result data

Description

string mysql_db_name(resource result,
int row,
mixed field);

Retrieve the database name from a call to mysql_list_dbs.

Parameters

result The result pointer from a call to mysql_list_dbs.

row The index into the result set.

field The field name.

Return Values

Returns the database name on success, and FALSE on failure. If FALSE is returned, use mysql_error to determine the nature of
the error.

Examples

Example 8.11. mysql_db_name example

<?php
error_reporting(E_ALL);

$link = mysql_connect('dbhost', 'username', 'password');
$db_list = mysql_list_dbs($link);

$i = 0;
$cnt = mysql_num_rows($db_list);
while ($i < $cnt) {

echo mysql_db_name($db_list, $i) . "\n";
$i++;

}
?>

Notes

Note

MySQL PHP API

278

For backward compatibility, the following deprecated alias may be used: mysql_dbname

See Also

mysql_list_dbs
mysql_tablename

8.1.4.9. mysql_db_query

Copyright 1997-2008 the PHP Documentation Group.

• mysql_db_query

Send a MySQL query

Description

resource mysql_db_query(string database,
string query,
resource link_identifier);

mysql_db_query selects a database, and executes a query on it.

Parameters

database The name of the database that will be selected.

query The MySQL query.

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns a positive MySQL result resource to the query result, or FALSE on error. The function also returns TRUE / FALSE for IN-
SERT/UPDATE/DELETE queries to indicate success/failure.

ChangeLog

Version Description

5.3.0 This function now throws an E_DEPRECATED notice.

4.0.6 This function is deprecated, do not use this function. Use
mysql_select_db and mysql_query instead.

Examples

Example 8.12. mysql_db_query alternative example

<?php

if (!$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {
echo 'Could not connect to mysql';
exit;

}

if (!mysql_select_db('mysql_dbname', $link)) {
echo 'Could not select database';
exit;

}

$sql = 'SELECT foo FROM bar WHERE id = 42';

MySQL PHP API

279

$result = mysql_query($sql, $link);

if (!$result) {
echo "DB Error, could not query the database\n";
echo 'MySQL Error: ' . mysql_error();
exit;

}

while ($row = mysql_fetch_assoc($result)) {
echo $row['foo'];

}

mysql_free_result($result);

?>

Notes

Note

Be aware that this function does NOT switch back to the database you were connected before. In other words, you
can't use this function to temporarily run a sql query on another database, you would have to manually switch back.
Users are strongly encouraged to use the database.table syntax in their sql queries or mysql_select_db in-
stead of this function.

See Also

mysql_query
mysql_select_db

8.1.4.10. mysql_drop_db

Copyright 1997-2008 the PHP Documentation Group.

• mysql_drop_db

Drop (delete) a MySQL database

Description

bool mysql_drop_db(string database_name,
resource link_identifier);

mysql_drop_db attempts to drop (remove) an entire database from the server associated with the specified link identifier. This
function is deprecated, it is preferable to use mysql_query to issue a sql DROP DATABASE statement instead.

Parameters

database_name The name of the database that will be deleted.

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.13. mysql_drop_db alternative example

MySQL PHP API

280

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}

$sql = 'DROP DATABASE my_db';
if (mysql_query($sql, $link)) {

echo "Database my_db was successfully dropped\n";
} else {

echo 'Error dropping database: ' . mysql_error() . "\n";
}
?>

Notes

Warning

This function will not be available if the MySQL extension was built against a MySQL 4.x client library.

Note

For backward compatibility, the following deprecated alias may be used: mysql_dropdb

See Also

mysql_query

8.1.4.11. mysql_errno

Copyright 1997-2008 the PHP Documentation Group.

• mysql_errno

Returns the numerical value of the error message from previous MySQL operation

Description

int mysql_errno(resource link_identifier);

Returns the error number from the last MySQL function.

Errors coming back from the MySQL database backend no longer issue warnings. Instead, use mysql_errno to retrieve the error
code. Note that this function only returns the error code from the most recently executed MySQL function (not including
mysql_error and mysql_errno), so if you want to use it, make sure you check the value before calling another MySQL func-
tion.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns the error number from the last MySQL function, or 0 (zero) if no error occurred.

Examples

Example 8.14. mysql_errno example

MySQL PHP API

281

<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");

if (!mysql_select_db("nonexistentdb", $link)) {
echo mysql_errno($link) . ": " . mysql_error($link). "\n";

}

mysql_select_db("kossu", $link);
if (!mysql_query("SELECT * FROM nonexistenttable", $link)) {

echo mysql_errno($link) . ": " . mysql_error($link) . "\n";
}
?>

The above example will output something similar to:

1049: Unknown database 'nonexistentdb'
1146: Table 'kossu.nonexistenttable' doesn't exist

See Also

mysql_error
MySQL error codes

8.1.4.12. mysql_error

Copyright 1997-2008 the PHP Documentation Group.

• mysql_error

Returns the text of the error message from previous MySQL operation

Description

string mysql_error(resource link_identifier);

Returns the error text from the last MySQL function. Errors coming back from the MySQL database backend no longer issue warn-
ings. Instead, use mysql_error to retrieve the error text. Note that this function only returns the error text from the most recently
executed MySQL function (not including mysql_error and mysql_errno), so if you want to use it, make sure you check the
value before calling another MySQL function.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns the error text from the last MySQL function, or '' (empty string) if no error occurred.

Examples

Example 8.15. mysql_error example

<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");

MySQL PHP API

282

http://dev.mysql.com/doc/mysql/en/error-handling.html

mysql_select_db("nonexistentdb", $link);
echo mysql_errno($link) . ": " . mysql_error($link). "\n";

mysql_select_db("kossu", $link);
mysql_query("SELECT * FROM nonexistenttable", $link);
echo mysql_errno($link) . ": " . mysql_error($link) . "\n";
?>

The above example will output something similar to:

1049: Unknown database 'nonexistentdb'
1146: Table 'kossu.nonexistenttable' doesn't exist

See Also

mysql_errno
MySQL error codes

8.1.4.13. mysql_escape_string

Copyright 1997-2008 the PHP Documentation Group.

• mysql_escape_string

Escapes a string for use in a mysql_query

Description

string mysql_escape_string(string unescaped_string);

This function will escape the unescaped_string, so that it is safe to place it in a mysql_query. This function is deprecated.

This function is identical to mysql_real_escape_string except that mysql_real_escape_string takes a connection
handler and escapes the string according to the current character set. mysql_escape_string does not take a connection argu-
ment and does not respect the current charset setting.

Parameters

unescaped_string The string that is to be escaped.

Return Values

Returns the escaped string.

ChangeLog

Version Description

5.3.0 This function now throws an E_DEPRECATED notice.

4.3.0 This function became deprecated, do not use this function. In-
stead, use mysql_real_escape_string.

Examples

Example 8.16. mysql_escape_string example

MySQL PHP API

283

http://dev.mysql.com/doc/mysql/en/error-handling.html

<?php
$item = "Zak's Laptop";
$escaped_item = mysql_escape_string($item);
printf("Escaped string: %s\n", $escaped_item);
?>

The above example will output:

Escaped string: Zak\'s Laptop

Notes

Note

mysql_escape_string does not escape % and _.

See Also

mysql_real_escape_string
addslashes
The magic_quotes_gpc directive.

8.1.4.14. mysql_fetch_array

Copyright 1997-2008 the PHP Documentation Group.

• mysql_fetch_array

Fetch a result row as an associative array, a numeric array, or both

Description

array mysql_fetch_array(resource result,
int result_type);

Returns an array that corresponds to the fetched row and moves the internal data pointer ahead.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

result_type The type of array that is to be fetched. It's a constant and can take the following values:
MYSQL_ASSOC , MYSQL_NUM , and the default value of MYSQL_BOTH .

Return Values

Returns an array of strings that corresponds to the fetched row, or FALSE if there are no more rows. The type of returned array de-
pends on how result_type is defined. By using MYSQL_BOTH (default), you'll get an array with both associative and number
indices. Using MYSQL_ASSOC , you only get associative indices (as mysql_fetch_assoc works), using MYSQL_NUM , you
only get number indices (as mysql_fetch_row works).

If two or more columns of the result have the same field names, the last column will take precedence. To access the other
column(s) of the same name, you must use the numeric index of the column or make an alias for the column. For aliased columns,
you cannot access the contents with the original column name.

Examples

MySQL PHP API

284

http://www.php.net/manual/en/ini.magic-quotes-gpc.php

Example 8.17. Query with aliased duplicate field names

SELECT table1.field AS foo, table2.field AS bar FROM table1, table2

Example 8.18. mysql_fetch_array with MYSQL_NUM

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or

die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_NUM)) {
printf("ID: %s Name: %s", $row[0], $row[1]);

}

mysql_free_result($result);
?>

Example 8.19. mysql_fetch_array with MYSQL_ASSOC

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or

die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {
printf("ID: %s Name: %s", $row["id"], $row["name"]);

}

mysql_free_result($result);
?>

Example 8.20. mysql_fetch_array with MYSQL_BOTH

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or

die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_BOTH)) {
printf ("ID: %s Name: %s", $row[0], $row["name"]);

}

mysql_free_result($result);
?>

Notes

Performance

An important thing to note is that using mysql_fetch_array is not significantly slower than using
mysql_fetch_row, while it provides a significant added value.

MySQL PHP API

285

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_row
mysql_fetch_assoc
mysql_data_seek
mysql_query

8.1.4.15. mysql_fetch_assoc

Copyright 1997-2008 the PHP Documentation Group.

• mysql_fetch_assoc

Fetch a result row as an associative array

Description

array mysql_fetch_assoc(resource result);

Returns an associative array that corresponds to the fetched row and moves the internal data pointer ahead.
mysql_fetch_assoc is equivalent to calling mysql_fetch_array with MYSQL_ASSOC for the optional second paramet-
er. It only returns an associative array.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

Return Values

Returns an associative array of strings that corresponds to the fetched row, or FALSE if there are no more rows.

If two or more columns of the result have the same field names, the last column will take precedence. To access the other
column(s) of the same name, you either need to access the result with numeric indices by using mysql_fetch_row or add alias
names. See the example at the mysql_fetch_array description about aliases.

Examples

Example 8.21. An expanded mysql_fetch_assoc example

<?php

$conn = mysql_connect("localhost", "mysql_user", "mysql_password");

if (!$conn) {
echo "Unable to connect to DB: " . mysql_error();
exit;

}

if (!mysql_select_db("mydbname")) {
echo "Unable to select mydbname: " . mysql_error();
exit;

}

$sql = "SELECT id as userid, fullname, userstatus
FROM sometable
WHERE userstatus = 1";

$result = mysql_query($sql);

MySQL PHP API

286

if (!$result) {
echo "Could not successfully run query ($sql) from DB: " . mysql_error();
exit;

}

if (mysql_num_rows($result) == 0) {
echo "No rows found, nothing to print so am exiting";
exit;

}

// While a row of data exists, put that row in $row as an associative array
// Note: If you're expecting just one row, no need to use a loop
// Note: If you put extract($row); inside the following loop, you'll
// then create $userid, $fullname, and $userstatus
while ($row = mysql_fetch_assoc($result)) {

echo $row["userid"];
echo $row["fullname"];
echo $row["userstatus"];

}

mysql_free_result($result);

?>

Notes

Performance

An important thing to note is that using mysql_fetch_assoc is not significantly slower than using
mysql_fetch_row, while it provides a significant added value.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_row
mysql_fetch_array
mysql_data_seek
mysql_query
mysql_error

8.1.4.16. mysql_fetch_field

Copyright 1997-2008 the PHP Documentation Group.

• mysql_fetch_field

Get column information from a result and return as an object

Description

object mysql_fetch_field(resource result,
int field_offset);

Returns an object containing field information. This function can be used to obtain information about fields in the provided query
result.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

field_offset The numerical field offset. If the field offset is not specified, the next field that was not yet
retrieved by this function is retrieved. The field_offset starts at 0.

MySQL PHP API

287

Return Values

Returns an object containing field information. The properties of the object are:

• name - column name

• table - name of the table the column belongs to

• def - default value of the column

• max_length - maximum length of the column

• not_null - 1 if the column cannot be NULL

• primary_key - 1 if the column is a primary key

• unique_key - 1 if the column is a unique key

• multiple_key - 1 if the column is a non-unique key

• numeric - 1 if the column is numeric

• blob - 1 if the column is a BLOB

• type - the type of the column

• unsigned - 1 if the column is unsigned

• zerofill - 1 if the column is zero-filled

Examples

Example 8.22. mysql_fetch_field example

<?php
$conn = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$conn) {

die('Could not connect: ' . mysql_error());
}
mysql_select_db('database');
$result = mysql_query('select * from table');
if (!$result) {

die('Query failed: ' . mysql_error());
}
/* get column metadata */
$i = 0;
while ($i < mysql_num_fields($result)) {

echo "Information for column $i:
\n";
$meta = mysql_fetch_field($result, $i);
if (!$meta) {

echo "No information available
\n";
}
echo "<pre>

blob: $meta->blob
max_length: $meta->max_length
multiple_key: $meta->multiple_key
name: $meta->name
not_null: $meta->not_null
numeric: $meta->numeric
primary_key: $meta->primary_key
table: $meta->table
type: $meta->type
default: $meta->def
unique_key: $meta->unique_key
unsigned: $meta->unsigned
zerofill: $meta->zerofill
</pre>";

$i++;
}
mysql_free_result($result);
?>

MySQL PHP API

288

Notes

Note

Field names returned by this function are case-sensitive.

See Also

mysql_field_seek

8.1.4.17. mysql_fetch_lengths

Copyright 1997-2008 the PHP Documentation Group.

• mysql_fetch_lengths

Get the length of each output in a result

Description

array mysql_fetch_lengths(resource result);

Returns an array that corresponds to the lengths of each field in the last row fetched by MySQL.

mysql_fetch_lengths stores the lengths of each result column in the last row returned by mysql_fetch_row,
mysql_fetch_assoc, mysql_fetch_array, and mysql_fetch_object in an array, starting at offset 0.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

Return Values

An array of lengths on success, or FALSE on failure.

Examples

Example 8.23. A mysql_fetch_lengths example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {

echo 'Could not run query: ' . mysql_error();
exit;

}
$row = mysql_fetch_assoc($result);
$lengths = mysql_fetch_lengths($result);

print_r($row);
print_r($lengths);
?>

The above example will output something similar to:

Array
(

[id] => 42
[email] => user@example.com

)
Array
(

[0] => 2
[1] => 16

)

MySQL PHP API

289

See Also

mysql_field_len
mysql_fetch_row
strlen

8.1.4.18. mysql_fetch_object

Copyright 1997-2008 the PHP Documentation Group.

• mysql_fetch_object

Fetch a result row as an object

Description

object mysql_fetch_object(resource result,
string class_name,
array params);

Returns an object with properties that correspond to the fetched row and moves the internal data pointer ahead.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

class_name The name of the class to instantiate, set the properties of and return. If not specified, a
stdClass object is returned.

params An optional array of parameters to pass to the constructor for class_name objects.

Return Values

Returns an object with string properties that correspond to the fetched row, or FALSE if there are no more rows.

mysql_fetch_row fetches one row of data from the result associated with the specified result identifier. The row is returned as
an array. Each result column is stored in an array offset, starting at offset 0.

ChangeLog

Version Description

5.0.0 Added the ability to return as a different object.

Examples

Example 8.24. mysql_fetch_object example

<?php
mysql_connect("hostname", "user", "password");
mysql_select_db("mydb");
$result = mysql_query("select * from mytable");
while ($row = mysql_fetch_object($result)) {

echo $row->user_id;
echo $row->fullname;

}
mysql_free_result($result);
?>

MySQL PHP API

290

Example 8.25. mysql_fetch_object example

<?php
class foo {

public $name;
}

mysql_connect("hostname", "user", "password");
mysql_select_db("mydb");

$result = mysql_query("select name from mytable limit 1");
$obj = mysql_fetch_object($result, 'foo');
var_dump($obj);
?>

Notes

Performance

Speed-wise, the function is identical to mysql_fetch_array, and almost as quick as mysql_fetch_row (the
difference is insignificant).

Note

mysql_fetch_object is similar to mysql_fetch_array, with one difference - an object is returned, instead
of an array. Indirectly, that means that you can only access the data by the field names, and not by their offsets
(numbers are illegal property names).

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_row
mysql_data_seek
mysql_query

8.1.4.19. mysql_fetch_row

Copyright 1997-2008 the PHP Documentation Group.

• mysql_fetch_row

Get a result row as an enumerated array

Description

array mysql_fetch_row(resource result);

Returns a numerical array that corresponds to the fetched row and moves the internal data pointer ahead.

Parameters

MySQL PHP API

291

result The result resource that is being evaluated. This result comes from a call to mysql_query.

Return Values

Returns an numerical array of strings that corresponds to the fetched row, or FALSE if there are no more rows.

mysql_fetch_row fetches one row of data from the result associated with the specified result identifier. The row is returned as
an array. Each result column is stored in an array offset, starting at offset 0.

Examples

Example 8.26. Fetching one row with mysql_fetch_row

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {

echo 'Could not run query: ' . mysql_error();
exit;

}
$row = mysql_fetch_row($result);

echo $row[0]; // 42
echo $row[1]; // the email value
?>

Notes

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_object
mysql_data_seek
mysql_fetch_lengths
mysql_result

8.1.4.20. mysql_field_flags

Copyright 1997-2008 the PHP Documentation Group.

• mysql_field_flags

Get the flags associated with the specified field in a result

Description

string mysql_field_flags(resource result,
int field_offset);

mysql_field_flags returns the field flags of the specified field. The flags are reported as a single word per flag separated by a
single space, so that you can split the returned value using explode.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

MySQL PHP API

292

Return Values

Returns a string of flags associated with the result, or FALSE on failure.

The following flags are reported, if your version of MySQL is current enough to support them: "not_null", "primary_key",
"unique_key", "multiple_key", "blob", "unsigned", "zerofill", "binary", "enum", "auto_increment"
and "timestamp".

Examples

Example 8.27. A mysql_field_flags example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {

echo 'Could not run query: ' . mysql_error();
exit;

}
$flags = mysql_field_flags($result, 0);

echo $flags;
print_r(explode(' ', $flags));
?>

The above example will output something similar to:

not_null primary_key auto_increment
Array
(

[0] => not_null
[1] => primary_key
[2] => auto_increment

)

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_fieldflags

See Also

mysql_field_type
mysql_field_len

8.1.4.21. mysql_field_len

Copyright 1997-2008 the PHP Documentation Group.

• mysql_field_len

Returns the length of the specified field

Description

int mysql_field_len(resource result,
int field_offset);

mysql_field_len returns the length of the specified field.

Parameters

MySQL PHP API

293

result The result resource that is being evaluated. This result comes from a call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

The length of the specified field index on success, or FALSE on failure.

Examples

Example 8.28. mysql_field_len example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {

echo 'Could not run query: ' . mysql_error();
exit;

}

// Will get the length of the id field as specified in the database
// schema.
$length = mysql_field_len($result, 0);
echo $length;
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_fieldlen

See Also

mysql_fetch_lengths
strlen

8.1.4.22. mysql_field_name

Copyright 1997-2008 the PHP Documentation Group.

• mysql_field_name

Get the name of the specified field in a result

Description

string mysql_field_name(resource result,
int field_offset);

mysql_field_name returns the name of the specified field index.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

MySQL PHP API

294

Return Values

The name of the specified field index on success, or FALSE on failure.

Examples

Example 8.29. mysql_field_name example

<?php
/* The users table consists of three fields:
* user_id
* username
* password.
*/
$link = @mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect to MySQL server: ' . mysql_error());
}
$dbname = 'mydb';
$db_selected = mysql_select_db($dbname, $link);
if (!$db_selected) {

die("Could not set $dbname: " . mysql_error());
}
$res = mysql_query('select * from users', $link);

echo mysql_field_name($res, 0) . "\n";
echo mysql_field_name($res, 2);
?>

The above example will output:

user_id
password

Notes

Note

Field names returned by this function are case-sensitive.

Note

For backward compatibility, the following deprecated alias may be used: mysql_fieldname

See Also

mysql_field_type
mysql_field_len

8.1.4.23. mysql_field_seek

Copyright 1997-2008 the PHP Documentation Group.

• mysql_field_seek

Set result pointer to a specified field offset

Description

bool mysql_field_seek(resource result,
int field_offset);

MySQL PHP API

295

Seeks to the specified field offset. If the next call to mysql_fetch_field doesn't include a field offset, the field offset spe-
cified in mysql_field_seek will be returned.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysql_fetch_field

8.1.4.24. mysql_field_table

Copyright 1997-2008 the PHP Documentation Group.

• mysql_field_table

Get name of the table the specified field is in

Description

string mysql_field_table(resource result,
int field_offset);

Returns the name of the table that the specified field is in.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

The name of the table on success.

Examples

Example 8.30. A mysql_field_table example

<?php

$query = "SELECT account.*, country.* FROM account, country WHERE country.name = 'Portugal' AND account.country_id = country.id";

// get the result from the DB
$result = mysql_query($query);

// Lists the table name and then the field name
for ($i = 0; $i < mysql_num_fields($result); ++$i) {

$table = mysql_field_table($result, $i);
$field = mysql_field_name($result, $i);

echo "$table: $field\n";
}

?>

MySQL PHP API

296

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_fieldtable

See Also

mysql_list_tables

8.1.4.25. mysql_field_type

Copyright 1997-2008 the PHP Documentation Group.

• mysql_field_type

Get the type of the specified field in a result

Description

string mysql_field_type(resource result,
int field_offset);

mysql_field_type is similar to the mysql_field_name function. The arguments are identical, but the field type is re-
turned instead.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If field_offset does not
exist, an error of level E_WARNING is also issued.

Return Values

The returned field type will be one of "int", "real", "string", "blob", and others as detailed in the MySQL documenta-
tion.

Examples

Example 8.31. mysql_field_type example

<?php
mysql_connect("localhost", "mysql_username", "mysql_password");
mysql_select_db("mysql");
$result = mysql_query("SELECT * FROM func");
$fields = mysql_num_fields($result);
$rows = mysql_num_rows($result);
$table = mysql_field_table($result, 0);
echo "Your '" . $table . "' table has " . $fields . " fields and " . $rows . " record(s)\n";
echo "The table has the following fields:\n";
for ($i=0; $i < $fields; $i++) {

$type = mysql_field_type($result, $i);
$name = mysql_field_name($result, $i);
$len = mysql_field_len($result, $i);
$flags = mysql_field_flags($result, $i);
echo $type . " " . $name . " " . $len . " " . $flags . "\n";

}
mysql_free_result($result);
mysql_close();
?>

MySQL PHP API

297

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

The above example will output something similar to:

Your 'func' table has 4 fields and 1 record(s)
The table has the following fields:
string name 64 not_null primary_key binary
int ret 1 not_null
string dl 128 not_null
string type 9 not_null enum

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_fieldtype

See Also

mysql_field_name
mysql_field_len

8.1.4.26. mysql_free_result

Copyright 1997-2008 the PHP Documentation Group.

• mysql_free_result

Free result memory

Description

bool mysql_free_result(resource result);

mysql_free_result will free all memory associated with the result identifier result.

mysql_free_result only needs to be called if you are concerned about how much memory is being used for queries that re-
turn large result sets. All associated result memory is automatically freed at the end of the script's execution.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

Return Values

Returns TRUE on success or FALSE on failure.

If a non-resource is used for the result, an error of level E_WARNING will be emitted. It's worth noting that mysql_query
only returns a resource for SELECT, SHOW, EXPLAIN, and DESCRIBE queries.

Examples

Example 8.32. A mysql_free_result example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {

echo 'Could not run query: ' . mysql_error();
exit;

}
/* Use the result, assuming we're done with it afterwards */
$row = mysql_fetch_assoc($result);

MySQL PHP API

298

/* Now we free up the result and continue on with our script */
mysql_free_result($result);

echo $row['id'];
echo $row['email'];
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_freeresult

See Also

mysql_query
is_resource

8.1.4.27. mysql_get_client_info

Copyright 1997-2008 the PHP Documentation Group.

• mysql_get_client_info

Get MySQL client info

Description

string mysql_get_client_info();

mysql_get_client_info returns a string that represents the client library version.

Return Values

The MySQL client version.

Examples

Example 8.33. mysql_get_client_info example

<?php
printf("MySQL client info: %s\n", mysql_get_client_info());
?>

The above example will output something similar to:

MySQL client info: 3.23.39

See Also

mysql_get_host_info
mysql_get_proto_info
mysql_get_server_info

MySQL PHP API

299

8.1.4.28. mysql_get_host_info

Copyright 1997-2008 the PHP Documentation Group.

• mysql_get_host_info

Get MySQL host info

Description

string mysql_get_host_info(resource link_identifier);

Describes the type of connection in use for the connection, including the server host name.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns a string describing the type of MySQL connection in use for the connection or FALSE on failure.

Examples

Example 8.34. mysql_get_host_info example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
printf("MySQL host info: %s\n", mysql_get_host_info());
?>

The above example will output something similar to:

MySQL host info: Localhost via UNIX socket

See Also

mysql_get_client_info
mysql_get_proto_info
mysql_get_server_info

8.1.4.29. mysql_get_proto_info

Copyright 1997-2008 the PHP Documentation Group.

• mysql_get_proto_info

Get MySQL protocol info

MySQL PHP API

300

Description

int mysql_get_proto_info(resource link_identifier);

Retrieves the MySQL protocol.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns the MySQL protocol on success, or FALSE on failure.

Examples

Example 8.35. mysql_get_proto_info example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
printf("MySQL protocol version: %s\n", mysql_get_proto_info());
?>

The above example will output something similar to:

MySQL protocol version: 10

See Also

mysql_get_client_info
mysql_get_host_info
mysql_get_server_info

8.1.4.30. mysql_get_server_info

Copyright 1997-2008 the PHP Documentation Group.

• mysql_get_server_info

Get MySQL server info

Description

string mysql_get_server_info(resource link_identifier);

Retrieves the MySQL server version.

Parameters

MySQL PHP API

301

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns the MySQL server version on success, or FALSE on failure.

Examples

Example 8.36. mysql_get_server_info example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
printf("MySQL server version: %s\n", mysql_get_server_info());
?>

The above example will output something similar to:

MySQL server version: 4.0.1-alpha

See Also

mysql_get_client_info
mysql_get_host_info
mysql_get_proto_info
phpversion

8.1.4.31. mysql_info

Copyright 1997-2008 the PHP Documentation Group.

• mysql_info

Get information about the most recent query

Description

string mysql_info(resource link_identifier);

Returns detailed information about the last query.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

MySQL PHP API

302

Return Values

Returns information about the statement on success, or FALSE on failure. See the example below for which statements provide in-
formation, and what the returned value may look like. Statements that are not listed will return FALSE .

Examples

Example 8.37. Relevant MySQL Statements

Statements that return string values. The numbers are only for illustrating purpose; their values will correspond to the query.

INSERT INTO ... SELECT ...
String format: Records: 23 Duplicates: 0 Warnings: 0
INSERT INTO ... VALUES (...),(...),(...)...
String format: Records: 37 Duplicates: 0 Warnings: 0
LOAD DATA INFILE ...
String format: Records: 42 Deleted: 0 Skipped: 0 Warnings: 0
ALTER TABLE
String format: Records: 60 Duplicates: 0 Warnings: 0
UPDATE
String format: Rows matched: 65 Changed: 65 Warnings: 0

Notes

Note

mysql_info returns a non- FALSE value for the INSERT ... VALUES statement only if multiple value lists are
specified in the statement.

See Also

mysql_affected_rows
mysql_insert_id
mysql_stat

8.1.4.32. mysql_insert_id

Copyright 1997-2008 the PHP Documentation Group.

• mysql_insert_id

Get the ID generated from the previous INSERT operation

Description

int mysql_insert_id(resource link_identifier);

Retrieves the ID generated for an AUTO_INCREMENT column by the previous INSERT query.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

The ID generated for an AUTO_INCREMENT column by the previous INSERT query on success, 0 if the previous query does not
generate an AUTO_INCREMENT value, or FALSE if no MySQL connection was established.

MySQL PHP API

303

Examples

Example 8.38. mysql_insert_id example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

mysql_query("INSERT INTO mytable (product) values ('kossu')");
printf("Last inserted record has id %d\n", mysql_insert_id());
?>

Notes

Caution

mysql_insert_id converts the return type of the native MySQL C API function mysql_insert_id() to a
type of long (named int in PHP). If your AUTO_INCREMENT column has a column type of BIGINT, the value re-
turned by mysql_insert_id will be incorrect. Instead, use the internal MySQL SQL function
LAST_INSERT_ID() in an SQL query.

Note

Because mysql_insert_id acts on the last performed query, be sure to call mysql_insert_id immediately
after the query that generates the value.

Note

The value of the MySQL SQL function LAST_INSERT_ID() always contains the most recently generated
AUTO_INCREMENT value, and is not reset between queries.

See Also

mysql_query
mysql_info

8.1.4.33. mysql_list_dbs

Copyright 1997-2008 the PHP Documentation Group.

• mysql_list_dbs

List databases available on a MySQL server

Description

resource mysql_list_dbs(resource link_identifier);

Returns a result pointer containing the databases available from the current mysql daemon.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

MySQL PHP API

304

Returns a result pointer resource on success, or FALSE on failure. Use the mysql_tablename function to traverse this result
pointer, or any function for result tables, such as mysql_fetch_array.

Examples

Example 8.39. mysql_list_dbs example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$db_list = mysql_list_dbs($link);

while ($row = mysql_fetch_object($db_list)) {
echo $row->Database . "\n";

}
?>

The above example will output something similar to:

database1
database2
database3

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_listdbs

See Also

mysql_db_name
mysql_select_db

8.1.4.34. mysql_list_fields

Copyright 1997-2008 the PHP Documentation Group.

• mysql_list_fields

List MySQL table fields

Description

resource mysql_list_fields(string database_name,
string table_name,
resource link_identifier);

Retrieves information about the given table name.

This function is deprecated. It is preferable to use mysql_query to issue a SQL SHOW COLUMNS FROM table [LIKE
'name'] statement instead.

Parameters

database_name The name of the database that's being queried.

table_name The name of the table that's being queried.

MySQL PHP API

305

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

A result pointer resource on success, or FALSE on failure.

The returned result can be used with mysql_field_flags, mysql_field_len, mysql_field_name and
mysql_field_type.

Examples

Example 8.40. Alternate to deprecated mysql_list_fields

<?php
$result = mysql_query("SHOW COLUMNS FROM sometable");
if (!$result) {

echo 'Could not run query: ' . mysql_error();
exit;

}
if (mysql_num_rows($result) > 0) {

while ($row = mysql_fetch_assoc($result)) {
print_r($row);

}
}
?>

The above example will output something similar to:

Array
(

[Field] => id
[Type] => int(7)
[Null] =>
[Key] => PRI
[Default] =>
[Extra] => auto_increment

)
Array
(

[Field] => email
[Type] => varchar(100)
[Null] =>
[Key] =>
[Default] =>
[Extra] =>

)

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_listfields

See Also

mysql_field_flags
mysql_info

8.1.4.35. mysql_list_processes

Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

306

• mysql_list_processes

List MySQL processes

Description

resource mysql_list_processes(resource link_identifier);

Retrieves the current MySQL server threads.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

A result pointer resource on success, or FALSE on failure.

Examples

Example 8.41. mysql_list_processes example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$result = mysql_list_processes($link);
while ($row = mysql_fetch_assoc($result)){

printf("%s %s %s %s %s\n", $row["Id"], $row["Host"], $row["db"],
$row["Command"], $row["Time"]);

}
mysql_free_result($result);
?>

The above example will output something similar to:

1 localhost test Processlist 0
4 localhost mysql sleep 5

See Also

mysql_thread_id
mysql_stat

8.1.4.36. mysql_list_tables

Copyright 1997-2008 the PHP Documentation Group.

• mysql_list_tables

List tables in a MySQL database

Description

MySQL PHP API

307

resource mysql_list_tables(string database,
resource link_identifier);

Retrieves a list of table names from a MySQL database.

This function is deprecated. It is preferable to use mysql_query to issue a SQL SHOW TABLES [FROM db_name] [LIKE
'pattern'] statement instead.

Parameters

database The name of the database

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

A result pointer resource on success, or FALSE on failure.

Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such as
mysql_fetch_array.

ChangeLog

Version Description

4.3.7 This function became deprecated.

Examples

Example 8.42. mysql_list_tables alternative example

<?php
$dbname = 'mysql_dbname';

if (!mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {
echo 'Could not connect to mysql';
exit;

}

$sql = "SHOW TABLES FROM $dbname";
$result = mysql_query($sql);

if (!$result) {
echo "DB Error, could not list tables\n";
echo 'MySQL Error: ' . mysql_error();
exit;

}

while ($row = mysql_fetch_row($result)) {
echo "Table: {$row[0]}\n";

}

mysql_free_result($result);
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_listtables

See Also

MySQL PHP API

308

mysql_list_dbs
mysql_tablename

8.1.4.37. mysql_num_fields

Copyright 1997-2008 the PHP Documentation Group.

• mysql_num_fields

Get number of fields in result

Description

int mysql_num_fields(resource result);

Retrieves the number of fields from a query.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

Return Values

Returns the number of fields in the result set resource on success, or FALSE on failure.

Examples

Example 8.43. A mysql_num_fields example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {

echo 'Could not run query: ' . mysql_error();
exit;

}

/* returns 2 because id,email === two fields */
echo mysql_num_fields($result);
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_numfields

See Also

mysql_select_db
mysql_query
mysql_fetch_field
mysql_num_rows

8.1.4.38. mysql_num_rows

Copyright 1997-2008 the PHP Documentation Group.

• mysql_num_rows

MySQL PHP API

309

Get number of rows in result

Description

int mysql_num_rows(resource result);

Retrieves the number of rows from a result set. This command is only valid for statements like SELECT or SHOW that return an
actual result set. To retrieve the number of rows affected by a INSERT, UPDATE, REPLACE or DELETE query, use
mysql_affected_rows.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

Return Values

The number of rows in a result set on success, or FALSE on failure.

Examples

Example 8.44. mysql_num_rows example

<?php

$link = mysql_connect("localhost", "mysql_user", "mysql_password");
mysql_select_db("database", $link);

$result = mysql_query("SELECT * FROM table1", $link);
$num_rows = mysql_num_rows($result);

echo "$num_rows Rows\n";

?>

Notes

Note

If you use mysql_unbuffered_query, mysql_num_rows will not return the correct value until all the rows in
the result set have been retrieved.

Note

For backward compatibility, the following deprecated alias may be used: mysql_numrows

See Also

mysql_affected_rows
mysql_connect
mysql_data_seek
mysql_select_db
mysql_query

8.1.4.39. mysql_pconnect

Copyright 1997-2008 the PHP Documentation Group.

• mysql_pconnect

Open a persistent connection to a MySQL server

MySQL PHP API

310

Description

resource mysql_pconnect(string server,
string username,
string password,
int client_flags);

Establishes a persistent connection to a MySQL server.

mysql_pconnect acts very much like mysql_connect with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already open with the same host, username and
password. If one is found, an identifier for it will be returned instead of opening a new connection.

Second, the connection to the SQL server will not be closed when the execution of the script ends. Instead, the link will remain
open for future use (mysql_close will not close links established by mysql_pconnect).

This type of link is therefore called 'persistent'.

Parameters

server The MySQL server. It can also include a port number. e.g. "hostname:port" or a path to a
local socket e.g. ":/path/to/socket" for the localhost.

If the PHP directive mysql.default_host is undefined (default), then the default value is 'local-
host:3306'

username The username. Default value is the name of the user that owns the server process.

password The password. Default value is an empty password.

client_flags The client_flags parameter can be a combination of the following constants: 128
(enable LOAD DATA LOCAL handling), MYSQL_CLIENT_SSL ,
MYSQL_CLIENT_COMPRESS , MYSQL_CLIENT_IGNORE_SPACE or
MYSQL_CLIENT_INTERACTIVE .

Return Values

Returns a MySQL persistent link identifier on success, or FALSE on failure.

ChangeLog

Version Description

4.3.0 Added the client_flags parameter.

3.0.10 Added support for ":/path/to/socket" with server.

3.0.0 Added support for ":port" with server.

Notes

Note

Note, that these kind of links only work if you are using a module version of PHP. See the Persistent Database Con-
nections section for more information.

Warning

Using persistent connections can require a bit of tuning of your Apache and MySQL configurations to ensure that you
do not exceed the number of connections allowed by MySQL.

Note

You can suppress the error message on failure by prepending a @ to the function name.

See Also

MySQL PHP API

311

http://www.php.net/manual/en/ini.mysql.default-host.php
http://www.php.net/manual/en/features.persistent-connections.php
http://www.php.net/manual/en/features.persistent-connections.php
http://www.php.net/manual/en/language.operators.errorcontrol.php

mysql_connect
Persistent Database Connections

8.1.4.40. mysql_ping

Copyright 1997-2008 the PHP Documentation Group.

• mysql_ping

Ping a server connection or reconnect if there is no connection

Description

bool mysql_ping(resource link_identifier);

Checks whether or not the connection to the server is working. If it has gone down, an automatic reconnection is attempted. This
function can be used by scripts that remain idle for a long while, to check whether or not the server has closed the connection and
reconnect if necessary.

Note

Since MySQL 5.0.13, automatic reconnection feature is disabled.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns TRUE if the connection to the server MySQL server is working, otherwise FALSE .

Examples

Example 8.45. A mysql_ping example

<?php
set_time_limit(0);

$conn = mysql_connect('localhost', 'mysqluser', 'mypass');
$db = mysql_select_db('mydb');

/* Assuming this query will take a long time */
$result = mysql_query($sql);
if (!$result) {

echo 'Query #1 failed, exiting.';
exit;

}

/* Make sure the connection is still alive, if not, try to reconnect */
if (!mysql_ping($conn)) {

echo 'Lost connection, exiting after query #1';
exit;

}
mysql_free_result($result);

/* So the connection is still alive, let's run another query */
$result2 = mysql_query($sql2);
?>

See Also

MySQL PHP API

312

http://www.php.net/manual/en/features.persistent-connections.php

mysql_thread_id
mysql_list_processes

8.1.4.41. mysql_query

Copyright 1997-2008 the PHP Documentation Group.

• mysql_query

Send a MySQL query

Description

resource mysql_query(string query,
resource link_identifier);

mysql_query sends an unique query (multiple queries are not supported) to the currently active database on the server that's as-
sociated with the specified link_identifier.

Parameters

query A SQL query

The query string should not end with a semicolon.

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE, EXPLAIN and other statements returning resultset, mysql_query returns a resource on suc-
cess, or FALSE on error.

For other type of SQL statements, INSERT, UPDATE, DELETE, DROP, etc, mysql_query returns TRUE on success or FALSE
on error.

The returned result resource should be passed to mysql_fetch_array, and other functions for dealing with result tables, to ac-
cess the returned data.

Use mysql_num_rows to find out how many rows were returned for a SELECT statement or mysql_affected_rows to find
out how many rows were affected by a DELETE, INSERT, REPLACE, or UPDATE statement.

mysql_query will also fail and return FALSE if the user does not have permission to access the table(s) referenced by the query.

Examples

Example 8.46. Invalid Query

The following query is syntactically invalid, so mysql_query fails and returns FALSE .

<?php
$result = mysql_query('SELECT * WHERE 1=1');
if (!$result) {

die('Invalid query: ' . mysql_error());
}

?>

MySQL PHP API

313

Example 8.47. Valid Query

The following query is valid, so mysql_query returns a resource.

<?php
// This could be supplied by a user, for example
$firstname = 'fred';
$lastname = 'fox';

// Formulate Query
// This is the best way to perform a SQL query
// For more examples, see mysql_real_escape_string()
$query = sprintf("SELECT firstname, lastname, address, age FROM friends WHERE firstname='%s' AND lastname='%s'",

mysql_real_escape_string($firstname),
mysql_real_escape_string($lastname));

// Perform Query
$result = mysql_query($query);

// Check result
// This shows the actual query sent to MySQL, and the error. Useful for debugging.
if (!$result) {

$message = 'Invalid query: ' . mysql_error() . "\n";
$message .= 'Whole query: ' . $query;
die($message);

}

// Use result
// Attempting to print $result won't allow access to information in the resource
// One of the mysql result functions must be used
// See also mysql_result(), mysql_fetch_array(), mysql_fetch_row(), etc.
while ($row = mysql_fetch_assoc($result)) {

echo $row['firstname'];
echo $row['lastname'];
echo $row['address'];
echo $row['age'];

}

// Free the resources associated with the result set
// This is done automatically at the end of the script
mysql_free_result($result);
?>

See Also

mysql_connect
mysql_error
mysql_real_escape_string
mysql_result
mysql_fetch_assoc
mysql_unbuffered_query

8.1.4.42. mysql_real_escape_string

Copyright 1997-2008 the PHP Documentation Group.

• mysql_real_escape_string

Escapes special characters in a string for use in a SQL statement

Description

string mysql_real_escape_string(string unescaped_string,
resource link_identifier);

Escapes special characters in the unescaped_string, taking into account the current character set of the connection so that it is
safe to place it in a mysql_query. If binary data is to be inserted, this function must be used.

mysql_real_escape_string calls MySQL's library function mysql_real_escape_string, which prepends backslashes to the
following characters: \x00, \n, \r, \, ', " and \x1a.

This function must always (with few exceptions) be used to make data safe before sending a query to MySQL.

MySQL PHP API

314

Parameters

unescaped_string The string that is to be escaped.

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns the escaped string, or FALSE on error.

Examples

Example 8.48. Simple mysql_real_escape_string example

<?php
// Connect
$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')

OR die(mysql_error());

// Query
$query = sprintf("SELECT * FROM users WHERE user='%s' AND password='%s'",

mysql_real_escape_string($user),
mysql_real_escape_string($password));

?>

Example 8.49. An example SQL Injection Attack

<?php
// Query database to check if there are any matching users
$query = "SELECT * FROM users WHERE user='{$_POST['username']}' AND password='{$_POST['password']}'";
mysql_query($query);

// We didn't check $_POST['password'], it could be anything the user wanted! For example:
$_POST['username'] = 'aidan';
$_POST['password'] = "' OR ''='";

// This means the query sent to MySQL would be:
echo $query;
?>

The query sent to MySQL:

SELECT * FROM users WHERE user='aidan' AND password='' OR ''=''

This would allow anyone to log in without a valid password.

Example 8.50. A "Best Practice" query

Using mysql_real_escape_string around each variable prevents SQL Injection. This example demonstrates the "best prac-
tice" method for querying a database, independent of the Magic Quotes setting.

MySQL PHP API

315

http://www.php.net/manual/en/security.magicquotes.php

<?php

if (isset($_POST['product_name']) && isset($_POST['product_description']) && isset($_POST['user_id'])) {
// Connect

$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password');

if(!is_resource($link)) {

echo "Failed to connect to the server\n";
// ... log the error properly

} else {

// Reverse magic_quotes_gpc/magic_quotes_sybase effects on those vars if ON.

if(get_magic_quotes_gpc()) {
$product_name = stripslashes($_POST['product_name']);
$product_description = stripslashes($_POST['product_description']);

} else {
$product_name = $_POST['product_name'];
$product_description = $_POST['product_description'];

}

// Make a safe query
$query = sprintf("INSERT INTO products (`name`, `description`, `user_id`) VALUES ('%s', '%s', %d)",

mysql_real_escape_string($product_name, $link),
mysql_real_escape_string($product_description, $link),
$_POST['user_id']);

mysql_query($query, $link);

if (mysql_affected_rows($link) > 0) {
echo "Product inserted\n";

}
}

} else {
echo "Fill the form properly\n";

}
?>

The query will now execute correctly, and SQL Injection attacks will not work.

Notes

Note

A MySQL connection is required before using mysql_real_escape_string otherwise an error of level
E_WARNING is generated, and FALSE is returned. If link_identifier isn't defined, the last MySQL connection
is used.

Note

If magic_quotes_gpc is enabled, first apply stripslashes to the data. Using this function on data which has
already been escaped will escape the data twice.

Note

If this function is not used to escape data, the query is vulnerable to SQL Injection Attacks.

Note

mysql_real_escape_string does not escape % and _. These are wildcards in MySQL if combined with LIKE,
GRANT, or REVOKE.

See Also

mysql_client_encoding
addslashes
stripslashes
The magic_quotes_gpc directive
The magic_quotes_runtime directive

8.1.4.43. mysql_result

Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

316

http://www.php.net/manual/en/ini.magic-quotes-gpc.php
http://www.php.net/manual/en/security.database.sql-injection.php
http://www.php.net/manual/en/ini.magic-quotes-gpc.php
http://www.php.net/manual/en/ini.magic-quotes-runtime.php

• mysql_result

Get result data

Description

string mysql_result(resource result,
int row,
mixed field);

Retrieves the contents of one cell from a MySQL result set.

When working on large result sets, you should consider using one of the functions that fetch an entire row (specified below). As
these functions return the contents of multiple cells in one function call, they're MUCH quicker than mysql_result. Also, note
that specifying a numeric offset for the field argument is much quicker than specifying a fieldname or tablename.fieldname argu-
ment.

Parameters

result The result resource that is being evaluated. This result comes from a call to mysql_query.

row The row number from the result that's being retrieved. Row numbers start at 0.

field The name or offset of the field being retrieved.

It can be the field's offset, the field's name, or the field's table dot field name
(tablename.fieldname). If the column name has been aliased ('select foo as bar from...'), use
the alias instead of the column name. If undefined, the first field is retrieved.

Return Values

The contents of one cell from a MySQL result set on success, or FALSE on failure.

Examples

Example 8.51. mysql_result example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Could not connect: ' . mysql_error());
}
$result = mysql_query('SELECT name FROM work.employee');
if (!$result) {

die('Could not query:' . mysql_error());
}
echo mysql_result($result, 2); // outputs third employee's name

mysql_close($link);
?>

Notes

Note

Calls to mysql_result should not be mixed with calls to other functions that deal with the result set.

See Also

mysql_fetch_row
mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_object

MySQL PHP API

317

8.1.4.44. mysql_select_db

Copyright 1997-2008 the PHP Documentation Group.

• mysql_select_db

Select a MySQL database

Description

bool mysql_select_db(string database_name,
resource link_identifier);

Sets the current active database on the server that's associated with the specified link identifier. Every subsequent call to
mysql_query will be made on the active database.

Parameters

database_name The name of the database that is to be selected.

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.52. mysql_select_db example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {

die('Not connected : ' . mysql_error());
}

// make foo the current db
$db_selected = mysql_select_db('foo', $link);
if (!$db_selected) {

die ('Can\'t use foo : ' . mysql_error());
}
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used: mysql_selectdb

See Also

mysql_connect
mysql_pconnect
mysql_query

8.1.4.45. mysql_set_charset

Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

318

• mysql_set_charset

Sets the client character set

Description

bool mysql_set_charset(string charset,
resource link_identifier);

Sets the default character set for the current connection.

Parameters

charset A valid character set name.

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires MySQL 5.0.7 or later.

Note

This is the preferred way to change the charset. Using mysql_query to execute SET NAMES .. is not reccomen-
ded.

See Also

mysql_client_encoding
List of character sets that MySQL supports

8.1.4.46. mysql_stat

Copyright 1997-2008 the PHP Documentation Group.

• mysql_stat

Get current system status

Description

string mysql_stat(resource link_identifier);

mysql_stat returns the current server status.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

MySQL PHP API

319

http://dev.mysql.com/doc/refman/5.1/en/charset-charsets.html

Return Values

Returns a string with the status for uptime, threads, queries, open tables, flush tables and queries per second. For a complete list of
other status variables, you have to use the SHOW STATUS SQL command. If link_identifier is invalid, NULL is returned.

Examples

Example 8.53. mysql_stat example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$status = explode(' ', mysql_stat($link));
print_r($status);
?>

The above example will output something similar to:

Array
(

[0] => Uptime: 5380
[1] => Threads: 2
[2] => Questions: 1321299
[3] => Slow queries: 0
[4] => Opens: 26
[5] => Flush tables: 1
[6] => Open tables: 17
[7] => Queries per second avg: 245.595

)

Example 8.54. Alternative mysql_stat example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$result = mysql_query('SHOW VARIABLES', $link);
while ($row = mysql_fetch_assoc($result)) {

echo $row['Variable_name'] . ' = ' . $row['Value'] . "\n";
}
?>

The above example will output something similar to:

back_log = 50
basedir = /usr/local/
bdb_cache_size = 8388600
bdb_log_buffer_size = 32768
bdb_home = /var/db/mysql/
bdb_max_lock = 10000
bdb_logdir =
bdb_shared_data = OFF
bdb_tmpdir = /var/tmp/
...

See Also

mysql_get_server_info
mysql_list_processes

MySQL PHP API

320

8.1.4.47. mysql_tablename

Copyright 1997-2008 the PHP Documentation Group.

• mysql_tablename

Get table name of field

Description

string mysql_tablename(resource result,
int i);

Retrieves the table name from a result.

This function deprecated. It is preferable to use mysql_query to issue a SQL SHOW TABLES [FROM db_name] [LIKE
'pattern'] statement instead.

Parameters

result A result pointer resource that's returned from mysql_list_tables.

i The integer index (row/table number)

Return Values

The name of the table on success, or FALSE on failure.

Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such as
mysql_fetch_array.

Examples

Example 8.55. mysql_tablename example

<?php
mysql_connect("localhost", "mysql_user", "mysql_password");
$result = mysql_list_tables("mydb");
$num_rows = mysql_num_rows($result);
for ($i = 0; $i < $num_rows; $i++) {

echo "Table: ", mysql_tablename($result, $i), "\n";
}

mysql_free_result($result);
?>

Notes

Note

The mysql_num_rows function may be used to determine the number of tables in the result pointer.

See Also

mysql_list_tables
mysql_field_table
mysql_db_name

8.1.4.48. mysql_thread_id

Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

321

• mysql_thread_id

Return the current thread ID

Description

int mysql_thread_id(resource link_identifier);

Retrieves the current thread ID. If the connection is lost, and a reconnect with mysql_ping is executed, the thread ID will
change. This means only retrieve the thread ID when needed.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

The thread ID on success, or FALSE on failure.

Examples

Example 8.56. mysql_thread_id example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$thread_id = mysql_thread_id($link);
if ($thread_id){

printf("current thread id is %d\n", $thread_id);
}
?>

The above example will output something similar to:

current thread id is 73

See Also

mysql_ping
mysql_list_processes

8.1.4.49. mysql_unbuffered_query

Copyright 1997-2008 the PHP Documentation Group.

• mysql_unbuffered_query

Send an SQL query to MySQL, without fetching and buffering the result rows

Description

resource mysql_unbuffered_query(string query,
resource link_identifier);

MySQL PHP API

322

mysql_unbuffered_query sends a SQL query query to MySQL, without fetching and buffering the result rows automatic-
ally, as mysql_query does. On the one hand, this saves a considerable amount of memory with SQL queries that produce large
result sets. On the other hand, you can start working on the result set immediately after the first row has been retrieved: you don't
have to wait until the complete SQL query has been performed. When using multiple DB-connects, you have to specify the option-
al parameter link_identifier.

Parameters

query A SQL query

link_identifier The MySQL connection. If the link identifier is not specified, the last link opened by
mysql_connect is assumed. If no such link is found, it will try to create one as if
mysql_connect was called with no arguments. If by chance no connection is found or es-
tablished, an E_WARNING level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE or EXPLAIN statements, mysql_unbuffered_query returns a resource on success, or
FALSE on error.

For other type of SQL statements, UPDATE, DELETE, DROP, etc, mysql_unbuffered_query returns TRUE on success or
FALSE on error.

Notes

Note

The benefits of mysql_unbuffered_query come at a cost: You cannot use mysql_num_rows and
mysql_data_seek on a result set returned from mysql_unbuffered_query. You also have to fetch all result
rows from an unbuffered SQL query, before you can send a new SQL query to MySQL.

See Also

mysql_query

8.2. MySQL Improved Extension (Mysqli)
Copyright 1997-2008 the PHP Documentation Group.

The mysqli extension allows you to access the functionality provided by MySQL 4.1 and above. More information about the
MySQL Database server can be found at http://www.mysql.com/

An overview of software available for using MySQL from PHP can be found at Section 8.2.2, “Overview”

Documentation for MySQL can be found at http://dev.mysql.com/doc/.

Parts of this documentation included from MySQL manual with permissions of MySQL AB.

8.2.1. Examples
Copyright 1997-2008 the PHP Documentation Group.

All Examples in the MySQLI documentation use the world database from MySQL AB. The world database can be found at ht-
tp://dev.mysql.com/get/Downloads/Manual/world.sql.gz/from/pick

8.2.2. Overview
Copyright 1997-2008 the PHP Documentation Group.

This section provides an introduction to the options available to you when developing a PHP application that needs to interact with
a MySQL database.

What is an API?

An Application Programming Interface, or API, defines the classes, methods, functions and variables that your application will

MySQL PHP API

323

http://www.mysql.com/
http://dev.mysql.com/doc/
http://dev.mysql.com/get/Downloads/Manual/world.sql.gz/from/pick
http://dev.mysql.com/get/Downloads/Manual/world.sql.gz/from/pick

need to call in order to carry out its desired task. In the case of PHP applications that need to communicate with databases the ne-
cessary APIs are usually exposed via PHP extensions.

APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with the object-oriented API
you instantiate classes and then call methods on the resulting objects. Of the two the latter is usually the preferred interface, as it is
more modern and leads to better organised code.

When writing PHP applications that need to connect to the MySQL server there are several API options available. This document
discusses what is available and how to select the best solution for your application.

What is a Connector?

In the MySQL documentation, the term connector refers to a piece of software that allows your application to connect to the
MySQL database server. MySQL provides connectors for a variety of languages, including PHP.

If your PHP application needs to communicate with a database server you will need to write PHP code to perform such activities as
connecting to the database server, querying the database and other database-related functions. Software is required to provide the
API that your PHP application will use, and also handle the communication between your application and the database server, pos-
sibly using other intermediate libraries where necessary. This software is known generically as a connector, as it allows your ap-
plication to connect to a database server.

What is a Driver?

A driver is a piece of software designed to communicate with a specific type of database server. The driver may also call a library,
such as the MySQL Client Library or the MySQL Native Driver. These libraries implement the low-level protocol used to commu-
nicate with the MySQL database server.

By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several database-specific drivers.
One of the drivers it has available is the PDO MYSQL driver, which allows it to interface with the MySQL server.

Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the MySQL-related documentation
the term “driver” is reserved for software that provides the database-specific part of a connector package.

What is an Extension?

In the PHP documentation you will come across another term - extension. The PHP code consists of a core, with optional exten-
sions to the core functionality. PHP's MySQL-related extensions, such as the mysqli extension, and the mysql extension, are im-
plemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its facilities to be used programmatically. However, some
extensions which use the PHP extension framework do not expose an API to the PHP programmer.

The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but provides an interface to the
PDO layer above it.

The terms API and extension should not be taken to mean the same thing, as an extension may not necessarily expose an API to the
programmer.

What are the main PHP API offerings for using MySQL?

There are three main API options when considering connecting to a MySQL database server:

• PHP's MySQL Extension

• PHP's mysqli Extension

• PHP Data Objects (PDO)

Each has its own advantages and disadvantages. The following discussion aims to give a brief introduction to the key aspects of
each API.

What is PHP's MySQL Extension?

This is the original extension designed to allow you to develop PHP applications that interact with a MySQL database. The mysql
extension provides a procedural interface and is intended for use only with MySQL versions older than 4.1.3. This extension can be
used with versions of MySQL 4.1.3 or newer, but not all of the latest MySQL server features will be available.

Note

MySQL PHP API

324

If you are using MySQL versions 4.1.3 or later it is strongly recommended that you use the mysqli extension in-
stead.

The mysql extension source code is located in the PHP extension directory ext/mysql.

For further information on the mysql extension, see Section 8.1, “MySQL”.

What is PHP's mysqli Extension?

The mysqli extension, or as it is sometimes known, the MySQL improved extension, was developed to take advantage of new
features found in MySQL systems versions 4.1.3 and newer. The mysqli extension is included with PHP versions 5 and later.

The mysqli extension has a number of benefits, the key enhancements over the mysql extension being:

• Object-oriented interface

• Support for Prepared Statements

• Support for Multiple Statements

• Support for Transactions

• Enhanced debugging capabilities

• Embedded server support

Note

If you are using MySQL versions 4.1.3 or later it is strongly recommended that you use this extension.

As well as the object-oriented interface the extension also provides a procedural interface.

The mysqli extension is built using the PHP extension frameowrk, its source code is located in the directory ext/mysqli.

For further information on the mysqli extension, see Section 8.2, “MySQL Improved Extension (Mysqli)”.

What is PDO?

PHP Data Objects, or PDO, is a database abstraction layer specifically for PHP applications. PDO provides a consistent API for
your PHP application regardless of the type of database server your application will connect to. In theory, if you are using the PDO
API, you could switch the database server you used, from say Firebird to MySQL, and only need to make minor changes to your
PHP code.

Other examples of database abstraction layers include JDBC for Java applications and DBI for Perl.

While PDO has its advantages, such as a clean, simple, portable API, its main disadvantage is that it doesn't allow you to use all of
the advanced features that are available in the latest versions of MySQL server. For example, PDO does not allow you to use
MySQL's support for Multiple Statements.

PDO is implemented using the PHP extension framework, its source code is located in the directory ext/pdo.

For further information on PDO, see the Section 8.3, “MySQL Functions (PDO_MYSQL)”.

What is the PDO MYSQL driver?

The PDO MYSQL driver is not an API as such, at least from the PHP programmer's perspective. In fact the PDO MYSQL driver
sits in the layer below PDO itself and provides MySQL-specific functionality. The programmer still calls the PDO API, but PDO
uses the PDO MYSQL driver to carry out communication with the MySQL server.

The PDO MYSQL driver is one of several available PDO drivers. Other PDO drivers available include those for the Firebird and
PostgreSQL database servers.

The PDO MYSQL driver is implemented using the PHP extension framework. Its source code is located in the directory ext/
pdo_mysql. It does not expose an API to the PHP programmer.

For further information on the PDO MYSQL driver, see Section 8.3, “MySQL Functions (PDO_MYSQL)”.

What is PHP's MySQL Native Driver?

In order to communicate with the MySQL database server the mysql extension, mysqli and the PDO MYSQL driver each use a

MySQL PHP API

325

low-level library that implements the required protocol. In the past, the only available library was the MySQL Client Library, oth-
erwise known as libmysql.

However, the interface presented by libmysql was not optimized for communication with PHP applications, as libmysql was
originally designed with C applications in mind. For this reason the MySQL Native Driver, mysqlnd, was developed as an altern-
ative to libmysql for PHP applications.

The mysql extension, the mysqli extension and the PDO MySQL driver can each be individually configured to use either
libmysql or mysqlnd. As mysqlnd is designed specifically to be utilised in the PHP system it has numerous memory and
speed enhancements over libmysql. You are strongly encouraged to take advantage of these improvements.

Note

The MySQL Native Driver can only be used with MySQL server versions 4.1.3 and later.

The MySQL Native Driver is implemented using the PHP extension framework. The source code is located in ext/mysqlnd. It
does not expose an API to the PHP programmer.

Comparison of Features

The following table compares the functionality of the three main methods of connecting to MySQL from PHP:

PHP's mysqli Extension PDO (Using PDO MySQL
Driver and MySQL Native
Driver)

PHP's MySQL Extension

PHP version introduced 5.0 5.0 Prior to 3.0

Included with PHP 5.x yes yes Yes

Comes with PHP 6.0 Yes Yes Yes

MySQL development status Active development Active development as of PHP
5.3

Maintenance only

Recommended by MySQL for
new projects

Yes - preferred option Yes No

API supports Charsets Yes Yes No

API supports server-side Pre-
pared Statements

Yes Yes No

API supports client-side Pre-
pared Statements

No Yes No

API supports Stored Proced-
ures

Yes Yes No

API supports Multiple State-
ments

Yes Most No

Supports all MySQL 4.1+
functionality

Yes Most No

8.2.3. Installing/Configuring
Copyright 1997-2008 the PHP Documentation Group.

8.2.3.1. Requirements

Copyright 1997-2008 the PHP Documentation Group.

In order to have these functions available, you must compile PHP with support for the mysqli extension.

Note

The mysqli extension is designed to work with the version 4.1.3 or above of MySQL. For previous versions, please
see the MySQL extension documentation.

8.2.3.2. Installation

Copyright 1997-2008 the PHP Documentation Group.

To install the mysqli extension for PHP, use the --with-mysqli=mysql_config_path/mysql_config configuration

MySQL PHP API

326

option where mysql_config_path represents the location of the mysql_config program that comes with MySQL versions
greater than 4.1.

If you would like to install the mysql extension along with the mysqli extension you have to use the same client library to avoid any
conflicts.

8.2.3.2.1. Installation on Windows Systems

Copyright 1997-2008 the PHP Documentation Group.

MySQLi is not enabled by default, so the php_mysqli.dll DLL must be enabled inside of php.ini. Also, PHP needs access
to the MySQL client library. A file named libmysql.dll is included in the Windows PHP distribution and in order for PHP to
talk to MySQL this file needs to be available to the Windows systems PATH. See the FAQ titled "How do I add my PHP directory
to the PATH on Windows" for information on how to do this. Although copying libmysql.dll to the Windows system direct-
ory also works (because the system directory is by default in the system's PATH), it's not recommended.

As with enabling any PHP extension (such as php_mysqli.dll), the PHP directive extension_dir should be set to the directory
where the PHP extensions are located. See also the Manual Windows Installation Instructions. An example extension_dir value for
PHP 5 is c:\php\ext

Note

If when starting the web server an error similar to the following occurs: "Unable to load dynamic lib-
rary './php_mysqli.dll'", this is because php_mysqli.dll and/or libmysql.dll cannot be found
by the system.

8.2.3.3. Runtime Configuration

Copyright 1997-2008 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 8.4. MySQLi Configuration Options

Name Default Changeable Changelog

mysqli.max_links "-1" PHP_INI_SYSTEM Available since PHP 5.0.0.

mysqli.default_port "3306" PHP_INI_ALL Available since PHP 5.0.0.

mysqli.default_socket NULL PHP_INI_ALL Available since PHP 5.0.0.

mysqli.default_host NULL PHP_INI_ALL Available since PHP 5.0.0.

mysqli.default_user NULL PHP_INI_ALL Available since PHP 5.0.0.

mysqli.default_pw NULL PHP_INI_ALL Available since PHP 5.0.0.

For further details and definitions of the above PHP_INI_* constants, see the chapter on configuration changes.

Here's a short explanation of the configuration directives.

mysqli.max_links integer The maximum number of MySQL connections per process.

mysqli.default_port string The default TCP port number to use when connecting to the database server if no other port
is specified. If no default is specified, the port will be obtained from the MYSQL_TCP_PORT
environment variable, the mysql-tcp entry in /etc/services or the compile-time
MYSQL_PORT constant, in that order. Win32 will only use the MYSQL_PORT constant.

mysqli.default_socket
string

The default socket name to use when connecting to a local database server if no other socket
name is specified.

mysqli.default_host string The default server host to use when connecting to the database server if no other host is spe-
cified. Doesn't apply in safe mode.

mysqli.default_user string The default user name to use when connecting to the database server if no other name is spe-
cified. Doesn't apply in safe mode.

mysqli.default_pw string The default password to use when connecting to the database server if no other password is
specified. Doesn't apply in safe mode.

MySQL PHP API

327

http://www.php.net/manual/en/faq.installation.addtopath.php
http://www.php.net/manual/en/faq.installation.addtopath.php
http://www.php.net/manual/en/ini.extension-dir.php
http://www.php.net/manual/en/install.windows.manual.php
http://www.php.net/manual/en/configuration.changes.php
http://www.php.net/manual/en/ini.safe-mode.php
http://www.php.net/manual/en/ini.safe-mode.php
http://www.php.net/manual/en/ini.safe-mode.php

8.2.3.4. Resource Types

Copyright 1997-2008 the PHP Documentation Group.

This extension has no resource types defined.

8.2.4. Predefined Constants
Copyright 1997-2008 the PHP Documentation Group.

MYSQLI_READ_DEFAULT_GROU
P

Read options from the named group from my.cnf or the file specified with
MYSQLI_READ_DEFAULT_FILE

MYSQLI_READ_DEFAULT_FILE Read options from the named option file instead of from my.cnf

MYSQLI_OPT_CONNECT_TIMEO
UT

Connect timeout in seconds

MYSQLI_OPT_LOCAL_INFILE Enables command LOAD LOCAL INFILE

MYSQLI_INIT_COMMAND Command to execute when connecting to MySQL server. Will automatically be re-executed
when reconnecting.

MYSQLI_CLIENT_SSL Use SSL (encrypted protocol). This option should not be set by application programs; it is set
internally in the MySQL client library

MYSQLI_CLIENT_COMPRESS Use compression protocol

MYSQLI_CLIENT_INTERACTIV
E

Allow interactive_timeout seconds (instead of wait_timeout seconds) of inactivity before
closing the connection. The client's session wait_timeout variable will be set to the value of
the session interactive_timeout variable.

MYSQLI_CLIENT_IGNORE_SPA
CE

Allow spaces after function names. Makes all functions names reserved words.

MYSQLI_CLIENT_NO_SCHEMA Don't allow the db_name.tbl_name.col_name syntax.

MYSQLI_CLIENT_MULTI_QUER
IES

Allows multiple semicolon-delimited queries in a single mysqli_query call.

MYSQLI_STORE_RESULT For using buffered resultsets

MYSQLI_USE_RESULT For using unbuffered resultsets

MYSQLI_ASSOC Columns are returned into the array having the fieldname as the array index.

MYSQLI_NUM Columns are returned into the array having an enumerated index.

MYSQLI_BOTH Columns are returned into the array having both a numerical index and the fieldname as the
associative index.

MYSQLI_NOT_NULL_FLAG Indicates that a field is defined as NOT NULL

MYSQLI_PRI_KEY_FLAG Field is part of a primary index

MYSQLI_UNIQUE_KEY_FLAG Field is part of a unique index.

MYSQLI_MULTIPLE_KEY_FLAG Field is part of an index.

MYSQLI_BLOB_FLAG Field is defined as BLOB

MYSQLI_UNSIGNED_FLAG Field is defined as UNSIGNED

MYSQLI_ZEROFILL_FLAG Field is defined as ZEROFILL

MYSQLI_AUTO_INCREMENT_FL
AG

Field is defined as AUTO_INCREMENT

MYSQLI_TIMESTAMP_FLAG Field is defined as TIMESTAMP

MYSQLI_SET_FLAG Field is defined as SET

MYSQLI_NUM_FLAG Field is defined as NUMERIC

MySQL PHP API

328

MYSQLI_PART_KEY_FLAG Field is part of an multi-index

MYSQLI_GROUP_FLAG Field is part of GROUP BY

MYSQLI_TYPE_DECIMAL Field is defined as DECIMAL

MYSQLI_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC field (MySQL 5.0.3 and up)

MYSQLI_TYPE_BIT Field is defined as BIT (MySQL 5.0.3 and up)

MYSQLI_TYPE_TINY Field is defined as TINYINT

MYSQLI_TYPE_SHORT Field is defined as SMALLINT

MYSQLI_TYPE_LONG Field is defined as INT

MYSQLI_TYPE_FLOAT Field is defined as FLOAT

MYSQLI_TYPE_DOUBLE Field is defined as DOUBLE

MYSQLI_TYPE_NULL Field is defined as DEFAULT NULL

MYSQLI_TYPE_TIMESTAMP Field is defined as TIMESTAMP

MYSQLI_TYPE_LONGLONG Field is defined as BIGINT

MYSQLI_TYPE_INT24 Field is defined as MEDIUMINT

MYSQLI_TYPE_DATE Field is defined as DATE

MYSQLI_TYPE_TIME Field is defined as TIME

MYSQLI_TYPE_DATETIME Field is defined as DATETIME

MYSQLI_TYPE_YEAR Field is defined as YEAR

MYSQLI_TYPE_NEWDATE Field is defined as DATE

MYSQLI_TYPE_ENUM Field is defined as ENUM

MYSQLI_TYPE_SET Field is defined as SET

MYSQLI_TYPE_TINY_BLOB Field is defined as TINYBLOB

MYSQLI_TYPE_MEDIUM_BLOB Field is defined as MEDIUMBLOB

MYSQLI_TYPE_LONG_BLOB Field is defined as LONGBLOB

MYSQLI_TYPE_BLOB Field is defined as BLOB

MYSQLI_TYPE_VAR_STRING Field is defined as VARCHAR

MYSQLI_TYPE_STRING Field is defined as CHAR

MYSQLI_TYPE_GEOMETRY Field is defined as GEOMETRY

MYSQLI_NEED_DATA More data available for bind variable

MYSQLI_NO_DATA No more data available for bind variable

MYSQLI_DATA_TRUNCATED Data truncation occurred. Available since PHP 5.1.0 and MySQL 5.0.5.

MYSQLI_ENUM_FLAG Field is defined as ENUM. Available since PHP 5.3.0.

8.2.5. The MySQLi Extension Function Summary
Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

329

MySQLi Class

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli->affected_rows mysqli_affected_rows N/A Gets the number of affected
rows in a previous MySQL op-
eration

$mysqli->connect_errno mysqli_connect_errno N/A Returns the error code from last
connect call

$mysqli->connect_error mysqli_connect_error N/A Returns a string description of
the last connect error

$mysqli->errno mysqli_errno N/A Returns the error code for the
most recent function call

$mysqli->error mysqli_error N/A Returns a string description of
the last error

$mysqli->field_count mysqli_field_count N/A Returns the number of columns
for the most recent query

$mysqli->host_info mysqli_get_host_info N/A Returns a string representing
the type of connection used

$mysqli->protocol_version mysqli_get_proto_info N/A Returns the version of the
MySQL protocol used

$mysqli->server_info mysqli_get_server_inf
o

N/A Returns the version of the
MySQL server

$mysqli->server_version mysqli_get_server_ver
sion

N/A Returns the version of the
MySQL server as an integer

$mysqli->info mysqli_info N/A Retrieves information about the
most recently executed query

$mysqli->insert_id mysqli_insert_id N/A Returns the auto generated id
used in the last query

$mysqli->sqlstate mysqli_sqlstate N/A Returns the SQLSTATE error
from previous MySQL opera-
tion

$mysqli->warning_count mysqli_warning_count N/A Returns the number of warn-
ings from the last query for the
given link

Methods

mysqli->autocommit mysqli_autocommit N/A Turns on or off auto-commiting
database modifications

mysqli->change_user mysqli_change_user N/A Changes the user of the spe-
cified database connection

mysqli-
>character_set_name,
mysqli->client_encoding

mysqli_character_set_
name

mysqli_client_encodin
g

Returns the default character
set for the database connection

mysqli->close mysqli_close N/A Closes a previously opened
database connection

mysqli->commit mysqli_commit N/A Commits the current transac-
tion

mysqli::__construct mysqli_connect N/A Open a new connection to the
MySQL server [Note: static
(i.e. class) method]

mysqli->debug mysqli_debug N/A Performs debugging operations

mysqli-
>dump_debug_info

mysqli_dump_debug_inf
o

N/A Dump debugging information
into the log

mysqli->get_charset mysqli_get_charset N/A Returns a character set object

mysqli-
>get_client_info

mysqli_get_client_inf
o

N/A Returns the MySQL client ver-
sion as a string

mysqli-
>get_client_version

mysqli_get_client_ver
sion

N/A Get MySQL client info

MySQL PHP API

330

MySQLi Class

OOP Interface Procedural Interface Alias (Do not use) Description

$mysqli->get_connection_stats
()

mysqli_get_connection_stats() N/A NOT DOCUMENTED
[mysqlnd only]

mysqli-
>get_server_info

mysqli_get_server_inf
o

N/A NOT DOCUMENTED

mysqli->get_warnings mysqli_get_warnings N/A NOT DOCUMENTED

mysqli_init mysqli_init N/A Initializes MySQLi and returns
a resource for use with
mysqli_real_connect. [Not
called on an object, as it returns
a $mysqli object.]

mysqli->kill mysqli_kill N/A Asks the server to kill a
MySQL thread

mysqli->more_results mysqli_more_results N/A Check if there are any more
query results from a multi
query

mysqli->multi_query mysqli_multi_query N/A Performs a query on the data-
base

mysqli->next_result mysqli_next_result N/A Prepare next result from
multi_query

mysqli->options mysqli_options mysqli_set_opt Set options

mysqli->ping mysqli_ping N/A Pings a server connection, or
tries to reconnect if the connec-
tion has gone down

mysqli->prepare mysqli_prepare N/A Prepare a SQL statement for
execution

mysqli->query mysqli_query N/A Performs a query on the data-
base

mysqli->real_connect mysqli_real_connect N/A Opens a connection to a mysql
server

mysqli-
>real_escape_string,
mysqli->escape_string

mysqli_real_escape_st
ring

mysqli_escape_string Escapes special characters in a
string for use in a SQL state-
ment, taking into account the
current charset of the connec-
tion

mysqli->real_query mysqli_real_query N/A Execute an SQL query

mysqli->rollback mysqli_rollback N/A Rolls back current transaction

mysqli->select_db mysqli_select_db N/A Selects the default database for
database queries

mysqli->set_charset mysqli_set_charset N/A Sets the default client character
set

mysqli-
>set_local_infile_def
ault

mysqli_set_local_infi
le_default

N/A Unsets user defined handler for
load local infile command

mysqli-
>set_local_infile_han
dler

mysqli_set_local_infi
le_handler

N/A Set callback function for
LOAD DATA LOCAL IN-
FILE command

mysqli->ssl_set mysqli_ssl_set N/A Used for establishing secure
connections using SSL

mysqli->stat mysqli_stat N/A Gets the current system status

mysqli->stmt_init mysqli_stmt_init N/A Initializes a statement and re-
turns an object for use with
mysqli_stmt_prepare

mysqli->store_result mysqli_store_result N/A Transfers a result set from the
last query

mysqli->thread_id mysqli_thread_id N/A Returns the thread ID for the
current connection

MySQL PHP API

331

MySQLi Class

OOP Interface Procedural Interface Alias (Do not use) Description

mysqli->thread_safe mysqli_thread_safe N/A Returns whether thread safety
is given or not

mysqli->use_result mysqli_use_result N/A Initiate a result set retrieval

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli_stmt->affected_rows mysqli_stmt_affected_
rows

N/A Returns the total number of
rows changed, deleted, or in-
serted by the last executed
statement

$mysqli_stmt->errno mysqli_stmt_errno N/A Returns the error code for the
most recent statement call

$mysqli_stmt->error mysqli_stmt_error N/A Returns a string description for
last statement error

$mysqli_stmt->field_count mysqli_stmt_field_cou
nt

N/A Returns the number of field in
the given statement - not docu-
mented

$mysqli_stmt->insert_id mysqli_stmt_insert_id N/A Get the ID generated from the
previous INSERT operation

$mysqli_stmt->num_rows mysqli_stmt_num_rows N/A Return the number of rows in
statements result set

$mysqli_stmt->param_count mysqli_stmt_param_cou
nt

mysqli_param_count Returns the number of para-
meter for the given statement

$mysqli_stmt->sqlstate mysqli_stmt_sqlstate N/A Returns SQLSTATE error from
previous statement operation

Methods

mysqli_stmt->attr_get mysqli_stmt_attr_get N/A NOT DOCUMENTED

mysqli_stmt->attr_set mysqli_stmt_attr_set N/A NOT DOCUMENTED

mysqli_stmt->bind_par
am

mysqli_stmt_bind_para
m

mysqli_bind_param Binds variables to a prepared
statement as parameters

mysqli_stmt->bind_res
ult

mysqli_stmt_bind_resu
lt

mysqli_bind_result Binds variables to a prepared
statement for result storage

mysqli_stmt->close mysqli_stmt_close N/A Closes a prepared statement

mysqli_stmt->data_see
k

mysqli_stmt_data_seek N/A Seeks to an arbitrary row in
statement result set

mysqli_stmt->execute mysqli_stmt_execute mysqli_execute Executes a prepared Query

mysqli_stmt->fetch mysqli_stmt_fetch mysqli_fetch Fetch results from a prepared
statement into the bound vari-
ables

mysqli_stmt->free_res
ult

mysqli_stmt_free_resu
lt

N/A Frees stored result memory for
the given statement handle

$mysqli_stmt->get_result() mysqli_stmt_get_result N/A NOT DOCUMENTED
[mysqlnd only]

mysqli_stmt->get_warn
ings

mysqli_stmt_get_warni
ngs

N/A NOT DOCUMENTED

$mysqli_stmt->more_results() mysqli_stmt_more_results() N/A NOT DOCUMENTED
[mysqlnd only]

$mysqli_stmt->next_result() mysqli_stmt_next_result() N/A NOT DOCUMENTED
[mysqlnd only]

mysqli_stmt->num_rows mysqli_stmt_num_rows N/A NOT DOCUMENTED [see
also num_rows property]

mysqli_stmt->prepare mysqli_stmt_prepare N/A Prepare a SQL statement for

MySQL PHP API

332

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

execution

mysqli_stmt->reset mysqli_stmt_reset N/A Resets a prepared statement

mysqli_stmt->result_m
etadata

mysqli_stmt_result_me
tadata

mysqli_get_metadata Returns result set metadata
from a prepared statement

mysqli_stmt->send_lon
g_data

mysqli_stmt_send_long
_data

mysqli_send_long_data Send data in blocks

mysqli_stmt->store_re
sult

mysqli_stmt_store_res
ult

N/A Transfers a result set from a
prepared statement

MySQLi_RESULT

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli_result->current_field mysqli_field_tell N/A Get current field offset of a res-
ult pointer

$mysqli_result->field_count mysqli_num_fields N/A Get the number of fields in a
result

$mysqli_result->lengths mysqli_fetch_lengths N/A Returns the lengths of the
columns of the current row in
the result set

$mysqli_result->num_rows mysqli_num_rows N/A Gets the number of rows in a
result

Methods

mysqli_result->data_s
eek

mysqli_data_seek N/A Adjusts the result pointer to an
arbitary row in the result

$mysqli_result->fetch_all() mysqli_fetch_all() N/A NOT DOCUMENTED
[mysqlnd only]

mysqli_result->fetch_
array

mysqli_fetch_array N/A Fetch a result row as an associ-
ative, a numeric array, or both

mysqli_result->fetch_
assoc

mysqli_fetch_assoc N/A Fetch a result row as an associ-
ative array

mysqli_result->fetch_
field_direct

mysqli_fetch_field_di
rect

N/A Fetch meta-data for a single
field

mysqli_result->fetch_
field

mysqli_fetch_field N/A Returns the next field in the
result set

mysqli_result->fetch_
fields

mysqli_fetch_fields N/A Returns an array of objects rep-
resenting the fields in a result
set

mysqli_result->fetch_
object

mysqli_fetch_object N/A Returns the current row of a
result set as an object

mysqli_result->fetch_
row

mysqli_fetch_row N/A Get a result row as an enumer-
ated array

mysqli_result->field_
seek

mysqli_field_seek N/A Set result pointer to a specified
field offset

mysqli_result->free,
mysqli_result->close,
mysqli_result->free_result

mysqli_free_result N/A Frees the memory associated
with a result

MySQL_Driver

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

N/A

Methods

MySQL PHP API

333

MySQL_Driver

OOP Interface Procedural Interface Alias (Do not use) Description

mysqli_driver->embedd
ed_server_end

mysqli_embedded_serve
r_end

N/A NOT DOCUMENTED

mysqli_driver->embedd
ed_server_start

mysqli_embedded_serve
r_start

N/A NOT DOCUMENTED

Note

Alias functions are provided for backward compatibility purposes only. Do not use them in new projects.

8.2.6. The MySQLi class (MySQLi)
Copyright 1997-2008 the PHP Documentation Group.

Represents a connection between PHP and a MySQL database.

MySQLi {
MySQLi

Properties

int affected_rows ;

string connect_errno ;

string connect_error ;

int errno ;

string error ;

int field_count ;

string host_info ;

string protocol_version ;

string server_info ;

int server_version ;

string info ;

int insert_id ;

string sqlstate ;

int thread_id ;

int warning_count ;

Methods

int mysqli_affected_rows(mysqli link);

bool mysqli::autocommit(bool mode);

bool mysqli::change_user(string user,
string password,
string database);

string mysqli::character_set_name();

MySQL PHP API

334

bool mysqli::close();

bool mysqli::commit();

int mysqli_connect_errno();

string mysqli_connect_error();

mysqli mysqli_connect(string host,
string username,
string passwd,
string dbname,
int port,
string socket);

bool mysqli::debug(string message);

bool mysqli::dump_debug_info();

int mysqli_errno(mysqli link);

string mysqli_error(mysqli link);

int mysqli_field_count(mysqli link);

object mysqli::get_charset();

string mysqli::get_client_info();

int mysqli::get_client_version();

string mysqli_get_host_info(mysqli link);

int mysqli_get_proto_info(mysqli link);

string mysqli_get_server_info(mysqli link);

int mysqli_get_server_version(mysqli link);

object mysqli::get_warnings();

string mysqli_info(mysqli link);

mysqli init();

int mysqli_insert_id(mysqli link);

bool mysqli::kill(int processid);

bool mysqli::more_results();

bool mysqli::multi_query(string query);

bool mysqli::next_result();

bool mysqli::options(int option,
mixed value);

bool mysqli::ping();

mysqli_stmt prepare(string query);

MySQL PHP API

335

mixed mysqli::query(string query,
int resultmode);

bool mysqli::real_connect(string host,
string username,
string passwd,
string dbname,
int port,
string socket,
int flags);

string mysqli::escape_string(string escapestr);

bool real_query(string query);

bool mysqli::rollback();

bool mysqli::select_db(string dbname);

bool mysqli::set_charset(string charset);

void mysqli_set_local_infile_default(mysqli link);

bool mysqli_set_local_infile_handler(mysqli link,
callback read_func);

string mysqli_sqlstate(mysqli link);

bool mysqli::ssl_set(string key,
string cert,
string ca,
string capath,
string cipher);

string mysqli::stat();

mysqli_stmt stmt_init();

mysqli_result store_result();

int mysqli_thread_id(mysqli link);

bool mysqli_thread_safe();

mysqli_result use_result();

int mysqli_warning_count(mysqli link);

}

8.2.6.1. mysqli->affected_rows, mysqli_affected_rows

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->affected_rows

mysqli_affected_rows

Gets the number of affected rows in a previous MySQL operation

Description

Object oriented style (property):

mysqli {

MySQL PHP API

336

int affected_rows ;

}

Procedural style:

int mysqli_affected_rows(mysqli link);

Returns the number of rows affected by the last INSERT, UPDATE, REPLACE or DELETE query.

For SELECT statements mysqli_affected_rows works like mysqli_num_rows.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no records where updated for an
UPDATE statement, no rows matched the WHERE clause in the query or that no query has yet been executed. -1 indicates that the
query returned an error.

Note

If the number of affected rows is greater than maximal int value, the number of affected rows will be returned as a
string.

Examples

Example 8.57. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Insert rows */
$mysqli->query("CREATE TABLE Language SELECT * from CountryLanguage");
printf("Affected rows (INSERT): %d\n", $mysqli->affected_rows);

$mysqli->query("ALTER TABLE Language ADD Status int default 0");

/* update rows */
$mysqli->query("UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %d\n", $mysqli->affected_rows);

/* delete rows */
$mysqli->query("DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %d\n", $mysqli->affected_rows);

/* select all rows */
$result = $mysqli->query("SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %d\n", $mysqli->affected_rows);

$result->close();

/* Delete table Language */
$mysqli->query("DROP TABLE Language");

/* close connection */
$mysqli->close();
?>

Example 8.58. Procedural style

MySQL PHP API

337

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

if (!$link) {
printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());
exit();

}

/* Insert rows */
mysqli_query($link, "CREATE TABLE Language SELECT * from CountryLanguage");
printf("Affected rows (INSERT): %d\n", mysqli_affected_rows($link));

mysqli_query($link, "ALTER TABLE Language ADD Status int default 0");

/* update rows */
mysqli_query($link, "UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %d\n", mysqli_affected_rows($link));

/* delete rows */
mysqli_query($link, "DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %d\n", mysqli_affected_rows($link));

/* select all rows */
$result = mysqli_query($link, "SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %d\n", mysqli_affected_rows($link));

mysqli_free_result($result);

/* Delete table Language */
mysqli_query($link, "DROP TABLE Language");

/* close connection */
mysqli_close($link);
?>

The above example will output:

Affected rows (INSERT): 984
Affected rows (UPDATE): 168
Affected rows (DELETE): 815
Affected rows (SELECT): 169

See Also

mysqli_num_rows
mysqli_info

8.2.6.2. mysqli::autocommit, mysqli_autocommit

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::autocommit

mysqli_autocommit

Turns on or off auto-commiting database modifications

Description

Object oriented style (method)

bool mysqli::autocommit(bool mode);

Procedural style:

bool mysqli_autocommit(mysqli link,
bool mode);

Turns on or off auto-commit mode on queries for the database connection.

MySQL PHP API

338

To determine the current state of autocommit use the SQL command SELECT @@autocommit.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

mode Whether to turn on auto-commit or not.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function doesn't work with non transactional table types (like MyISAM or ISAM).

Examples

Example 8.59. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* turn autocommit on */
$mysqli->autocommit(TRUE);

if ($result = $mysqli->query("SELECT @@autocommit")) {
$row = $result->fetch_row();
printf("Autocommit is %s\n", $row[0]);
$result->free();

}

/* close connection */
$mysqli->close();
?>

Example 8.60. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

if (!$link) {
printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());
exit();

}

/* turn autocommit on */
mysqli_autocommit($link, TRUE);

if ($result = mysqli_query($link, "SELECT @@autocommit")) {
$row = mysqli_fetch_row($result);
printf("Autocommit is %s\n", $row[0]);
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

MySQL PHP API

339

Autocommit is 1

See Also

mysqli_commit
mysqli_rollback

8.2.6.3. mysqli::change_user, mysqli_change_user

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::change_user

mysqli_change_user

Changes the user of the specified database connection

Description

Object oriented style (method):

bool mysqli::change_user(string user,
string password,
string database);

Procedural style:

bool mysqli_change_user(mysqli link,
string user,
string password,
string database);

Changes the user of the specified database connection and sets the current database.

In order to successfully change users a valid username and password parameters must be provided and that user must have
sufficient permissions to access the desired database. If for any reason authorization fails, the current user authentication will re-
main.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

user The MySQL user name.

password The MySQL password.

database The database to change to.

If desired, the NULL value may be passed resulting in only changing the user and not select-
ing a database. To select a database in this case use the mysqli_select_db function.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Using this command will always cause the current database connection to behave as if was a completely new database
connection, regardless of if the operation was completed successfully. This reset includes performing a rollback on
any active transactions, closing all temporary tables, and unlocking all locked tables.

MySQL PHP API

340

Examples

Example 8.61. Object oriented style

<?php

/* connect database test */
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Set Variable a */
$mysqli->query("SET @a:=1");

/* reset all and select a new database */
$mysqli->change_user("my_user", "my_password", "world");

if ($result = $mysqli->query("SELECT DATABASE()")) {
$row = $result->fetch_row();
printf("Default database: %s\n", $row[0]);
$result->close();

}

if ($result = $mysqli->query("SELECT @a")) {
$row = $result->fetch_row();
if ($row[0] === NULL) {

printf("Value of variable a is NULL\n");
}
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.62. Procedural style

<?php
/* connect database test */
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */
if (!$link) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Set Variable a */
mysqli_query($link, "SET @a:=1");

/* reset all and select a new database */
mysqli_change_user($link, "my_user", "my_password", "world");

if ($result = mysqli_query($link, "SELECT DATABASE()")) {
$row = mysqli_fetch_row($result);
printf("Default database: %s\n", $row[0]);
mysqli_free_result($result);

}

if ($result = mysqli_query($link, "SELECT @a")) {
$row = mysqli_fetch_row($result);
if ($row[0] === NULL) {

printf("Value of variable a is NULL\n");
}
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

MySQL PHP API

341

Default database: world
Value of variable a is NULL

See Also

mysqli_connect
mysqli_select_db

8.2.6.4. mysqli::character_set_name, mysqli_character_set_name

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::character_set_name

mysqli_character_set_name

Returns the default character set for the database connection

Description

Object oriented style (method):

string mysqli::character_set_name();

Procedural style:

string mysqli_character_set_name(mysqli link);

Returns the current character set for the database connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

The default character set for the current connection

Examples

Example 8.63. Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Print current character set */
$charset = $mysqli->character_set_name();
printf ("Current character set is %s\n", $charset);

$mysqli->close();
?>

Example 8.64. Procedural style

MySQL PHP API

342

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Print current character set */
$charset = mysqli_character_set_name($link);
printf ("Current character set is %s\n",$charset);

/* close connection */
mysqli_close($link);
?>

The above example will output:

Current character set is latin1_swedish_ci

See Also

mysqli_client_encoding
mysqli_real_escape_string

8.2.6.5. mysqli::close, mysqli_close

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::close

mysqli_close

Closes a previously opened database connection

Description

Object oriented style (method):

bool mysqli::close();

Procedural style:

bool mysqli_close(mysqli link);

Closes a previously opened database connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

See Also

MySQL PHP API

343

mysqli_connect
mysqli_init
mysqli_real_connect

8.2.6.6. mysqli::commit, mysqli_commit

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::commit

mysqli_commit

Commits the current transaction

Description

Object oriented style (method)

bool mysqli::commit();

Procedural style:

bool mysqli_commit(mysqli link);

Commits the current transaction for the database connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.65. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TABLE Language LIKE CountryLanguage Type=InnoDB");

/* set autocommit to off */
$mysqli->autocommit(FALSE);

/* Insert some values */
$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F', 11.2)");
$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");

/* commit transaction */
$mysqli->commit();

/* drop table */
$mysqli->query("DROP TABLE Language");

/* close connection */
$mysqli->close();
?>

MySQL PHP API

344

Example 8.66. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */
if (!$link) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* set autocommit to off */
mysqli_autocommit($link, FALSE);

mysqli_query($link, "CREATE TABLE Language LIKE CountryLanguage Type=InnoDB");

/* Insert some values */
mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F', 11.2)");
mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");

/* commit transaction */
mysqli_commit($link);

/* close connection */
mysqli_close($link);
?>

See Also

mysqli_autocommit
mysqli_rollback

8.2.6.7. mysqli->connect_errno, mysqli_connect_errno

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->connect_errno

mysqli_connect_errno

Returns the error code from last connect call

Description

mysqli {

string connect_errno ;

}

int mysqli_connect_errno();

Returns the last error code number from the last call to mysqli_connect.

Note

Client error message numbers are listed in the MySQL errmsg.h header file, server error message numbers are lis-
ted in mysqld_error.h. In the MySQL source distribution you can find a complete list of error messages and er-
ror numbers in the file Docs/mysqld_error.txt.

Return Values

An error code value for the last call to mysqli_connect, if it failed. zero means no error occurred.

Examples

Example 8.67. mysqli_connect_errno example

MySQL PHP API

345

<?php

$link = @mysqli_connect("localhost", "nonexisting_user", "");

if (!$link) {
printf("Can't connect to localhost. Errorcode: %d\n", mysqli_connect_errno());

}
?>

See Also

mysqli_connect
mysqli_connect_error
mysqli_errno
mysqli_error
mysqli_sqlstate

8.2.6.8. mysqli->connect_error, mysqli_connect_error

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->connect_error

mysqli_connect_error

Returns a string description of the last connect error

Description

mysqli {

string connect_error ;

}

string mysqli_connect_error();

Returns the last error message string from the last call to mysqli_connect.

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example 8.68. mysqli_connect_error example

<?php

$link = @mysqli_connect("localhost", "nonexisting_user", "");

if (!$link) {
printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());

}
?>

See Also

mysqli_connect
mysqli_connect_errno
mysqli_errno

MySQL PHP API

346

mysqli_error
mysqli_sqlstate

8.2.6.9. mysqli::__construct, mysqli_connect

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::__construct

mysqli_connect

Open a new connection to the MySQL server

Description

Object oriented style (constructor):

mysqli::__construct(string host,
string username,
string passwd,
string dbname,
int port,
string socket);

Procedural style

mysqli mysqli_connect(string host,
string username,
string passwd,
string dbname,
int port,
string socket);

Opens a connection to the MySQL Server running on.

Parameters

host Can be either a host name or an IP address. Passing the NULL value or the string "localhost"
to this parameter, the local host is assumed. When possible, pipes will be used instead of the
TCP/IP protocol.

username The MySQL user name.

passwd If not provided or NULL , the MySQL server will attempt to authenticate the user against
those user records which have no password only. This allows one username to be used with
different permissions (depending on if a password as provided or not).

dbname If provided will specify the default database to be used when performing queries.

port Specifies the port number to attempt to connect to the MySQL server.

socket Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not explicitly determine the type of connection to be used when connecting to
the MySQL server. How the connection is made to the MySQL database is determined by the host parameter.

Return Values

Returns a object which represents the connection to a MySQL Server.

Examples

Example 8.69. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

MySQL PHP API

347

/* check connection */
if ($mysqli->connect_error) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

printf("Host information: %s\n", $mysqli->host_info);

/* close connection */
$mysqli->close();
?>

Example 8.70. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

printf("Host information: %s\n", mysqli_get_host_info($link));

/* close connection */
mysqli_close($link);
?>

The above example will output:

Host information: Localhost via UNIX socket

Notes

Note

OO syntax only: If a connection fails an object is still returned. To check if the connection failed then use the mysqli-
>connect_error property like in the examples above.

Note

Error "Can't create TCP/IP socket (10106)" usually means that the variables_order configure directive doesn't contain
character E. On Windows, if the environment is not copied the SYSTEMROOT environment variable won't be avail-
able and PHP will have problems loading Winsock.

8.2.6.10. mysqli::debug, mysqli_debug

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::debug

mysqli_debug

Performs debugging operations

Description

Object oriented style (method):

bool mysqli::debug(string message);

MySQL PHP API

348

http://www.php.net/manual/en/ini.variables-order.php

Procedural style:

bool mysqli_debug(string message);

Performs debugging operations using the Fred Fish debugging library.

Parameters

message A string representing the debugging operation to perform

Return Values

Returns TRUE .

Notes

Note

To use the mysqli_debug function you must complile the MySQL client library to support debugging.

Examples

Example 8.71. Generating a Trace File

<?php

/* Create a trace file in '/tmp/client.trace' on the local (client) machine: */
mysqli_debug("d:t:0,/tmp/client.trace");

?>

See Also

mysqli_dump_debug_info
mysqli_report

8.2.6.11. mysqli::dump_debug_info, mysqli_dump_debug_info

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::dump_debug_info

mysqli_dump_debug_info

Dump debugging information into the log

Description

Object oriented style (method):

bool mysqli::dump_debug_info();

Procedural style:

bool mysqli_dump_debug_info(mysqli link);

This function is designed to be executed by an user with the SUPER privilege and is used to dump debugging information into the
log for the MySQL Server relating to the connection.

Parameters

MySQL PHP API

349

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_debug

8.2.6.12. mysqli->errno, mysqli_errno

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->errno

mysqli_errno

Returns the error code for the most recent function call

Description

Object oriented style (property):

mysqli {

int errno ;

}

Procedural style:

int mysqli_errno(mysqli link);

Returns the last error code for the most recent MySQLi function call that can succeed or fail.

Client error message numbers are listed in the MySQL errmsg.h header file, server error message numbers are listed in
mysqld_error.h. In the MySQL source distribution you can find a complete list of error messages and error numbers in the file
Docs/mysqld_error.txt.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

An error code value for the last call, if it failed. zero means no error occurred.

Examples

Example 8.72. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if (!$mysqli->query("SET a=1")) {
printf("Errorcode: %d\n", $mysqli->errno);

}

MySQL PHP API

350

/* close connection */
$mysqli->close();
?>

Example 8.73. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if (!mysqli_query($link, "SET a=1")) {
printf("Errorcode: %d\n", mysqli_errno($link));

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Errorcode: 1193

See Also

mysqli_connect_errno
mysqli_connect_error
mysqli_error
mysqli_sqlstate

8.2.6.13. mysqli->error, mysqli_error

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->error

mysqli_error

Returns a string description of the last error

Description

Object oriented style (property):

mysqli {

string error ;

}

Procedural style:

string mysqli_error(mysqli link);

Returns the last error message for the most recent MySQLi function call that can succeed or fail.

MySQL PHP API

351

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example 8.74. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if (!$mysqli->query("SET a=1")) {
printf("Errormessage: %s\n", $mysqli->error);

}

/* close connection */
$mysqli->close();
?>

Example 8.75. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if (!mysqli_query($link, "SET a=1")) {
printf("Errormessage: %s\n", mysqli_error($link));

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Errormessage: Unknown system variable 'a'

See Also

mysqli_connect_errno
mysqli_connect_error
mysqli_errno
mysqli_sqlstate

8.2.6.14. mysqli->field_count, mysqli_field_count

MySQL PHP API

352

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->field_count

mysqli_field_count

Returns the number of columns for the most recent query

Description

Object oriented style (property):

mysqli_result {

int field_count ;

}

Procedural style:

int mysqli_field_count(mysqli link);

Returns the number of columns for the most recent query on the connection represented by the link parameter. This function can
be useful when using the mysqli_store_result function to determine if the query should have produced a non-empty result
set or not without knowing the nature of the query.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

An integer representing the number of fields in a result set.

Examples

Example 8.76. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

$mysqli->query("DROP TABLE IF EXISTS friends");
$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");

$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$mysqli->real_query("SELECT * FROM friends");

if ($mysqli->field_count) {
/* this was a select/show or describe query */
$result = $mysqli->store_result();

/* process resultset */
$row = $result->fetch_row();

/* free resultset */
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.77. Procedural style

MySQL PHP API

353

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli_query($link, "DROP TABLE IF EXISTS friends");
mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");

mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

mysqli_real_query($link, "SELECT * FROM friends");

if (mysqli_field_count($link)) {
/* this was a select/show or describe query */
$result = mysqli_store_result($link);

/* process resultset */
$row = mysqli_fetch_row($result);

/* free resultset */
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

8.2.6.15. mysqli::get_charset, mysqli_get_charset

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::get_charset

mysqli_get_charset

Returns a character set object

Description

object mysqli::get_charset();

object mysqli_get_charset(mysqli link);

Returns a character set object providing several properties of the current active characer set.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

The function returns a character set object with the following properties:

charset Character set name

collation Collation name

dir Directory the charset description was fetched from (?) or "" for builtin character sets

min_length Minimum character lenght in bytes

max_length Maximum character length in bytes

number Internal character set number

state Characer set status (?)

Examples

MySQL PHP API

354

Example 8.78. Object oriented style

<?php
$db = mysqli_init();
$db->real_connect("localhost","root","","test");
var_dump($db->get_charset());

?>

Example 8.79. Procedural style

<?php
$db = mysqli_init();
mysqli_real_connect($db, "localhost","root","","test");
var_dump($db->get_charset());

?>

The above example will output:

object(stdClass)#2 (7) {
["charset"]=>
string(6) "latin1"
["collation"]=>
string(17) "latin1_swedish_ci"
["dir"]=>
string(0) ""
["min_length"]=>
int(1)
["max_length"]=>
int(1)
["number"]=>
int(8)
["state"]=>
int(801)

}

See Also

mysqli_characters_set_name
mysqli_set_charset

8.2.6.16. mysqli::get_client_info, mysqli_get_client_info

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::get_client_info

mysqli_get_client_info

Returns the MySQL client version as a string

Description

string mysqli::get_client_info();

string mysqli_get_client_info();

The mysqli_get_client_info function is used to return a string representing the client version being used in the MySQLi
extension.

MySQL PHP API

355

Return Values

A string that represents the MySQL client library version

Examples

Example 8.80. mysqli_get_client_info

<?php

/* We don't need a connection to determine
the version of mysql client library */

printf("Client library version: %s\n", mysqli_get_client_info());
?>

See Also

mysqli_get_client_version
mysqli_get_server_info
mysqli_get_server_version

8.2.6.17. mysqli::get_client_version, mysqli_get_client_version

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::get_client_version

mysqli_get_client_version

Get MySQL client info

Description

int mysqli::get_client_version();

int mysqli_get_client_version();

Returns client version number as an integer.

Return Values

A number that represents the MySQL client library version in format: main_version*10000 + minor_version *100 +
sub_version. For example, 4.1.0 is returned as 40100.

This is useful to quickly determine the version of the client library to know if some capability exits.

Examples

Example 8.81. mysqli_get_client_version

<?php

/* We don't need a connection to determine
the version of mysql client library */

printf("Client library version: %d\n", mysqli_get_client_version());
?>

MySQL PHP API

356

See Also

mysqli_get_client_info
mysqli_get_server_info
mysqli_get_server_version

8.2.6.18. mysqli->host_info, mysqli_get_host_info

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->host_info

mysqli_get_host_info

Returns a string representing the type of connection used

Description

Object oriented style (property):

mysqli {

string host_info ;

}

Procdural style:

string mysqli_get_host_info(mysqli link);

The mysqli_get_host_info function returns a string describing the connection represented by the link parameter is using
(including the server host name).

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

A character string representing the server hostname and the connection type.

Examples

Example 8.82. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* print host information */
printf("Host info: %s\n", $mysqli->host_info);

/* close connection */
$mysqli->close();
?>

Example 8.83. Procedural style

MySQL PHP API

357

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* print host information */
printf("Host info: %s\n", mysqli_get_host_info($link));

/* close connection */
mysqli_close($link);
?>

The above example will output:

Host info: Localhost via UNIX socket

See Also

mysqli_get_proto_info

8.2.6.19. mysqli->protocol_version, mysqli_get_proto_info

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->protocol_version

mysqli_get_proto_info

Returns the version of the MySQL protocol used

Description

Object oriented style (property):

mysqli {

string protocol_version ;

}

Procedural style:

int mysqli_get_proto_info(mysqli link);

Returns an integer representing the MySQL protocol version used by the connection represented by the link parameter.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns an integer representing the protocol version.

Examples

MySQL PHP API

358

Example 8.84. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* print protocol version */
printf("Protocol version: %d\n", $mysqli->protocol_version);

/* close connection */
$mysqli->close();
?>

Example 8.85. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* print protocol version */
printf("Protocol version: %d\n", mysqli_get_proto_info($link));

/* close connection */
mysqli_close($link);
?>

The above example will output:

Protocol version: 10

See Also

mysqli_get_host_info

8.2.6.20. mysqli->server_info, mysqli_get_server_info

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->server_info

mysqli_get_server_info

Returns the version of the MySQL server

Description

Object oriented style (property):

mysqli {

string server_info ;

MySQL PHP API

359

}

Procedural style:

string mysqli_get_server_info(mysqli link);

Returns a string representing the version of the MySQL server that the MySQLi extension is connected to.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

A character string representing the server version.

Examples

Example 8.86. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* print server version */
printf("Server version: %s\n", $mysqli->server_info);

/* close connection */
$mysqli->close();
?>

Example 8.87. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* print server version */
printf("Server version: %s\n", mysqli_get_server_info($link));

/* close connection */
mysqli_close($link);
?>

The above example will output:

Server version: 4.1.2-alpha-debug

See Also

MySQL PHP API

360

mysqli_get_client_info
mysqli_get_client_version
mysqli_get_server_version

8.2.6.21. mysqli->server_version, mysqli_get_server_version

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->server_version

mysqli_get_server_version

Returns the version of the MySQL server as an integer

Description

Object oriented style (property):

mysqli {

int server_version ;

}

Procedural style:

int mysqli_get_server_version(mysqli link);

The mysqli_get_server_version function returns the version of the server connected to (represented by the link para-
meter) as an integer.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

An integer representing the server version.

The form of this version number is main_version * 10000 + minor_version * 100 + sub_version (i.e. version
4.1.0 is 40100).

Examples

Example 8.88. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* print server version */
printf("Server version: %d\n", $mysqli->server_version);

/* close connection */
$mysqli->close();
?>

Example 8.89. Procedural style

MySQL PHP API

361

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* print server version */
printf("Server version: %d\n", mysqli_get_server_version($link));

/* close connection */
mysqli_close($link);
?>

The above example will output:

Server version: 40102

See Also

mysqli_get_client_info
mysqli_get_client_version
mysqli_get_server_info

8.2.6.22. mysqli::get_warnings, mysqli_get_warnings

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::get_warnings

mysqli_get_warnings

Description

object mysqli::get_warnings();

object mysqli_get_warnings(mysqli link);

Warning

This function is currently not documented; only its argument list is available.

8.2.6.23. mysqli->info, mysqli_info

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->info

mysqli_info

Retrieves information about the most recently executed query

Description

Object oriented style (property)

mysqli {

string info ;

MySQL PHP API

362

}

Procedural style:

string mysqli_info(mysqli link);

The mysqli_info function returns a string providing information about the last query executed. The nature of this string is
provided below:

Table 8.5. Possible mysqli_info return values

Query type Example result string

INSERT INTO...SELECT... Records: 100 Duplicates: 0 Warnings: 0

INSERT INTO...VALUES (...),(...),(...) Records: 3 Duplicates: 0 Warnings: 0

LOAD DATA INFILE ... Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

ALTER TABLE ... Records: 3 Duplicates: 0 Warnings: 0

UPDATE ... Rows matched: 40 Changed: 40 Warnings: 0

Note

Queries which do not fall into one of the above formats are not supported. In these situations, mysqli_info will re-
turn an empty string.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

A character string representing additional information about the most recently executed query.

Examples

Example 8.90. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */
$mysqli->query("INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");
printf("%s\n", $mysqli->info);

/* close connection */
$mysqli->close();
?>

Example 8.91. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());

MySQL PHP API

363

exit();
}

mysqli_query($link, "CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */
mysqli_query($link, "INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");
printf("%s\n", mysqli_info($link));

/* close connection */
mysqli_close($link);
?>

The above example will output:

Records: 150 Duplicates: 0 Warnings: 0

See Also

mysqli_affected_rows
mysqli_warning_count
mysqli_num_rows

8.2.6.24. mysqli::init, mysqli_init

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::init

mysqli_init

Initializes MySQLi and returns a resource for use with mysqli_real_connect()

Description

Object oriented style (method):

mysqli init();

Procedural style:

mysqli mysqli_init();

Allocates or initializes a MYSQL object suitable for mysqli_options and mysqli_real_connect.

Note

Any subsequent calls to any mysqli function (except mysqli_options) will fail until mysqli_real_connect
was called.

Return Values

Returns an object.

See Also

mysqli_options
mysqli_close
mysqli_real_connect
mysqli_connect

MySQL PHP API

364

8.2.6.25. mysqli->insert_id, mysqli_insert_id

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->insert_id

mysqli_insert_id

Returns the auto generated id used in the last query

Description

Object oriented style (property):

mysqli {

int insert_id ;

}

Procedural style:

int mysqli_insert_id(mysqli link);

The mysqli_insert_id function returns the ID generated by a query on a table with a column having the
AUTO_INCREMENT attribute. If the last query wasn't an INSERT or UPDATE statement or if the modified table does not have a
column with the AUTO_INCREMENT attribute, this function will return zero.

Note

Performing an INSERT or UPDATE statement using the LAST_INSERT_ID() function will also modify the value re-
turned by the mysqli_insert_id function.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

The value of the AUTO_INCREMENT field that was updated by the previous query. Returns zero if there was no previous query on
the connection or if the query did not update an AUTO_INCREMENT value.

Note

If the number is greater than maximal int value, mysqli_insert_id will return a string.

Examples

Example 8.92. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TABLE myCity LIKE City");

$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart', 617000)";
$mysqli->query($query);

printf ("New Record has id %d.\n", $mysqli->insert_id);

/* drop table */
$mysqli->query("DROP TABLE myCity");

MySQL PHP API

365

/* close connection */
$mysqli->close();
?>

Example 8.93. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart', 617000)";
mysqli_query($link, $query);

printf ("New Record has id %d.\n", mysqli_insert_id($link));

/* drop table */
mysqli_query($link, "DROP TABLE myCity");

/* close connection */
mysqli_close($link);
?>

The above example will output:

New Record has id 1.

8.2.6.26. mysqli::kill, mysqli_kill

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::kill

mysqli_kill

Asks the server to kill a MySQL thread

Description

Object oriented style (method)

bool mysqli::kill(int processid);

Procedural style:

bool mysqli_kill(mysqli link,
int processid);

This function is used to ask the server to kill a MySQL thread specified by the processid parameter. This value must be re-
trieved by calling the mysqli_thread_id function.

To stop a running query you should use the SQL command KILL QUERY processid.

Parameters

MySQL PHP API

366

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.94. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* determine our thread id */
$thread_id = $mysqli->thread_id;

/* Kill connection */
$mysqli->kill($thread_id);

/* This should produce an error */
if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {

printf("Error: %s\n", $mysqli->error);
exit;

}

/* close connection */
$mysqli->close();
?>

Example 8.95. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* determine our thread id */
$thread_id = mysqli_thread_id($link);

/* Kill connection */
mysqli_kill($link, $thread_id);

/* This should produce an error */
if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {

printf("Error: %s\n", mysqli_error($link));
exit;

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Error: MySQL server has gone away

See Also

MySQL PHP API

367

mysqli_thread_id

8.2.6.27. mysqli::more_results, mysqli_more_results

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::more_results

mysqli_more_results

Check if there are any more query results from a multi query

Description

bool mysqli::more_results();

bool mysqli_more_results(mysqli link);

Indicates if one or more result sets are available from a previous call to mysqli_multi_query.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_multi_query.

See Also

mysqli_multi_query
mysqli_next_result
mysqli_store_result
mysqli_use_result

8.2.6.28. mysqli::multi_query, mysqli_multi_query

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::multi_query

mysqli_multi_query

Performs a query on the database

Description

Object oriented style (method):

bool mysqli::multi_query(string query);

Procedural style:

bool mysqli_multi_query(mysqli link,
string query);

Executes one or multiple queries which are concatenated by a semicolon.

MySQL PHP API

368

To retrieve the resultset from the first query you can use mysqli_use_result or mysqli_store_result. All subsequent
query results can be processed using mysqli_more_results and mysqli_next_result.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

query The query, as a string.

Return Values

Returns FALSE if the first statement failed. To retrieve subsequent errors from other statements you have to call
mysqli_next_result first.

Examples

Example 8.96. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if ($mysqli->multi_query($query)) {

do {
/* store first result set */
if ($result = $mysqli->store_result()) {

while ($row = $result->fetch_row()) {
printf("%s\n", $row[0]);

}
$result->free();

}
/* print divider */
if ($mysqli->more_results()) {

printf("-----------------\n");
}

} while ($mysqli->next_result());
}

/* close connection */
$mysqli->close();
?>

Example 8.97. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if (mysqli_multi_query($link, $query)) {

do {
/* store first result set */
if ($result = mysqli_store_result($link)) {

while ($row = mysqli_fetch_row($result)) {
printf("%s\n", $row[0]);

}
mysqli_free_result($result);

}
/* print divider */

MySQL PHP API

369

if (mysqli_more_results($link)) {
printf("-----------------\n");

}
} while (mysqli_next_result($link));

}

/* close connection */
mysqli_close($link);
?>

The above example will output something similar to:

my_user@localhost

Amersfoort
Maastricht
Dordrecht
Leiden
Haarlemmermeer

See Also

mysqli_use_result
mysqli_store_result
mysqli_next_result
mysqli_more_results

8.2.6.29. mysqli::next_result, mysqli_next_result

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::next_result

mysqli_next_result

Prepare next result from multi_query

Description

bool mysqli::next_result();

bool mysqli_next_result(mysqli link);

Prepares next result set from a previous call to mysqli_multi_query which can be retrieved by mysqli_store_result
or mysqli_use_result.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_multi_query.

See Also

MySQL PHP API

370

mysqli_multi_query
mysqli_more_results
mysqli_store_result
mysqli_use_result

8.2.6.30. mysqli::options, mysqli_options

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::options

mysqli_options

Set options

Description

Object oriented style (method)

bool mysqli::options(int option,
mixed value);

Procedural style:

bool mysqli_options(mysqli link,
int option,
mixed value);

Used to set extra connect options and affect behavior for a connection.

This function may be called multiple times to set several options.

mysqli_options should be called after mysqli_init and before mysqli_real_connect.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

option The option that you want to set. It can be one of the following values:

Table 8.6. Valid options

Name Description

MYSQLI_OPT_CONNECT_TIMEOUT connection timeout in seconds

MYSQLI_OPT_LOCAL_INFILE enable/disable use of LOAD LOCAL INFILE

MYSQLI_INIT_COMMAND command to execute after when connecting to MySQL server

MYSQLI_READ_DEFAULT_FILE Read options from named option file instead of my.cnf

MYSQLI_READ_DEFAULT_GROUP Read options from the named group from my.cnf or the file
specified with MYSQL_READ_DEFAULT_FILE .

value The value for the option.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_real_connect.

See Also

MySQL PHP API

371

mysqli_init
mysqli_real_connect

8.2.6.31. mysqli::ping, mysqli_ping

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::ping

mysqli_ping

Pings a server connection, or tries to reconnect if the connection has gone down

Description

Object oriented style (method):

bool mysqli::ping();

Procedural style:

bool mysqli_ping(mysqli link);

Checks whether the connection to the server is working. If it has gone down, and global option mysqli.reconnect is enabled
an automatic reconnection is attempted.

This function can be used by clients that remain idle for a long while, to check whether the server has closed the connection and re-
connect if necessary.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.98. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* check if server is alive */
if ($mysqli->ping()) {

printf ("Our connection is ok!\n");
} else {

printf ("Error: %s\n", $mysqli->error);
}

/* close connection */
$mysqli->close();
?>

Example 8.99. Procedural style

MySQL PHP API

372

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* check if server is alive */
if (mysqli_ping($link)) {

printf ("Our connection is ok!\n");
} else {

printf ("Error: %s\n", mysqli_error($link));
}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Our connection is ok!

8.2.6.32. mysqli::prepare, mysqli_prepare

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::prepare

mysqli_prepare

Prepare a SQL statement for execution

Description

Object oriented style (method)

mysqli_stmt prepare(string query);

Procedure style:

mysqli_stmt mysqli_prepare(mysqli link,
string query);

Prepares the SQL query pointed to by the null-terminated string query, and returns a statement handle to be used for further opera-
tions on the statement. The query must consist of a single SQL statement.

The parameter markers must be bound to application variables using mysqli_stmt_bind_param and/or
mysqli_stmt_bind_result before executing the statement or fetching rows.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

query The query, as a string.

Note

You should not add a terminating semicolon or \g to the statement.

This parameter can include one or more parameter markers in the SQL statement by embed-
ding question mark (?) characters at the appropriate positions.

MySQL PHP API

373

Note

The markers are legal only in certain places in SQL statements. For example, they are allowed in the VALUES() list
of an INSERT statement (to specify column values for a row), or in a comparison with a column in a WHERE clause
to specify a comparison value.

However, they are not allowed for identifiers (such as table or column names), in the select list that names the
columns to be returned by a SELECT statement, or to specify both operands of a binary operator such as the = equal
sign. The latter restriction is necessary because it would be impossible to determine the parameter type. It's not al-
lowed to compare marker with NULL by ? IS NULL too. In general, parameters are legal only in Data Manipulation
Languange (DML) statements, and not in Data Defination Language (DDL) statements.

Return Values

mysqli_prepare returns a statement object or FALSE if an error occured.

Examples

Example 8.100. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$city = "Amersfoort";

/* create a prepared statement */
if ($stmt = $mysqli->prepare("SELECT District FROM City WHERE Name=?")) {

/* bind parameters for markers */
$stmt->bind_param("s", $city);

/* execute query */
$stmt->execute();

/* bind result variables */
$stmt->bind_result($district);

/* fetch value */
$stmt->fetch();

printf("%s is in district %s\n", $city, $district);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.101. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$city = "Amersfoort";

/* create a prepared statement */
if ($stmt = mysqli_prepare($link, "SELECT District FROM City WHERE Name=?")) {

/* bind parameters for markers */
mysqli_stmt_bind_param($stmt, "s", $city);

/* execute query */

MySQL PHP API

374

mysqli_stmt_execute($stmt);

/* bind result variables */
mysqli_stmt_bind_result($stmt, $district);

/* fetch value */
mysqli_stmt_fetch($stmt);

printf("%s is in district %s\n", $city, $district);

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Amersfoort is in district Utrecht

See Also

mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_stmt_bind_param
mysqli_stmt_bind_result
mysqli_stmt_close

8.2.6.33. mysqli::query, mysqli_query

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::query

mysqli_query

Performs a query on the database

Description

Object oriented style (method):

mixed mysqli::query(string query,
int resultmode);

Procedural style:

mixed mysqli_query(mysqli link,
string query,
int resultmode);

Performs a query against the database.

Functionally, using this function is identical to calling mysqli_real_query followed either by mysqli_use_result or
mysqli_store_result.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

query The query string.

MySQL PHP API

375

resultmode Either the constant MYSQLI_USE_RESULT or MYSQLI_STORE_RESULT depending on
the desired behavior. By default, MYSQLI_STORE_RESULT is used.

If you use MYSQLI_USE_RESULT all subsequent calls will return error Commands out
of sync unless you call mysqli_free_result

Return Values

Returns TRUE on success or FALSE on failure. For SELECT, SHOW, DESCRIBE or EXPLAIN mysqli_query will return a
result object.

Examples

Example 8.102. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Create table doesn't return a resultset */
if ($mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {

printf("Table myCity successfully created.\n");
}

/* Select queries return a resultset */
if ($result = $mysqli->query("SELECT Name FROM City LIMIT 10")) {

printf("Select returned %d rows.\n", $result->num_rows);

/* free result set */
$result->close();

}

/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */
if ($result = $mysqli->query("SELECT * FROM City", MYSQLI_USE_RESULT)) {

/* Note, that we can't execute any functions which interact with the
server until result set was closed. All calls will return an
'out of sync' error */

if (!$mysqli->query("SET @a:='this will not work'")) {
printf("Error: %s\n", $mysqli->error);

}
$result->close();

}

$mysqli->close();
?>

Example 8.103. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Create table doesn't return a resultset */
if (mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {

printf("Table myCity successfully created.\n");
}

/* Select queries return a resultset */
if ($result = mysqli_query($link, "SELECT Name FROM City LIMIT 10")) {

printf("Select returned %d rows.\n", mysqli_num_rows($result));

/* free result set */
mysqli_free_result($result);

}

/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */
if ($result = mysqli_query($link, "SELECT * FROM City", MYSQLI_USE_RESULT)) {

MySQL PHP API

376

/* Note, that we can't execute any functions which interact with the
server until result set was closed. All calls will return an
'out of sync' error */

if (!mysqli_query($link, "SET @a:='this will not work'")) {
printf("Error: %s\n", mysqli_error($link));

}
mysqli_free_result($result);

}

mysqli_close($link);
?>

The above example will output:

Table myCity successfully created.
Select returned 10 rows.
Error: Commands out of sync; You can't run this command now

See Also

mysqli_real_query
mysqli_multi_query
mysqli_free_result

8.2.6.34. mysqli::real_connect, mysqli_real_connect

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::real_connect

mysqli_real_connect

Opens a connection to a mysql server

Description

Object oriented style (method)

bool mysqli::real_connect(string host,
string username,
string passwd,
string dbname,
int port,
string socket,
int flags);

Procedural style

bool mysqli_real_connect(mysqli link,
string host,
string username,
string passwd,
string dbname,
int port,
string socket,
int flags);

Establish a connection to a MySQL database engine.

This function differs from mysqli_connect:

• mysqli_real_connect needs a valid object which has to be created by function mysqli_init.

• With function mysqli_options you can set various options for connection.

MySQL PHP API

377

• There is a flags parameter.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

host Can be either a host name or an IP address. Passing the NULL value or the string "localhost"
to this parameter, the local host is assumed. When possible, pipes will be used instead of the
TCP/IP protocol.

username The MySQL user name.

passwd If provided or NULL , the MySQL server will attempt to authenticate the user against those
user records which have no password only. This allows one username to be used with differ-
ent permissions (depending on if a password as provided or not).

dbname If provided will specify the default database to be used when performing queries.

port Specifies the port number to attempt to connect to the MySQL server.

socket Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not explicitly determine the type of connection to be used when connecting to
the MySQL server. How the connection is made to the MySQL database is determined by the host parameter.

flags With the parameter flags you can set different connection options:

Table 8.7. Supported flags

Name Description

MYSQLI_CLIENT_COMPRESS Use compression protocol

MYSQLI_CLIENT_FOUND_ROWS return number of matched rows, not the number of affected rows

MYSQLI_CLIENT_IGNORE_SPACE Allow spaces after function names. Makes all function names
reserved words.

MYSQLI_CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of
wait_timeout seconds) of inactivity before closing the con-
nection

MYSQLI_CLIENT_SSL Use SSL (encryption)

Note

For security reasons the MULTI_STATEMENT flag is not supported in PHP. If you want to execute multiple queries
use the mysqli_multi_query function.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.104. Object oriented style

<?php

/* create a connection object which is not connected */
$mysqli = mysqli_init();

/* set connection options */
$mysqli->options(MYSQLI_INIT_COMMAND, "SET AUTOCOMMIT=0");
$mysqli->options(MYSQLI_OPT_CONNECT_TIMEOUT, 5);

/* connect to server */

MySQL PHP API

378

$mysqli->real_connect('localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

printf ("Connection: %s\n.", $mysqli->host_info);

$mysqli->close();
?>

Example 8.105. Procedural style

<?php

/* create a connection object which is not connected */
$link = mysqli_init();

/* set connection options */
mysqli_options($link, MYSQLI_INIT_COMMAND, "SET AUTOCOMMIT=0");
mysqli_options($link, MYSQLI_OPT_CONNECT_TIMEOUT, 5);

/* connect to server */
mysqli_real_connect($link, 'localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

printf ("Connection: %s\n.", mysqli_get_host_info($link));

mysqli_close($link);
?>

The above example will output:

Connection: Localhost via UNIX socket

See Also

mysqli_connect
mysqli_init
mysqli_options
mysqli_ssl_set
mysqli_close

8.2.6.35. mysqli::real_escape_string, mysqli_real_escape_string

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::real_escape_string

mysqli_real_escape_string

Escapes special characters in a string for use in a SQL statement, taking into account the current charset of the connection

Description

Object oriented style (both methods are equivalent):

MySQL PHP API

379

string mysqli::escape_string(string escapestr);

string real_escape_string(string escapestr);

Procedural style:

string mysqli_real_escape_string(mysqli link,
string escapestr);

This function is used to create a legal SQL string that you can use in an SQL statement. The given string is encoded to an escaped
SQL string, taking into account the current character set of the connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

escapestr The string to be escaped.

Characters encoded are NUL (ASCII 0), \n, \r, \, ', ", and Control-Z.

Return Values

Returns an escaped string.

Examples

Example 8.106. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */
if (!$mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {

printf("Error: %s\n", $mysqli->sqlstate);
}

$city = $mysqli->real_escape_string($city);

/* this query with escaped $city will work */
if ($mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {

printf("%d Row inserted.\n", $mysqli->affected_rows);
}

$mysqli->close();
?>

Example 8.107. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City");

$city = "'s Hertogenbosch";

MySQL PHP API

380

/* this query will fail, cause we didn't escape $city */
if (!mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {

printf("Error: %s\n", mysqli_sqlstate($link));
}

$city = mysqli_real_escape_string($link, $city);

/* this query with escaped $city will work */
if (mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {

printf("%d Row inserted.\n", mysqli_affected_rows($link));
}

mysqli_close($link);
?>

The above example will output:

Error: 42000
1 Row inserted.

See Also

mysqli_character_set_name

8.2.6.36. mysqli::real_query, mysqli_real_query

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::real_query

mysqli_real_query

Execute an SQL query

Description

Object oriented style (method):

bool real_query(string query);

Procedural style

bool mysqli_real_query(mysqli link,
string query);

Executes a single query against the database whose result can then be retrieved or stored using the mysqli_store_result or
mysqli_use_result functions.

In order to determine if a given query should return a result set or not, see mysqli_field_count.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

query The query, as a string.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

MySQL PHP API

381

mysqli_query
mysqli_store_result
mysqli_use_result

8.2.6.37. mysqli::rollback, mysqli_rollback

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::rollback

mysqli_rollback

Rolls back current transaction

Description

Object oriented style (method):

bool mysqli::rollback();

Procedural style:

bool mysqli_rollback(mysqli link);

Rollbacks the current transaction for the database.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.108. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* disable autocommit */
$mysqli->autocommit(FALSE);

$mysqli->query("CREATE TABLE myCity LIKE City");
$mysqli->query("ALTER TABLE myCity Type=InnoDB");
$mysqli->query("INSERT INTO myCity SELECT * FROM City LIMIT 50");

/* commit insert */
$mysqli->commit();

/* delete all rows */
$mysqli->query("DELETE FROM myCity");

if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {
$row = $result->fetch_row();
printf("%d rows in table myCity.\n", $row[0]);
/* Free result */
$result->close();

}

/* Rollback */
$mysqli->rollback();

if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {
$row = $result->fetch_row();

MySQL PHP API

382

printf("%d rows in table myCity (after rollback).\n", $row[0]);
/* Free result */
$result->close();

}

/* Drop table myCity */
$mysqli->query("DROP TABLE myCity");

$mysqli->close();
?>

Example 8.109. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* disable autocommit */
mysqli_autocommit($link, FALSE);

mysqli_query($link, "CREATE TABLE myCity LIKE City");
mysqli_query($link, "ALTER TABLE myCity Type=InnoDB");
mysqli_query($link, "INSERT INTO myCity SELECT * FROM City LIMIT 50");

/* commit insert */
mysqli_commit($link);

/* delete all rows */
mysqli_query($link, "DELETE FROM myCity");

if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {
$row = mysqli_fetch_row($result);
printf("%d rows in table myCity.\n", $row[0]);
/* Free result */
mysqli_free_result($result);

}

/* Rollback */
mysqli_rollback($link);

if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {
$row = mysqli_fetch_row($result);
printf("%d rows in table myCity (after rollback).\n", $row[0]);
/* Free result */
mysqli_free_result($result);

}

/* Drop table myCity */
mysqli_query($link, "DROP TABLE myCity");

mysqli_close($link);
?>

The above example will output:

0 rows in table myCity.
50 rows in table myCity (after rollback).

See Also

mysqli_commit
mysqli_autocommit

8.2.6.38. mysqli::select_db, mysqli_select_db

Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

383

• mysqli::select_db

mysqli_select_db

Selects the default database for database queries

Description

Object oriented style (method):

bool mysqli::select_db(string dbname);

Procedural style:

bool mysqli_select_db(mysqli link,
string dbname);

Selects the default database to be used when performing queries against the database connection.

Note

This function should only be used to change the default database for the connection. You can select the default data-
base with 4th parameter in mysqli_connect.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

dbname The database name.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.110. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* return name of current default database */
if ($result = $mysqli->query("SELECT DATABASE()")) {

$row = $result->fetch_row();
printf("Default database is %s.\n", $row[0]);
$result->close();

}

/* change db to world db */
$mysqli->select_db("world");

/* return name of current default database */
if ($result = $mysqli->query("SELECT DATABASE()")) {

$row = $result->fetch_row();
printf("Default database is %s.\n", $row[0]);
$result->close();

}

$mysqli->close();
?>

Example 8.111. Procedural style

MySQL PHP API

384

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* return name of current default database */
if ($result = mysqli_query($link, "SELECT DATABASE()")) {

$row = mysqli_fetch_row($result);
printf("Default database is %s.\n", $row[0]);
mysqli_free_result($result);

}

/* change db to world db */
mysqli_select_db($link, "world");

/* return name of current default database */
if ($result = mysqli_query($link, "SELECT DATABASE()")) {

$row = mysqli_fetch_row($result);
printf("Default database is %s.\n", $row[0]);
mysqli_free_result($result);

}

mysqli_close($link);
?>

The above example will output:

Default database is test.
Default database is world.

See Also

mysqli_connect
mysqli_real_connect

8.2.6.39. mysqli::set_charset, mysqli_set_charset

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::set_charset

mysqli_set_charset

Sets the default client character set

Description

Object oriented style (method):

bool mysqli::set_charset(string charset);

Procedural style:

bool mysqli_set_charset(mysqli link,
string charset);

Sets the default character set to be used when sending data from and to the database server.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

MySQL PHP API

385

charset The charset to be set as default.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

To use this function on a Windows platform you need MySQL client library version 4.1.11 or above (for MySQL 5.0
you need 5.0.6 or above).

Note

This is the preferred way to change the charset. Using mysqli::query to execute SET NAMES .. is not rec-
comended.

Examples

Example 8.112. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* change character set to utf8 */
if (!$mysqli->set_charset("utf8")) {

printf("Error loading character set utf8: %s\n", $mysqli->error);
} else {

printf("Current character set: %s\n", $mysqli->character_set_name());
}

$mysqli->close();
?>

Example 8.113. Procedural style

<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'test');

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* change character set to utf8 */
if (!mysqli_set_charset($link, "utf8")) {

printf("Error loading character set utf8: %s\n", mysqli_error($link));
} else {

printf("Current character set: %s\n", mysqli_character_set_name($link));
}

mysqli_close($link);
?>

The above example will output:

Current character set: utf8

MySQL PHP API

386

See Also

mysqli_character_set_name
mysqli_real_escape_string
List of character sets that MySQL supports

8.2.6.40. mysqli::set_local_infile_default, mysqli_set_local_infile_default

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::set_local_infile_default

mysqli_set_local_infile_default

Unsets user defined handler for load local infile command

Description

void mysqli_set_local_infile_default(mysqli link);

Deactivates a LOAD DATA INFILE LOCAL handler previously set with mysqli_set_local_infile_handler.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

No value is returned.

Examples

See mysqli_set_local_infile_handler examples

See Also

mysqli_set_local_infile_handler

8.2.6.41. mysqli::set_local_infile_handler, mysqli_set_local_infile_handler

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::set_local_infile_handler

mysqli_set_local_infile_handler

Set callback function for LOAD DATA LOCAL INFILE command

Description

bool mysqli_set_local_infile_handler(mysqli link,
callback read_func);

Object oriented style (method)

mysqli {

bool set_local_infile_handler(mysqli link,
callback read_func);

}

Set callback function for LOAD DATA LOCAL INFILE command

MySQL PHP API

387

http://dev.mysql.com/doc/refman/5.1/en/charset-charsets.html

The callbacks task is to read input from the file specified in the LOAD DATA LOCAL INFILE and to reformat it into the format
understood by LOAD DATA INFILE.

The returned data needs to match the format speficied in the LOAD DATA

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

read_func A callback function or object method taking the following parameters:

stream A PHP stream associated with the SQL commands IN-
FILE

&buffer A string buffer to store the rewritten input into

buflen The maximum number of characters to be stored in the
buffer

&errormsg If an error occures you can store an error message in
here

The callback function should return the number of characters stored in the buffer or a negative value if an error occured.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.114. Object oriented style

<?php
$db = mysqli_init();
$db->real_connect("localhost","root","","test");

function callme($stream, &$buffer, $buflen, &$errmsg)
{
$buffer = fgets($stream);

echo $buffer;

// convert to upper case and replace "," delimiter with [TAB]
$buffer = strtoupper(str_replace(",", "\t", $buffer));

return strlen($buffer);
}

echo "Input:\n";

$db->set_local_infile_handler("callme");
$db->query("LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");
$db->set_local_infile_default();

$res = $db->query("SELECT * FROM t1");

echo "\nResult:\n";
while ($row = $res->fetch_assoc()) {
echo join(",", $row)."\n";

}
?>

Example 8.115. Procedural style

<?php
$db = mysqli_init();
mysqli_real_connect($db, "localhost","root","","test");

function callme($stream, &$buffer, $buflen, &$errmsg)
{

MySQL PHP API

388

$buffer = fgets($stream);

echo $buffer;

// convert to upper case and replace "," delimiter with [TAB]
$buffer = strtoupper(str_replace(",", "\t", $buffer));

return strlen($buffer);
}

echo "Input:\n";

mysqli_set_local_infile_handler($db, "callme");
mysqli_query($db, "LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");
mysqli_set_local_infile_default($db);

$res = mysqli_query($db, "SELECT * FROM t1");

echo "\nResult:\n";
while ($row = mysqli_fetch_assoc($res)) {
echo join(",", $row)."\n";

}
?>

The above example will output:

Input:
23,foo
42,bar

Output:
23,FOO
42,BAR

See Also

mysqli_set_local_infile_default

8.2.6.42. mysqli->sqlstate, mysqli_sqlstate

Copyright 1997-2008 the PHP Documentation Group.

• mysqli->sqlstate

mysqli_sqlstate

Returns the SQLSTATE error from previous MySQL operation

Description

Object oriented style (property):

mysqli {

string sqlstate ;

}

Procedural style:

string mysqli_sqlstate(mysqli link);

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five characters. '00000'
means no error. The values are specified by ANSI SQL and ODBC. For a list of possible values, see ht-
tp://dev.mysql.com/doc/mysql/en/error-handling.html.

MySQL PHP API

389

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://dev.mysql.com/doc/mysql/en/error-handling.html

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000 (general error) is used for un-
mapped errors.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five characters. '00000'
means no error.

Examples

Example 8.116. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Table City already exists, so we should get an error */
if (!$mysqli->query("CREATE TABLE City (ID INT, Name VARCHAR(30))")) {

printf("Error - SQLSTATE %s.\n", $mysqli->sqlstate);
}

$mysqli->close();
?>

Example 8.117. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* Table City already exists, so we should get an error */
if (!mysqli_query($link, "CREATE TABLE City (ID INT, Name VARCHAR(30))")) {

printf("Error - SQLSTATE %s.\n", mysqli_sqlstate($link));
}

mysqli_close($link);
?>

The above example will output:

Error - SQLSTATE 42S01.

See Also

MySQL PHP API

390

mysqli_errno
mysqli_error

8.2.6.43. mysqli::ssl_set, mysqli_ssl_set

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::ssl_set

mysqli_ssl_set

Used for establishing secure connections using SSL

Description

Object oriented style (method):

bool mysqli::ssl_set(string key,
string cert,
string ca,
string capath,
string cipher);

Procedural style:

bool mysqli_ssl_set(mysqli link,
string key,
string cert,
string ca,
string capath,
string cipher);

Used for establishing secure connections using SSL. It must be called before mysqli_real_connect. This function does noth-
ing unless OpenSSL support is enabled.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

key The path name to the key file.

cert The path name to the certificate file.

ca The path name to the certificate authority file.

capath The pathname to a directory that contains trusted SSL CA certificates in PEM format.

cipher A list of allowable ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL

Return Values

This function always returns TRUE value. If SSL setup is incorrect mysqli_real_connect will return an error when you at-
tempt to connect.

See Also

mysqli_options
mysqli_real_connect

8.2.6.44. mysqli::stat, mysqli_stat

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::stat

MySQL PHP API

391

mysqli_stat

Gets the current system status

Description

Object oriented style (method):

string mysqli::stat();

Procedural style:

string mysqli_stat(mysqli link);

mysqli_stat returns a string containing information similar to that provided by the 'mysqladmin status' command. This includes
uptime in seconds and the number of running threads, questions, reloads, and open tables.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

A string describing the server status. FALSE if an error occurred.

Examples

Example 8.118. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

printf ("System status: %s\n", $mysqli->stat());

$mysqli->close();
?>

Example 8.119. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

printf("System status: %s\n", mysqli_stat($link));

mysqli_close($link);
?>

The above example will output:

MySQL PHP API

392

System status: Uptime: 272 Threads: 1 Questions: 5340 Slow queries: 0
Opens: 13 Flush tables: 1 Open tables: 0 Queries per second avg: 19.632
Memory in use: 8496K Max memory used: 8560K

See Also

mysqli_get_server_info

8.2.6.45. mysqli::stmt_init, mysqli_stmt_init

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::stmt_init

mysqli_stmt_init

Initializes a statement and returns an object for use with mysqli_stmt_prepare

Description

Object oriented style (property):

mysqli {

mysqli_stmt stmt_init();

}

Procedural style :

mysqli_stmt mysqli_stmt_init(mysqli link);

Allocates and initializes a statement object suitable for mysqli_stmt_prepare.

Note

Any subsequent calls to any mysqli_stmt function will fail until mysqli_stmt_prepare was called.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns an object.

See Also

mysqli_stmt_prepare

8.2.6.46. mysqli::store_result, mysqli_store_result

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::store_result

mysqli_store_result

Transfers a result set from the last query

MySQL PHP API

393

Description

Object oriented style (method):

mysqli_result store_result();

Procedural style:

mysqli_result mysqli_store_result(mysqli link);

Transfers the result set from the last query on the database connection represented by the link parameter to be used with the
mysqli_data_seek function.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns a buffered result object or FALSE if an error occurred.

Note

mysqli_store_result returns FALSE in case the query didn't return a result set (if the query was, for example
an INSERT statement). This function also returns FALSE if the reading of the result set failed. You can check if you
have got an error by checking if mysqli_error doesn't return an empty string, if mysqli_errno returns a non
zero value, or if mysqli_field_count returns a non zero value. Also possible reason for this function returning
FALSE after successfull call to mysqli_query can be too large result set (memory for it cannot be allocated). If
mysqli_field_count returns a non-zero value, the statement should have produced a non-empty result set.

Notes

Note

Although it is always good practice to free the memory used by the result of a query using the
mysqli_free_result function, when transfering large result sets using the mysqli_store_result this be-
comes particularly important.

Examples

See mysqli_multi_query.

See Also

mysqli_real_query
mysqli_use_result

8.2.6.47. mysqli::thread_id, mysqli_thread_id

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::thread_id

mysqli_thread_id

Returns the thread ID for the current connection

Description

Object oriented style (property):

mysqli {

int thread_id ;

}

MySQL PHP API

394

Procedural style:

int mysqli_thread_id(mysqli link);

The mysqli_thread_id function returns the thread ID for the current connection which can then be killed using the
mysqli_kill function. If the connection is lost and you reconnect with mysqli_ping, the thread ID will be other. Therefore
you should get the thread ID only when you need it.

Note

The thread ID is assigned on a connection-by-connection basis. Hence, if the connection is broken and then re-
established a new thread ID will be assigned.

To kill a running query you can use the SQL command KILL QUERY processid.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Returns the Thread ID for the current connection.

Examples

Example 8.120. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* determine our thread id */
$thread_id = $mysqli->thread_id;

/* Kill connection */
$mysqli->kill($thread_id);

/* This should produce an error */
if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {

printf("Error: %s\n", $mysqli->error);
exit;

}

/* close connection */
$mysqli->close();
?>

Example 8.121. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* determine our thread id */
$thread_id = mysqli_thread_id($link);

/* Kill connection */
mysqli_kill($link, $thread_id);

/* This should produce an error */
if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {

printf("Error: %s\n", mysqli_error($link));

MySQL PHP API

395

exit;
}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Error: MySQL server has gone away

See Also

mysqli_kill

8.2.6.48. mysqli::thread_safe, mysqli_thread_safe

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::thread_safe

mysqli_thread_safe

Returns whether thread safety is given or not

Description

Procedural style:

bool mysqli_thread_safe();

Tells whether the client library is compiled as thread-safe.

Return Values

TRUE if the client library is thread-safe, otherwise FALSE .

8.2.6.49. mysqli::use_result, mysqli_use_result

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::use_result

mysqli_use_result

Initiate a result set retrieval

Description

Object oriented style (method):

mysqli_result use_result();

Procedural style:

mysqli_result mysqli_use_result(mysqli link);

Used to initiate the retrieval of a result set from the last query executed using the mysqli_real_query function on the database
connection.

MySQL PHP API

396

Either this or the mysqli_store_result function must be called before the results of a query can be retrieved, and one or the
other must be called to prevent the next query on that database connection from failing.

Note

The mysqli_use_result function does not transfer the entire result set from the database and hence cannot be
used functions such as mysqli_data_seek to move to a particular row within the set. To use this functionality,
the result set must be stored using mysqli_store_result. One should not use mysqli_use_result if a lot
of processing on the client side is performed, since this will tie up the server and prevent other threads from updating
any tables from which the data is being fetched.

Return Values

Returns an unbuffered result object or FALSE if an error occurred.

Examples

Example 8.122. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if ($mysqli->multi_query($query)) {

do {
/* store first result set */
if ($result = $mysqli->use_result()) {

while ($row = $result->fetch_row()) {
printf("%s\n", $row[0]);

}
$result->close();

}
/* print divider */
if ($mysqli->more_results()) {

printf("-----------------\n");
}

} while ($mysqli->next_result());
}

/* close connection */
$mysqli->close();
?>

Example 8.123. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if (mysqli_multi_query($link, $query)) {

do {
/* store first result set */
if ($result = mysqli_use_result($link)) {

while ($row = mysqli_fetch_row($result)) {
printf("%s\n", $row[0]);

}
mysqli_free_result($result);

}
/* print divider */
if (mysqli_more_results($link)) {

printf("-----------------\n");

MySQL PHP API

397

}
} while (mysqli_next_result($link));

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

my_user@localhost

Amersfoort
Maastricht
Dordrecht
Leiden
Haarlemmermeer

See Also

mysqli_real_query
mysqli_store_result

8.2.6.50. mysqli::warning_count, mysqli_warning_count

Copyright 1997-2008 the PHP Documentation Group.

• mysqli::warning_count

mysqli_warning_count

Returns the number of warnings from the last query for the given link

Description

Object oriented style (property):

mysqli {

int warning_count ;

}

Procedural style:

int mysqli_warning_count(mysqli link);

Returns the number of warnings from the last query in the connection.

Note

For retrieving warning messages you can use the SQL command SHOW WARNINGS [limit row_count].

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or mysqli_init

Return Values

Number of warnings or zero if there are no warnings.

MySQL PHP API

398

Examples

Example 8.124. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TABLE myCity LIKE City");

/* a remarkable city in Wales */
$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',

'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

$mysqli->query($query);

if ($mysqli->warning_count) {
if ($result = $mysqli->query("SHOW WARNINGS")) {

$row = $result->fetch_row();
printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);
$result->close();

}
}

/* close connection */
$mysqli->close();
?>

Example 8.125. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

/* a remarkable long city name in Wales */
$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',

'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

mysqli_query($link, $query);

if (mysqli_warning_count($link)) {
if ($result = mysqli_query($link, "SHOW WARNINGS")) {

$row = mysqli_fetch_row($result);
printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);
mysqli_free_result($result);

}
}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Warning (1264): Data truncated for column 'Name' at row 1

See Also

MySQL PHP API

399

mysqli_errno
mysqli_error
mysqli_sqlstate

8.2.7. The MySQLi_STMT class (MySQLi_STMT)
Copyright 1997-2008 the PHP Documentation Group.

Represents a prepared statement.

MySQLi_STMT {
MySQLi_STMT

Properties

int affected_rows ;

int errno ;

string error ;

int field_count ;

int insert_id ;

int num_rows ;

int param_count ;

string sqlstate ;

Methods

int mysqli_stmt_affected_rows(mysqli_stmt stmt);

int mysqli_stmt::attr_get(int attr);

bool mysqli_stmt::attr_set(int attr,
int mode);

bool mysqli_stmt::bind_param(string types,
mixed var1,
mixed ...);

bool mysqli_stmt::bind_result(mixed var1,
mixed ...);

bool mysqli_stmt::close();

void mysqli_stmt::data_seek(int offset);

int mysqli_stmt_errno(mysqli_stmt stmt);

string mysqli_stmt_error(mysqli_stmt stmt);

bool mysqli_stmt::execute();

bool mysqli_stmt::fetch();

int mysqli_stmt_field_count(mysqli_stmt stmt);

void mysqli_stmt::free_result();

object mysqli_stmt::get_warnings(mysqli_stmt stmt);

MySQL PHP API

400

mixed mysqli_stmt_insert_id(mysqli_stmt stmt);

int mysqli_stmt_num_rows(mysqli_stmt stmt);

int mysqli_stmt_param_count(mysqli_stmt stmt);

mixed mysqli_stmt::prepare(string query);

bool mysqli_stmt::reset();

mysqli_result mysqli_stmt::result_metadata();

bool mysqli_stmt::send_long_data(int param_nr,
string data);

string mysqli_stmt_sqlstate(mysqli_stmt stmt);

bool mysqli_stmt::store_result();

}

8.2.7.1. mysqli_stmt->affected_rows, mysqli_stmt_affected_rows

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt->affected_rows

mysqli_stmt_affected_rows

Returns the total number of rows changed, deleted, or inserted by the last executed statement

Description

Object oriented style (property):

mysqli_stmt {

int affected_rows ;

}

Procedural style :

int mysqli_stmt_affected_rows(mysqli_stmt stmt);

Returns the number of rows affected by INSERT, UPDATE, or DELETE query.

This function only works with queries which update a table. In order to get the number of rows from a SELECT query, use
mysqli_stmt_num_rows instead.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no records where updated for an
UPDATE/DELETE statement, no rows matched the WHERE clause in the query or that no query has yet been executed. -1 indic-
ates that the query has returned an error. NULL indicates an invalid argument was supplied to the function.

Note

If the number of affected rows is greater than maximal PHP int value, the number of affected rows will be returned as

MySQL PHP API

401

a string value.

Examples

Example 8.126. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* create temp table */
$mysqli->query("CREATE TEMPORARY TABLE myCountry LIKE Country");

$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statement */
if ($stmt = $mysqli->prepare($query)) {

/* Bind variable for placeholder */
$code = 'A%';
$stmt->bind_param("s", $code);

/* execute statement */
$stmt->execute();

printf("rows inserted: %d\n", $stmt->affected_rows);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.127. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* create temp table */
mysqli_query($link, "CREATE TEMPORARY TABLE myCountry LIKE Country");

$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statement */
if ($stmt = mysqli_prepare($link, $query)) {

/* Bind variable for placeholder */
$code = 'A%';
mysqli_stmt_bind_param($stmt, "s", $code);

/* execute statement */
mysqli_stmt_execute($stmt);

printf("rows inserted: %d\n", mysqli_stmt_affected_rows($stmt));

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

MySQL PHP API

402

rows inserted: 17

See Also

mysqli_stmt_num_rows
mysqli_prepare

8.2.7.2. mysqli_stmt::attr_get, mysqli_stmt_attr_get

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::attr_get

mysqli_stmt_attr_get

Used to get the current value of a statement attribute

Description

Object oriented style (method):

int mysqli_stmt::attr_get(int attr);

Procedural style:

int mysqli_stmt_attr_get(mysqli_stmt stmt,
int attr);

Gets the current value of a statement attribute.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

attr The attribute that you want to get.

Return Values

Returns FALSE if the attribute is not found, otherwise returns the value of the attribute.

8.2.7.3. mysqli_stmt::attr_set, mysqli_stmt_attr_set

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::attr_set

mysqli_stmt_attr_set

Used to modify the behavior of a prepared statement

Description

Object oriented style (method):

bool mysqli_stmt::attr_set(int attr,
int mode);

Procedural style:

MySQL PHP API

403

bool mysqli_stmt_attr_set(mysqli_stmt stmt,
int attr,
int mode);

Used to modify the behavior of a prepared statement. This function may be called multiple times to set several attributes.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

attr The attribute that you want to set. It can have one of the following values:

Table 8.8. Attribute values

Character Description

MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTH If set to 1, causes mysqli_stmt_store_result to update
the metadata MYSQL_FIELD->max_length value.

MYSQLI_STMT_ATTR_CURSOR_TYPE Type of cursor to open for statement when
mysqli_stmt_execute is invoked. mode can be
MYSQLI_CURSOR_TYPE_NO_CURSOR (the default) or
MYSQLI_CURSOR_TYPE_READ_ONLY.

MYSQLI_STMT_ATTR_PREFETCH_ROWS Number of rows to fetch from server at a time when using a
cursor. mode can be in the range from 1 to the maximum value
of unsigned long. The default is 1.

If you use the MYSQLI_STMT_ATTR_CURSOR_TYPE option with
MYSQLI_CURSOR_TYPE_READ_ONLY, a cursor is opened for the statement when you in-
voke mysqli_stmt_execute. If there is already an open cursor from a previous
mysqli_stmt_execute call, it closes the cursor before opening a new one.
mysqli_stmt_reset also closes any open cursor before preparing the statement for re-
execution. mysqli_stmt_free_result closes any open cursor.

If you open a cursor for a prepared statement, mysqli_stmt_store_result is unne-
cessary.

mode The value to assign to the attribute.

8.2.7.4. mysqli_stmt::bind_param, mysqli_stmt_bind_param

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::bind_param

mysqli_stmt_bind_param

Binds variables to a prepared statement as parameters

Description

Object oriented style (method):

bool mysqli_stmt::bind_param(string types,
mixed var1,
mixed ...);

Procedural style:

bool mysqli_stmt_bind_param(mysqli_stmt stmt,
string types,
mixed var1,
mixed ...);

Bind variables for the parameter markers in the SQL statement that was passed to mysqli_prepare.

MySQL PHP API

404

Note

If data size of a variable exceeds max. allowed packet size (max_allowed_packet), you have to specify b in types
and use mysqli_stmt_send_long_data to send the data in packets.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

types A string that contains one or more characters which specify the types for the corresponding
bind variables:

Table 8.9. Type specification chars

Character Description

i corresponding variable has type integer

d corresponding variable has type double

s corresponding variable has type string

b corresponding variable is a blob and will be sent in packets

var1 The number of variables and length of string types must match the parameters in the state-
ment.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.128. Object oriented style

<?php
$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$stmt = $mysqli->prepare("INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
$stmt->bind_param('sssd', $code, $language, $official, $percent);

$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;

/* execute prepared statement */
$stmt->execute();

printf("%d Row inserted.\n", $stmt->affected_rows);

/* close statement and connection */
$stmt->close();

/* Clean up table CountryLanguage */
$mysqli->query("DELETE FROM CountryLanguage WHERE Language='Bavarian'");
printf("%d Row deleted.\n", $mysqli->affected_rows);

/* close connection */
$mysqli->close();
?>

Example 8.129. Procedural style

MySQL PHP API

405

<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (!$link) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$stmt = mysqli_prepare($link, "INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
mysqli_stmt_bind_param($stmt, 'sssd', $code, $language, $official, $percent);

$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;

/* execute prepared statement */
mysqli_stmt_execute($stmt);

printf("%d Row inserted.\n", mysqli_stmt_affected_rows($stmt));

/* close statement and connection */
mysqli_stmt_close($stmt);

/* Clean up table CountryLanguage */
mysqli_query($link, "DELETE FROM CountryLanguage WHERE Language='Bavarian'");
printf("%d Row deleted.\n", mysqli_affected_rows($link));

/* close connection */
mysqli_close($link);
?>

The above example will output:

1 Row inserted.
1 Row deleted.

See Also

mysqli_stmt_bind_result
mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_prepare
mysqli_stmt_send_long_data
mysqli_stmt_errno
mysqli_stmt_error

8.2.7.5. mysqli_stmt::bind_result, mysqli_stmt_bind_result

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::bind_result

mysqli_stmt_bind_result

Binds variables to a prepared statement for result storage

Description

Object oriented style (method):

bool mysqli_stmt::bind_result(mixed var1,
mixed ...);

Procedural style:

bool mysqli_stmt_bind_result(mysqli_stmt stmt,
mixed var1,

MySQL PHP API

406

mixed ...);

Binds columns in the result set to variables.

When mysqli_stmt_fetch is called to fetch data, the MySQL client/server protocol places the data for the bound columns in-
to the specified variables var1,

Note

Note that all columns must be bound after mysqli_stmt_execute and prior to calling mysqli_stmt_fetch.
Depending on column types bound variables can silently change to the corresponding PHP type.

A column can be bound or rebound at any time, even after a result set has been partially retrieved. The new binding
takes effect the next time mysqli_stmt_fetch is called.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

var1 The variable to be bound.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.130. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* prepare statement */
if ($stmt = $mysqli->prepare("SELECT Code, Name FROM Country ORDER BY Name LIMIT 5")) {

$stmt->execute();

/* bind variables to prepared statement */
$stmt->bind_result($col1, $col2);

/* fetch values */
while ($stmt->fetch()) {

printf("%s %s\n", $col1, $col2);
}

/* close statement */
$stmt->close();

}
/* close connection */
$mysqli->close();

?>

Example 8.131. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* prepare statement */
if ($stmt = mysqli_prepare($link, "SELECT Code, Name FROM Country ORDER BY Name LIMIT 5")) {

mysqli_stmt_execute($stmt);

MySQL PHP API

407

/* bind variables to prepared statement */
mysqli_stmt_bind_result($stmt, $col1, $col2);

/* fetch values */
while (mysqli_stmt_fetch($stmt)) {

printf("%s %s\n", $col1, $col2);
}

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

AFG Afghanistan
ALB Albania
DZA Algeria
ASM American Samoa
AND Andorra

See Also

mysqli_stmt_bind_param
mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_prepare
mysqli_stmt_prepare
mysqli_stmt_init
mysqli_stmt_errno
mysqli_stmt_error

8.2.7.6. mysqli_stmt::close, mysqli_stmt_close

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::close

mysqli_stmt_close

Closes a prepared statement

Description

Object oriented style (method):

bool mysqli_stmt::close();

Procedural style:

bool mysqli_stmt_close(mysqli_stmt stmt);

Closes a prepared statement. mysqli_stmt_close also deallocates the statement handle. If the current statement has pending
or unread results, this function cancels them so that the next query can be executed.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

MySQL PHP API

408

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_prepare

8.2.7.7. mysqli_stmt::data_seek, mysqli_stmt_data_seek

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::data_seek

mysqli_stmt_data_seek

Seeks to an arbitrary row in statement result set

Description

Object oriented style (method):

void mysqli_stmt::data_seek(int offset);

Procedural style:

void mysqli_stmt_data_seek(mysqli_stmt stmt,
int offset);

Seeks to an arbitrary result pointer in the statement result set.

mysqli_stmt_store_result must be called prior to mysqli_stmt_data_seek.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

offset Must be between zero and the total number of rows minus one (0..
mysqli_stmt_num_rows - 1).

Return Values

No value is returned.

Examples

Example 8.132. Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

/* execute query */
$stmt->execute();

/* bind result variables */
$stmt->bind_result($name, $code);

/* store result */
$stmt->store_result();

MySQL PHP API

409

/* seek to row no. 400 */
$stmt->data_seek(399);

/* fetch values */
$stmt->fetch();

printf ("City: %s Countrycode: %s\n", $name, $code);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.133. Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

/* execute query */
mysqli_stmt_execute($stmt);

/* bind result variables */
mysqli_stmt_bind_result($stmt, $name, $code);

/* store result */
mysqli_stmt_store_result($stmt);

/* seek to row no. 400 */
mysqli_stmt_data_seek($stmt, 399);

/* fetch values */
mysqli_stmt_fetch($stmt);

printf ("City: %s Countrycode: %s\n", $name, $code);

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

City: Benin City Countrycode: NGA

See Also

mysqli_prepare

8.2.7.8. mysqli_stmt->errno, mysqli_stmt_errno

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt->errno

MySQL PHP API

410

mysqli_stmt_errno

Returns the error code for the most recent statement call

Description

Object oriented style (property):

mysqli_stmt {

int errno ;

}

Procedural style :

int mysqli_stmt_errno(mysqli_stmt stmt);

Returns the error code for the most recently invoked statement function that can succeed or fail.

Client error message numbers are listed in the MySQL errmsg.h header file, server error message numbers are listed in
mysqld_error.h. In the MySQL source distribution you can find a complete list of error messages and error numbers in the file
Docs/mysqld_error.txt.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

An error code value. Zero means no error occurred.

Examples

Example 8.134. Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

/* drop table */
$mysqli->query("DROP TABLE myCountry");

/* execute query */
$stmt->execute();

printf("Error: %d.\n", $stmt->errno);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

MySQL PHP API

411

Example 8.135. Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

/* drop table */
mysqli_query($link, "DROP TABLE myCountry");

/* execute query */
mysqli_stmt_execute($stmt);

printf("Error: %d.\n", mysqli_stmt_errno($stmt));

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Error: 1146.

See Also

mysqli_stmt_error
mysqli_stmt_sqlstate

8.2.7.9. mysqli_stmt->error, mysqli_stmt_error

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt->error

mysqli_stmt_error

Returns a string description for last statement error

Description

Object oriented style (property):

mysqli_stmt {

string error ;

}

Procedural style:

string mysqli_stmt_error(mysqli_stmt stmt);

MySQL PHP API

412

Returns a containing the error message for the most recently invoked statement function that can succeed or fail.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example 8.136. Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

/* drop table */
$mysqli->query("DROP TABLE myCountry");

/* execute query */
$stmt->execute();

printf("Error: %s.\n", $stmt->error);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.137. Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

/* drop table */
mysqli_query($link, "DROP TABLE myCountry");

/* execute query */
mysqli_stmt_execute($stmt);

printf("Error: %s.\n", mysqli_stmt_error($stmt));

/* close statement */
mysqli_stmt_close($stmt);

}

MySQL PHP API

413

/* close connection */
mysqli_close($link);
?>

The above example will output:

Error: Table 'world.myCountry' doesn't exist.

See Also

mysqli_stmt_errno
mysqli_stmt_sqlstate

8.2.7.10. mysqli_stmt->execute, mysqli_stmt_execute

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt->execute

mysqli_stmt_execute

Executes a prepared Query

Description

Object oriented style (method):

bool mysqli_stmt::execute();

Procedural style:

bool mysqli_stmt_execute(mysqli_stmt stmt);

Executes a query that has been previously prepared using the mysqli_prepare function. When executed any parameter markers
which exist will automatically be replaced with the appropiate data.

If the statement is UPDATE, DELETE, or INSERT, the total number of affected rows can be determined by using the
mysqli_stmt_affected_rows function. Likewise, if the query yields a result set the mysqli_stmt_fetch function is
used.

Note

When using mysqli_stmt_execute, the mysqli_stmt_fetch function must be used to fetch the data prior
to performing any additional queries.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.138. Object oriented style

MySQL PHP API

414

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TABLE myCity LIKE City");

/* Prepare an insert statement */
$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";
$stmt = $mysqli->prepare($query);

$stmt->bind_param("sss", $val1, $val2, $val3);

$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';

/* Execute the statement */
$stmt->execute();

$val1 = 'Bordeaux';
$val2 = 'FRA';
$val3 = 'Aquitaine';

/* Execute the statement */
$stmt->execute();

/* close statement */
$stmt->close();

/* retrieve all rows from myCity */
$query = "SELECT Name, CountryCode, District FROM myCity";
if ($result = $mysqli->query($query)) {

while ($row = $result->fetch_row()) {
printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);

}
/* free result set */
$result->close();

}

/* remove table */
$mysqli->query("DROP TABLE myCity");

/* close connection */
$mysqli->close();
?>

Example 8.139. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

/* Prepare an insert statement */
$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";
$stmt = mysqli_prepare($link, $query);

mysqli_stmt_bind_param($stmt, "sss", $val1, $val2, $val3);

$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';

/* Execute the statement */
mysqli_stmt_execute($stmt);

$val1 = 'Bordeaux';
$val2 = 'FRA';
$val3 = 'Aquitaine';

/* Execute the statement */
mysqli_stmt_execute($stmt);

/* close statement */
mysqli_stmt_close($stmt);

MySQL PHP API

415

/* retrieve all rows from myCity */
$query = "SELECT Name, CountryCode, District FROM myCity";
if ($result = mysqli_query($link, $query)) {

while ($row = mysqli_fetch_row($result)) {
printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);

}
/* free result set */
mysqli_free_result($result);

}

/* remove table */
mysqli_query($link, "DROP TABLE myCity");

/* close connection */
mysqli_close($link);
?>

The above example will output:

Stuttgart (DEU,Baden-Wuerttemberg)
Bordeaux (FRA,Aquitaine)

See Also

mysqli_prepare
mysqli_stmt_bind_param

8.2.7.11. mysqli_stmt::fetch, mysqli_stmt_fetch

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::fetch

mysqli_stmt_fetch

Fetch results from a prepared statement into the bound variables

Description

Object oriented style (method):

bool mysqli_stmt::fetch();

Procedural style:

bool mysqli_stmt_fetch(mysqli_stmt stmt);

Fetch the result from a prepared statement into the variables bound by mysqli_stmt_bind_result.

Note

Note that all columns must be bound by the application before calling mysqli_stmt_fetch.

Note

Data are transferred unbuffered without calling mysqli_stmt_store_result which can decrease performance
(but reduces memory cost).

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

MySQL PHP API

416

Return Values

Table 8.10. Return Values

Value Description

TRUE Success. Data has been fetched

FALSE Error occured

NULL No more rows/data exists or data truncation occurred

Examples

Example 8.140. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";

if ($stmt = $mysqli->prepare($query)) {

/* execute statement */
$stmt->execute();

/* bind result variables */
$stmt->bind_result($name, $code);

/* fetch values */
while ($stmt->fetch()) {

printf ("%s (%s)\n", $name, $code);
}

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.141. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";

if ($stmt = mysqli_prepare($link, $query)) {

/* execute statement */
mysqli_stmt_execute($stmt);

/* bind result variables */
mysqli_stmt_bind_result($stmt, $name, $code);

/* fetch values */
while (mysqli_stmt_fetch($stmt)) {

printf ("%s (%s)\n", $name, $code);
}

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);

MySQL PHP API

417

?>

The above example will output:

Rockford (USA)
Tallahassee (USA)
Salinas (USA)
Santa Clarita (USA)
Springfield (USA)

See Also

mysqli_prepare
mysqli_stmt_errno
mysqli_stmt_error
mysqli_stmt_bind_result

8.2.7.12. mysqli_stmt->field_count, mysqli_stmt_field_count

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt->field_count

mysqli_stmt_field_count

Returns the number of field in the given statement

Description

mysqli_stmt {

int field_count ;

}

int mysqli_stmt_field_count(mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

8.2.7.13. stmt::free_result, mysqli_stmt_free_result

Copyright 1997-2008 the PHP Documentation Group.

• stmt::free_result

mysqli_stmt_free_result

Frees stored result memory for the given statement handle

Description

Object oriented style (method):

void mysqli_stmt::free_result();

Procedural style:

MySQL PHP API

418

void mysqli_stmt_free_result(mysqli_stmt stmt);

Frees the result memory associated with the statement, which was allocated by mysqli_stmt_store_result.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

No value is returned.

See Also

mysqli_stmt_store_result

8.2.7.14. mysqli_stmt::get_warnings, mysqli_stmt_get_warnings

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::get_warnings

mysqli_stmt_get_warnings

Description

object mysqli_stmt::get_warnings(mysqli_stmt stmt);

object mysqli_stmt_get_warnings(mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

8.2.7.15. mysqli_stmt->insert_id, mysqli_stmt_insert_id

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt->insert_id

mysqli_stmt_insert_id

Get the ID generated from the previous INSERT operation

Description

mysqli_stmt {

int insert_id ;

}

mixed mysqli_stmt_insert_id(mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

8.2.7.16. mysqli_stmt::num_rows, mysqli_stmt_num_rows

Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

419

• mysqli_stmt::num_rows

mysqli_stmt_num_rows

Return the number of rows in statements result set

Description

Object oriented style (property):

mysqli_stmt {

int num_rows ;

}

Procedural style :

int mysqli_stmt_num_rows(mysqli_stmt stmt);

Returns the number of rows in the result set. The use of mysqli_stmt_num_rows depends on whether or not you used
mysqli_stmt_store_result to buffer the entire result set in the statement handle.

If you use mysqli_stmt_store_result, mysqli_stmt_num_rows may be called immediately.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

An integer representing the number of rows in result set.

Examples

Example 8.142. Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = $mysqli->prepare($query)) {

/* execute query */
$stmt->execute();

/* store result */
$stmt->store_result();

printf("Number of rows: %d.\n", $stmt->num_rows);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.143. Procedural style

MySQL PHP API

420

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = mysqli_prepare($link, $query)) {

/* execute query */
mysqli_stmt_execute($stmt);

/* store result */
mysqli_stmt_store_result($stmt);

printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Number of rows: 20.

See Also

mysqli_stmt_affected_rows
mysqli_prepare
mysqli_stmt_store_result

8.2.7.17. mysqli_stmt->param_count, mysqli_stmt_param_count

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt->param_count

mysqli_stmt_param_count

Returns the number of parameter for the given statement

Description

Object oriented style (property):

mysqli_stmt {

int param_count ;

}

Procedural style:

int mysqli_stmt_param_count(mysqli_stmt stmt);

Returns the number of parameter markers present in the prepared statement.

Parameters

MySQL PHP API

421

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

Returns an integer representing the number of parameters.

Examples

Example 8.144. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if ($stmt = $mysqli->prepare("SELECT Name FROM Country WHERE Name=? OR Code=?")) {

$marker = $stmt->param_count;
printf("Statement has %d markers.\n", $marker);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.145. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if ($stmt = mysqli_prepare($link, "SELECT Name FROM Country WHERE Name=? OR Code=?")) {

$marker = mysqli_stmt_param_count($stmt);
printf("Statement has %d markers.\n", $marker);

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Statement has 2 markers.

See Also

mysqli_prepare

MySQL PHP API

422

8.2.7.18. mysqli_stmt::prepare, mysqli_stmt_prepare

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::prepare

mysqli_stmt_prepare

Prepare a SQL statement for execution

Description

Object oriented style (method)

mixed mysqli_stmt::prepare(string query);

Procedure style:

bool mysqli_stmt_prepare(mysqli_stmt stmt,
string query);

Prepares the SQL query pointed to by the null-terminated string query.

The parameter markers must be bound to application variables using mysqli_stmt_bind_param and/or
mysqli_stmt_bind_result before executing the statement or fetching rows.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

query The query, as a string. It must consist of a single SQL statement.

You can include one or more parameter markers in the SQL statement by embedding ques-
tion mark (?) characters at the appropriate positions.

Note

You should not add a terminating semicolon or \g to the statement.

Note

The markers are legal only in certain places in SQL statements. For example, they are allowed in the VALUES() list
of an INSERT statement (to specify column values for a row), or in a comparison with a column in a WHERE clause
to specify a comparison value.

However, they are not allowed for identifiers (such as table or column names), in the select list that names the
columns to be returned by a SELECT statement), or to specify both operands of a binary operator such as the = equal
sign. The latter restriction is necessary because it would be impossible to determine the parameter type. In general,
parameters are legal only in Data Manipulation Languange (DML) statements, and not in Data Definition Language
(DDL) statements.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.146. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());

MySQL PHP API

423

exit();
}

$city = "Amersfoort";

/* create a prepared statement */
$stmt = $mysqli->stmt_init();
if ($stmt->prepare("SELECT District FROM City WHERE Name=?")) {

/* bind parameters for markers */
$stmt->bind_param("s", $city);

/* execute query */
$stmt->execute();

/* bind result variables */
$stmt->bind_result($district);

/* fetch value */
$stmt->fetch();

printf("%s is in district %s\n", $city, $district);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.147. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$city = "Amersfoort";

/* create a prepared statement */
$stmt = mysqli_stmt_init($link);
if (mysqli_stmt_prepare($stmt, 'SELECT District FROM City WHERE Name=?')) {

/* bind parameters for markers */
mysqli_stmt_bind_param($stmt, "s", $city);

/* execute query */
mysqli_stmt_execute($stmt);

/* bind result variables */
mysqli_stmt_bind_result($stmt, $district);

/* fetch value */
mysqli_stmt_fetch($stmt);

printf("%s is in district %s\n", $city, $district);

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Amersfoort is in district Utrecht

See Also

MySQL PHP API

424

mysqli_stmt_init, mysqli_stmt_execute, mysqli_stmt_fetch, mysqli_stmt_bind_param,
mysqli_stmt_bind_result mysqli_stmt_close.

8.2.7.19. mysqli_stmt::reset, mysqli_stmt_reset

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::reset

mysqli_stmt_reset

Resets a prepared statement

Description

Object oriented style (method):

bool mysqli_stmt::reset();

Procedural style:

bool mysqli_stmt_reset(mysqli_stmt stmt);

Resets a prepared statement on client and server to state after prepare.

For now this is mainly used to reset data sent with mysqli_stmt_send_long_data.

To prepare a statement with another query use function mysqli_stmt_prepare.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_prepare

8.2.7.20. mysqli_stmt::result_metadata, mysqli_stmt_result_metadata

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::result_metadata

mysqli_stmt_result_metadata

Returns result set metadata from a prepared statement

Description

Object oriented style (method):

mysqli_result mysqli_stmt::result_metadata();

Procedural style:

mysqli_result mysqli_stmt_result_metadata(mysqli_stmt stmt);

If a statement passed to mysqli_prepare is one that produces a result set, mysqli_stmt_result_metadata returns the

MySQL PHP API

425

result object that can be used to process the meta information such as total number of fields and individual field information.

Note

This result set pointer can be passed as an argument to any of the field-based functions that process result set
metadata, such as:

• mysqli_num_fields

• mysqli_fetch_field

• mysqli_fetch_field_direct

• mysqli_fetch_fields

• mysqli_field_count

• mysqli_field_seek

• mysqli_field_tell

• mysqli_free_result

The result set structure should be freed when you are done with it, which you can do by passing it to mysqli_free_result

Note

The result set returned by mysqli_stmt_result_metadata contains only metadata. It does not contain any
row results. The rows are obtained by using the statement handle with mysqli_stmt_fetch.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

Returns a result object or FALSE if an error occured.

Examples

Example 8.148. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

$mysqli->query("DROP TABLE IF EXISTS friends");
$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");

$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$stmt = $mysqli->prepare("SELECT id, name FROM friends");
$stmt->execute();

/* get resultset for metadata */
$result = $stmt->result_metadata();

/* retrieve field information from metadata result set */
$field = $result->fetch_field();

printf("Fieldname: %s\n", $field->name);

/* close resultset */
$result->close();

/* close connection */
$mysqli->close();
?>

MySQL PHP API

426

Example 8.149. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli_query($link, "DROP TABLE IF EXISTS friends");
mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");

mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$stmt = mysqli_prepare($link, "SELECT id, name FROM friends");
mysqli_stmt_execute($stmt);

/* get resultset for metadata */
$result = mysqli_stmt_result_metadata($stmt);

/* retrieve field information from metadata result set */
$field = mysqli_fetch_field($result);

printf("Fieldname: %s\n", $field->name);

/* close resultset */
mysqli_free_result($result);

/* close connection */
mysqli_close($link);
?>

See Also

mysqli_prepare
mysqli_free_result

8.2.7.21. mysqli_stmt::send_long_data, mysqli_stmt_send_long_data

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::send_long_data

mysqli_stmt_send_long_data

Send data in blocks

Description

Object oriented style (method)

bool mysqli_stmt::send_long_data(int param_nr,
string data);

Procedural style:

bool mysqli_stmt_send_long_data(mysqli_stmt stmt,
int param_nr,
string data);

Allows to send parameter data to the server in pieces (or chunks), e.g. if the size of a blob exceeds the size of
max_allowed_packet. This function can be called multiple times to send the parts of a character or binary data value for a
column, which must be one of the TEXT or BLOB datatypes.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

param_nr Indicates which parameter to associate the data with. Parameters are numbered beginning
with 0.

data A string containing data to be sent.

MySQL PHP API

427

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.150. Object oriented style

<?php
$stmt = $mysqli->prepare("INSERT INTO messages (message) VALUES (?)");
$null = NULL;
$stmt->bind_param("b", $null);
$fp = fopen("messages.txt", "r");
while (!feof($fp)) {

$stmt->send_long_data(0, fread($fp, 8192));
}
fclose($fp);
$stmt->execute();
?>

See Also

mysqli_prepare
mysqli_stmt_bind_param

8.2.7.22. mysqli_stmt::sqlstate, mysqli_stmt_sqlstate

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::sqlstate

mysqli_stmt_sqlstate

Returns SQLSTATE error from previous statement operation

Description

Object oriented style (property):

mysqli_stmt {

string sqlstate ;

}

Procedural style:

string mysqli_stmt_sqlstate(mysqli_stmt stmt);

Returns a string containing the SQLSTATE error code for the most recently invoked prepared statement function that can succeed
or fail. The error code consists of five characters. '00000' means no error. The values are specified by ANSI SQL and ODBC.
For a list of possible values, see http://dev.mysql.com/doc/mysql/en/error-handling.html.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five characters. '00000'
means no error.

Notes

MySQL PHP API

428

http://dev.mysql.com/doc/mysql/en/error-handling.html

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000 (general error) is used for un-
mapped errors.

Examples

Example 8.151. Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

/* drop table */
$mysqli->query("DROP TABLE myCountry");

/* execute query */
$stmt->execute();

printf("Error: %s.\n", $stmt->sqlstate);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.152. Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

/* drop table */
mysqli_query($link, "DROP TABLE myCountry");

/* execute query */
mysqli_stmt_execute($stmt);

printf("Error: %s.\n", mysqli_stmt_sqlstate($stmt));

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

MySQL PHP API

429

The above example will output:

Error: 42S02.

See Also

mysqli_stmt_errno
mysqli_stmt_error

8.2.7.23. mysqli_stmt::store_result, mysqli_stmt_store_result

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_stmt::store_result

mysqli_stmt_store_result

Transfers a result set from a prepared statement

Description

Object oriented style (method):

bool mysqli_stmt::store_result();

Procedural style:

bool mysqli_stmt_store_result(mysqli_stmt stmt);

You must call mysqli_stmt_store_result for every query that successfully produces a result set (SELECT, SHOW, DE-
SCRIBE, EXPLAIN), and only if you want to buffer the complete result set by the client, so that the subsequent
mysqli_stmt_fetch call returns buffered data.

Note

It is unnecessary to call mysqli_stmt_store_result for other queries, but if you do, it will not harm or cause
any notable performance in all cases. You can detect whether the query produced a result set by checking if
mysqli_stmt_result_metadata returns NULL.

Parameters

stmt Procedural style only: A statement identifier returned by mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.153. Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

MySQL PHP API

430

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = $mysqli->prepare($query)) {

/* execute query */
$stmt->execute();

/* store result */
$stmt->store_result();

printf("Number of rows: %d.\n", $stmt->num_rows);

/* free result */
$stmt->free_result();

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.154. Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = mysqli_prepare($link, $query)) {

/* execute query */
mysqli_stmt_execute($stmt);

/* store result */
mysqli_stmt_store_result($stmt);

printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));

/* free result */
mysqli_stmt_free_result($stmt);

/* close statement */
mysqli_stmt_close($stmt);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Number of rows: 20.

See Also

mysqli_prepare
mysqli_stmt_result_metadata
mysqli_stmt_fetch

8.2.8. The MySQLi_Result class (MySQLi_Result)
Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

431

Represents the result set obtained from a query against the database.

MySQLi_Result {
MySQLi_Result

Properties

int current_field ;

int field_count ;

array lengths ;

int num_rows ;

Methods

int mysqli_field_tell(mysqli_result result);

bool mysqli_result::data_seek(int offset);

mixed mysqli_result::fetch_all(int resulttype);

mixed mysqli_result::fetch_array(int resulttype);

array mysqli_result::fetch_assoc();

object mysqli_result::fetch_field_direct(int fieldnr);

object mysqli_result::fetch_field();

array mysqli_result::fetch_fields();

object mysqli_result::fetch_object(string class_name,
array params);

mixed mysqli_result::fetch_row();

int mysqli_num_fields(mysqli_result result);

bool mysqli_result::field_seek(int fieldnr);

void mysqli_result::free();

array mysqli_fetch_lengths(mysqli_result result);

int mysqli_num_rows(mysqli_result result);

}

8.2.8.1. mysqli_result->current_field, mysqli_field_tell

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result->current_field

mysqli_field_tell

Get current field offset of a result pointer

Description

Object oriented style (property):

MySQL PHP API

432

mysqli_result {

int current_field ;

}

Procedural style:

int mysqli_field_tell(mysqli_result result);

Returns the position of the field cursor used for the last mysqli_fetch_field call. This value can be used as an argument to
mysqli_field_seek.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns current offset of field cursor.

Examples

Example 8.155. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

/* Get field information for all columns */
while ($finfo = $result->fetch_field()) {

/* get fieldpointer offset */
$currentfield = $result->current_field;

printf("Column %d:\n", $currentfield);
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);

}
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.156. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

MySQL PHP API

433

/* Get field information for all fields */
while ($finfo = mysqli_fetch_field($result)) {

/* get fieldpointer offset */
$currentfield = mysqli_field_tell($result);

printf("Column %d:\n", $currentfield);
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);

}
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Column 1:
Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254

Column 2:
Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_fetch_field
mysqli_field_seek

8.2.8.2. mysqli_result::data_seek, mysqli_data_seek

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::data_seek

mysqli_data_seek

Adjusts the result pointer to an arbitary row in the result

Description

Object oriented style (method):

bool mysqli_result::data_seek(int offset);

Procedural style:

bool mysqli_data_seek(mysqli_result result,
int offset);

The mysqli_data_seek function seeks to an arbitrary result pointer specified by the offset in the result set.

Parameters

MySQL PHP API

434

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

offset The field offset. Must be between zero and the total number of rows minus one
(0..mysqli_num_rows - 1).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function can only be used with buffered results attained from the use of the mysqli_store_result or
mysqli_query functions.

Examples

Example 8.157. Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($result = $mysqli->query($query)) {

/* seek to row no. 400 */
$result->data_seek(399);

/* fetch row */
$row = $result->fetch_row();

printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);

/* free result set*/
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.158. Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";

if ($result = mysqli_query($link, $query)) {

/* seek to row no. 400 */
mysqli_data_seek($result, 399);

/* fetch row */
$row = mysqli_fetch_row($result);

printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);

MySQL PHP API

435

/* free result set*/
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

City: Benin City Countrycode: NGA

See Also

mysqli_store_result
mysqli_fetch_row
mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_object
mysqli_query
mysqli_num_rows

8.2.8.3. mysqli_result::fetch_all, mysqli_fetch_all

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::fetch_all

mysqli_fetch_all

Fetches all result rows as an associative array, a numeric array, or both

Description

Object oriented style (method):

mixed mysqli_result::fetch_all(int resulttype);

Procedural style:

mixed mysqli_fetch_all(mysqli_result result,
int resulttype);

Available only with mysqlnd.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

resulttype This optional parameter is a constant indicating what type of array should be produced from
the current row data. The possible values for this parameter are the constants
MYSQLI_ASSOC , MYSQLI_NUM , or MYSQLI_BOTH . Defaults to MYSQLI_NUM .

Return Values

Returns an array of associative or numeric arrays holding result rows.

See Also

MySQL PHP API

436

mysqli_fetch_array
mysqli_query

8.2.8.4. mysqli_result::fetch_array, mysqli_fetch_array

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::fetch_array

mysqli_fetch_array

Fetch a result row as an associative, a numeric array, or both

Description

Object oriented style (method):

mixed mysqli_result::fetch_array(int resulttype);

Procedural style:

mixed mysqli_fetch_array(mysqli_result result,
int resulttype);

Returns an array that corresponds to the fetched row or NULL if there are no more rows for the resultset represented by the res-
ult parameter.

mysqli_fetch_array is an extended version of the mysqli_fetch_row function. In addition to storing the data in the nu-
meric indices of the result array, the mysqli_fetch_array function can also store the data in associative indices, using the
field names of the result set as keys.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

If two or more columns of the result have the same field names, the last column will take precedence and overwrite the earlier data.
In order to access multiple columns with the same name, the numerically indexed version of the row must be used.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

resulttype This optional parameter is a constant indicating what type of array should be produced from
the current row data. The possible values for this parameter are the constants
MYSQLI_ASSOC , MYSQLI_NUM , or MYSQLI_BOTH . Defaults to MYSQLI_BOTH .

By using the MYSQLI_ASSOC constant this function will behave identically to the
mysqli_fetch_assoc, while MYSQLI_NUM will behave identically to the
mysqli_fetch_row function. The final option MYSQLI_BOTH will create a single array
with the attributes of both.

Return Values

Returns an array of strings that corresponds to the fetched row or NULL if there are no more rows in resultset.

Examples

Example 8.159. Object oriented style

MySQL PHP API

437

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";
$result = $mysqli->query($query);

/* numeric array */
$row = $result->fetch_array(MYSQLI_NUM);
printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */
$row = $result->fetch_array(MYSQLI_ASSOC);
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

/* associative and numeric array */
$row = $result->fetch_array(MYSQLI_BOTH);
printf ("%s (%s)\n", $row[0], $row["CountryCode"]);

/* free result set */
$result->close();

/* close connection */
$mysqli->close();
?>

Example 8.160. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";
$result = mysqli_query($link, $query);

/* numeric array */
$row = mysqli_fetch_array($result, MYSQLI_NUM);
printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */
$row = mysqli_fetch_array($result, MYSQLI_ASSOC);
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

/* associative and numeric array */
$row = mysqli_fetch_array($result, MYSQLI_BOTH);
printf ("%s (%s)\n", $row[0], $row["CountryCode"]);

/* free result set */
mysqli_free_result($result);

/* close connection */
mysqli_close($link);
?>

The above example will output:

Kabul (AFG)
Qandahar (AFG)
Herat (AFG)

See Also

MySQL PHP API

438

mysqli_fetch_assoc
mysqli_fetch_row
mysqli_fetch_object
mysqli_query
mysqli_data_seek

8.2.8.5. mysqli_result::fetch_assoc, mysqli_fetch_assoc

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::fetch_assoc

mysqli_fetch_assoc

Fetch a result row as an associative array

Description

Object oriented style (method):

array mysqli_result::fetch_assoc();

Procedural style:

array mysqli_fetch_assoc(mysqli_result result);

Returns an associative array that corresponds to the fetched row or NULL if there are no more rows.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an associative array of strings representing the fetched row in the result set, where each key in the array represents the
name of one of the result set's columns or NULL if there are no more rows in resultset.

If two or more columns of the result have the same field names, the last column will take precedence. To access the other
column(s) of the same name, you either need to access the result with numeric indices by using mysqli_fetch_row or add alias
names.

Examples

Example 8.161. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

MySQL PHP API

439

/* fetch associative array */
while ($row = $result->fetch_assoc()) {

printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
}

/* free result set */
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.162. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

/* fetch associative array */
while ($row = mysqli_fetch_assoc($result)) {

printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
}

/* free result set */
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

mysqli_fetch_array
mysqli_fetch_row
mysqli_fetch_object
mysqli_query
mysqli_data_seek

8.2.8.6. mysqli_result::fetch_field_direct, mysqli_fetch_field_direct

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::fetch_field_direct

mysqli_fetch_field_direct

Fetch meta-data for a single field

MySQL PHP API

440

Description

Object oriented style (method):

object mysqli_result::fetch_field_direct(int fieldnr);

Procedural style:

object mysqli_fetch_field_direct(mysqli_result result,
int fieldnr);

Returns an object which contains field definition informations from specified resultset.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

fieldnr The field number. This value must be in the range from 0 to number of fields - 1.

Return Values

Returns an object which contains field definition information or FALSE if no field information for specified fieldnr is available.

Table 8.11. Object attributes

Attribute Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented as a string

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the tabl definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for integer fields)

Examples

Example 8.163. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";

if ($result = $mysqli->query($query)) {

/* Get field information for column 'SurfaceArea' */
$finfo = $result->fetch_field_direct(1);

printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n", $finfo->type);

MySQL PHP API

441

$result->close();
}

/* close connection */
$mysqli->close();
?>

Example 8.164. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";

if ($result = mysqli_query($link, $query)) {

/* Get field information for column 'SurfaceArea' */
$finfo = mysqli_fetch_field_direct($result, 1);

printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n", $finfo->type);

mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_num_fields
mysqli_fetch_field
mysqli_fetch_fields

8.2.8.7. mysqli_result::fetch_field, mysqli_fetch_field

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::fetch_field

mysqli_fetch_field

Returns the next field in the result set

Description

MySQL PHP API

442

Object oriented style (method):

object mysqli_result::fetch_field();

Procedural style:

object mysqli_fetch_field(mysqli_result result);

Returns the definition of one column of a result set as an object. Call this function repeatedly to retrieve information about all
columns in the result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an object which contains field definition information or FALSE if no field information is available.

Table 8.12. Object properties

Property Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented as a string

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the table definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for integer fields)

Examples

Example 8.165. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

/* Get field information for all columns */
while ($finfo = $result->fetch_field()) {

printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);

}
$result->close();

}

MySQL PHP API

443

/* close connection */
$mysqli->close();
?>

Example 8.166. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

/* Get field information for all fields */
while ($finfo = mysqli_fetch_field($result)) {

printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);

}
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_num_fields
mysqli_fetch_field_direct
mysqli_fetch_fields
mysqli_field_seek

8.2.8.8. mysqli_result::fetch_fields, mysqli_fetch_fields

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::fetch_fields

mysqli_fetch_fields

Returns an array of objects representing the fields in a result set

MySQL PHP API

444

Description

Object oriented style (method):

array mysqli_result::fetch_fields();

Procedural Style:

array mysqli_fetch_fields(mysqli_result result);

This function serves an identical purpose to the mysqli_fetch_field function with the single difference that, instead of re-
turning one object at a time for each field, the columns are returned as an array of objects.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an array of objects which contains field definition information or FALSE if no field information is available.

Table 8.13. Object properties

Property Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented as a string

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the table definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for integer fields)

Examples

Example 8.167. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

/* Get field information for all columns */
$finfo = $result->fetch_fields();

foreach ($finfo as $val) {
printf("Name: %s\n", $val->name);
printf("Table: %s\n", $val->table);
printf("max. Len: %d\n", $val->max_length);
printf("Flags: %d\n", $val->flags);
printf("Type: %d\n\n", $val->type);

}

MySQL PHP API

445

$result->close();
}

/* close connection */
$mysqli->close();
?>

Example 8.168. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

/* Get field information for all columns */
$finfo = mysqli_fetch_fields($result);

foreach ($finfo as $val) {
printf("Name: %s\n", $val->name);
printf("Table: %s\n", $val->table);
printf("max. Len: %d\n", $val->max_length);
printf("Flags: %d\n", $val->flags);
printf("Type: %d\n\n", $val->type);

}
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_num_fields
mysqli_fetch_field_direct
mysqli_fetch_field

8.2.8.9. mysqli_result::fetch_object, mysqli_fetch_object

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::fetch_object

mysqli_fetch_object

MySQL PHP API

446

Returns the current row of a result set as an object

Description

Object oriented style (method):

object mysqli_result::fetch_object(string class_name,
array params);

Procedural style:

object mysqli_fetch_object(mysqli_result result,
string class_name,
array params);

The mysqli_fetch_object will return the current row result set as an object where the attributes of the object represent the
names of the fields found within the result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

class_name The name of the class to instantiate, set the properties of and return. If not specified, a
stdClass object is returned.

params An optional array of parameters to pass to the constructor for class_name objects.

Return Values

Returns an object with string properties that corresponds to the fetched row or NULL if there are no more rows in resultset.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

ChangeLog

Version Description

5.0.0 Added the ability to return as a different object.

Examples

Example 8.169. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

/* fetch object array */
while ($obj = $result->fetch_object()) {

printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);
}

MySQL PHP API

447

/* free result set */
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.170. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

/* fetch associative array */
while ($obj = mysqli_fetch_object($result)) {

printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);
}

/* free result set */
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_row
mysqli_query
mysqli_data_seek

8.2.8.10. mysqli_result::fetch_row, mysqli_fetch_row

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::fetch_row

mysqli_fetch_row

Get a result row as an enumerated array

Description

MySQL PHP API

448

Object oriented style (method):

mixed mysqli_result::fetch_row();

Procedural style:

mixed mysqli_fetch_row(mysqli_result result);

Fetches one row of data from the result set and returns it as an enumerated array, where each column is stored in an array offset
starting from 0 (zero). Each subsequent call to this function will return the next row within the result set, or NULL if there are no
more rows.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

mysqli_fetch_row returns an array of strings that corresponds to the fetched row or NULL if there are no more rows in result
set.

Note

This function sets NULL fields to the PHP NULL value.

Examples

Example 8.171. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

/* fetch object array */
while ($row = $result->fetch_row()) {

printf ("%s (%s)\n", $row[0], $row[1]);
}

/* free result set */
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.172. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

MySQL PHP API

449

/* fetch associative array */
while ($row = mysqli_fetch_row($result)) {

printf ("%s (%s)\n", $row[0], $row[1]);
}

/* free result set */
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_object
mysqli_query
mysqli_data_seek

8.2.8.11. mysqli_result->field_count, mysqli_num_fields

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result->field_count

mysqli_num_fields

Get the number of fields in a result

Description

Object oriented style (property):

mysqli_result {

int field_count ;

}

Procedural style:

int mysqli_num_fields(mysqli_result result);

Returns the number of fields from specified result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

MySQL PHP API

450

The number of fields from a result set.

Examples

Example 8.173. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if ($result = $mysqli->query("SELECT * FROM City ORDER BY ID LIMIT 1")) {

/* determine number of fields in result set */
$field_cnt = $result->field_count;

printf("Result set has %d fields.\n", $field_cnt);

/* close result set */
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.174. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if ($result = mysqli_query($link, "SELECT * FROM City ORDER BY ID LIMIT 1")) {

/* determine number of fields in result set */
$field_cnt = mysqli_num_fields($result);

printf("Result set has %d fields.\n", $field_cnt);

/* close result set */
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Result set has 5 fields.

See Also

mysqli_fetch_field

8.2.8.12. mysqli_result::field_seek, mysqli_field_seek

Copyright 1997-2008 the PHP Documentation Group.

MySQL PHP API

451

• mysqli_result::field_seek

mysqli_field_seek

Set result pointer to a specified field offset

Description

Object oriented style (method):

bool mysqli_result::field_seek(int fieldnr);

Procedural style:

bool mysqli_field_seek(mysqli_result result,
int fieldnr);

Sets the field cursor to the given offset. The next call to mysqli_fetch_field will retrieve the field definition of the column
associated with that offset.

Note

To seek to the beginning of a row, pass an offset value of zero.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

fieldnr The field number. This value must be in the range from 0 to number of fields - 1.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.175. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

/* Get field information for 2nd column */
$result->field_seek(1);
$finfo = $result->fetch_field();

printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);

$result->close();
}

/* close connection */
$mysqli->close();
?>

MySQL PHP API

452

Example 8.176. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

/* Get field information for 2nd column */
mysqli_field_seek($result, 1);
$finfo = mysqli_fetch_field($result);

printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);

mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_fetch_field

8.2.8.13. mysqli_result::free, mysqli_free_result

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result::free

mysqli_free_result

Frees the memory associated with a result

Description

Object oriented style (all methods are equivalent):

void mysqli_result::free();

void mysqli_result::close();

void mysqli_result::free_result();

Procedural style:

MySQL PHP API

453

void mysqli_free_result(mysqli_result result);

Frees the memory associated with the result.

Note

You should always free your result with mysqli_free_result, when your result object is not needed anymore.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

No value is returned.

See Also

mysqli_query
mysqli_stmt_store_result
mysqli_store_result
mysqli_use_result

8.2.8.14. mysqli_result->lengths, mysqli_fetch_lengths

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result->lengths

mysqli_fetch_lengths

Returns the lengths of the columns of the current row in the result set

Description

Object oriented style (property):

mysqli_result {

array lengths ;

}

Procedural style:

array mysqli_fetch_lengths(mysqli_result result);

The mysqli_fetch_lengths function returns an array containing the lengths of every column of the current row within the
result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

An array of integers representing the size of each column (not including any terminating null characters). FALSE if an error oc-
curred.

mysqli_fetch_lengths is valid only for the current row of the result set. It returns FALSE if you call it before calling

MySQL PHP API

454

mysqli_fetch_row/array/object or after retrieving all rows in the result.

Examples

Example 8.177. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT * from Country ORDER BY Code LIMIT 1";

if ($result = $mysqli->query($query)) {

$row = $result->fetch_row();

/* display column lengths */
foreach ($result->lengths as $i => $val) {

printf("Field %2d has Length %2d\n", $i+1, $val);
}
$result->close();

}

/* close connection */
$mysqli->close();
?>

Example 8.178. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$query = "SELECT * from Country ORDER BY Code LIMIT 1";

if ($result = mysqli_query($link, $query)) {

$row = mysqli_fetch_row($result);

/* display column lengths */
foreach (mysqli_fetch_lengths($result) as $i => $val) {

printf("Field %2d has Length %2d\n", $i+1, $val);
}
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Field 1 has Length 3
Field 2 has Length 5
Field 3 has Length 13
Field 4 has Length 9
Field 5 has Length 6
Field 6 has Length 1
Field 7 has Length 6
Field 8 has Length 4
Field 9 has Length 6
Field 10 has Length 6
Field 11 has Length 5
Field 12 has Length 44
Field 13 has Length 7
Field 14 has Length 3
Field 15 has Length 2

MySQL PHP API

455

8.2.8.15. mysqli_result->num_rows, mysqli_num_rows

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_result->num_rows

mysqli_num_rows

Gets the number of rows in a result

Description

Object oriented style (property):

mysqli_result {

int num_rows ;

}

Procedural style:

int mysqli_num_rows(mysqli_result result);

Returns the number of rows in the result set.

The use of mysqli_num_rows depends on whether you use buffered or unbuffered result sets. In case you use unbuffered result-
sets mysqli_num_rows will not correct the correct number of rows until all the rows in the result have been retrieved.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns number of rows in the result set.

Note

If the number of rows is greater than maximal int value, the number will be returned as a string.

Examples

Example 8.179. Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if ($result = $mysqli->query("SELECT Code, Name FROM Country ORDER BY Name")) {

/* determine number of rows result set */
$row_cnt = $result->num_rows;

printf("Result set has %d rows.\n", $row_cnt);

/* close result set */
$result->close();

}

MySQL PHP API

456

/* close connection */
$mysqli->close();
?>

Example 8.180. Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

if ($result = mysqli_query($link, "SELECT Code, Name FROM Country ORDER BY Name")) {

/* determine number of rows result set */
$row_cnt = mysqli_num_rows($result);

printf("Result set has %d rows.\n", $row_cnt);

/* close result set */
mysqli_free_result($result);

}

/* close connection */
mysqli_close($link);
?>

The above example will output:

Result set has 239 rows.

See Also

mysqli_affected_rows
mysqli_store_result
mysqli_use_result
mysqli_query

8.2.9. The MySQLi_Driver class (MySQLi_Driver)
Copyright 1997-2008 the PHP Documentation Group.

MySQLi Driver.

MySQLi_Driver {
MySQLi_Driver

Properties

public readonly string client_info ;

public readonly string client_version ;

public readonly string driver_version ;

public readonly string embedded ;

public bool reconnect ;

MySQL PHP API

457

public int report-mode ;

Methods

void mysqli_driver::embedded_server_end();

bool mysqli_driver::embedded_server_start(bool start,
array arguments,
array groups);

}

client_info The Client API header version

client_version The Client version

driver_version The MySQLi Driver version

embedded Wether MySQLi Embedded support is enabled

reconnect Allow or prevent reconnect (see the mysqli.reconnect INI directive)

report_mode Set to MYSQLI_REPORT_STRICT to throw Exceptions for errors

8.2.9.1. mysqli_driver::embedded_server_end, mysqli_embedded_server_end

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_driver::embedded_server_end

mysqli_embedded_server_end

Stop embedded server

Description

void mysqli_driver::embedded_server_end();

void mysqli_embedded_server_end();

Warning

This function is currently not documented; only its argument list is available.

8.2.9.2. mysqli_driver::embedded_server_start, mysqli_embedded_server_start

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_driver::embedded_server_start

mysqli_embedded_server_start

Initialize and start embedded server

Description

bool mysqli_driver::embedded_server_start(bool start,
array arguments,
array groups);

bool mysqli_embedded_server_start(bool start,
array arguments,
array groups);

Warning

MySQL PHP API

458

This function is currently not documented; only its argument list is available.

8.2.10. Aliases and deprecated Mysqli Functions
Copyright 1997-2008 the PHP Documentation Group.

8.2.10.1. mysqli_bind_param

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_bind_param

Alias for mysqli_stmt_bind_param

Description

This function is an alias of mysqli_stmt_bind_param.

Notes

Note

mysqli_bind_param is deprecated and will be removed.

See Also

mysqli_stmt_bind_param

8.2.10.2. mysqli_bind_result

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_bind_result

Alias for mysqli_stmt_bind_result

Description

This function is an alias of mysqli_stmt_bind_result.

Notes

Note

mysqli_bind_result is deprecated and will be removed.

See Also

mysqli_stmt_bind_result

8.2.10.3. mysqli_client_encoding

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_client_encoding

Alias of mysqli_character_set_name

Description

This function is an alias of mysqli_character_set_name.

See Also

MySQL PHP API

459

mysqli_real_escape_string

8.2.10.4. mysqli_disable_reads_from_master, mysqli-
>disable_reads_from_master

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_disable_reads_from_master

mysqli->disable_reads_from_master

Disable reads from master

Description

Procedural style:

bool mysqli_disable_reads_from_master(mysqli link);

Object oriented style (method):

mysqli {

void disable_reads_from_master();

}

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.5. mysqli_disable_rpl_parse

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_disable_rpl_parse

Disable RPL parse

Description

bool mysqli_disable_rpl_parse(mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.6. mysqli_enable_reads_from_master

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_enable_reads_from_master

Enable reads from master

MySQL PHP API

460

Description

bool mysqli_enable_reads_from_master(mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.7. mysqli_enable_rpl_parse

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_enable_rpl_parse

Enable RPL parse

Description

bool mysqli_enable_rpl_parse(mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.8. mysqli_escape_string

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_escape_string

Alias of mysqli_real_escape_string

Description

This function is an alias of mysqli_real_escape_string.

See Also

mysqli_real_escape_string

8.2.10.9. mysqli_execute

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_execute

Alias for mysqli_stmt_execute

Description

This function is an alias of mysqli_stmt_execute.

Notes

Note

MySQL PHP API

461

mysqli_execute is deprecated and will be removed.

See Also

mysqli_stmt_execute

8.2.10.10. mysqli_fetch

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_fetch

Alias for mysqli_stmt_fetch

Description

This function is an alias of mysqli_stmt_fetch.

Notes

Note

mysqli_fetch is deprecated and will be removed.

See Also

mysqli_stmt_fetch

8.2.10.11. mysqli_get_metadata

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_get_metadata

Alias for mysqli_stmt_result_metadata

Description

This function is an alias of mysqli_stmt_result_metadata.

Notes

Note

mysqli_get_metadata is deprecated and will be removed.

See Also

mysqli_stmt_result_metadata

8.2.10.12. mysqli_master_query

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_master_query

Enforce execution of a query on the master in a master/slave setup

Description

bool mysqli_master_query(mysqli link,
string query);

MySQL PHP API

462

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.13. mysqli_param_count

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_param_count

Alias for mysqli_stmt_param_count

Description

This function is an alias of mysqli_stmt_param_count.

Notes

Note

mysqli_param_count is deprecated and will be removed.

See Also

mysqli_stmt_param_count

8.2.10.14. mysqli_report

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_report

Enables or disables internal report functions

Description

bool mysqli_report(int flags);

mysqli_report is a powerful function to improve your queries and code during development and testing phase. Depending on
the flags it reports errors from mysqli function calls or queries which don't use an index (or use a bad index).

Parameters

flags

Table 8.14. Supported flags

Name Description

MYSQLI_REPORT_OFF Turns reporting off

MYSQLI_REPORT_ERROR Report errors from mysqli function calls

MYSQLI_REPORT_STRICT Report warnings from mysqli function calls

MYSQLI_REPORT_INDEX Report if no index or bad index was used in a query

MYSQLI_REPORT_ALL Set all options (report all)

Return Values

MySQL PHP API

463

Returns TRUE on success or FALSE on failure.

Examples

Example 8.181. Object oriented style

<?php
/* activate reporting */
mysqli_report(MYSQLI_REPORT_ALL);

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

/* this query should report an error */
$result = $mysqli->query("SELECT Name FROM Nonexistingtable WHERE population > 50000");

/* this query should report a warning */
$result = $mysqli->query("SELECT Name FROM City WHERE population > 50000");
$result->close();

$mysqli->close();
?>

See Also

mysqli_debug
mysqli_dump_debug_info

8.2.10.15. mysqli_rpl_parse_enabled

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_rpl_parse_enabled

Check if RPL parse is enabled

Description

int mysqli_rpl_parse_enabled(mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.16. mysqli_rpl_probe

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_rpl_probe

RPL probe

Description

bool mysqli_rpl_probe(mysqli link);

MySQL PHP API

464

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.17. mysqli_rpl_query_type, mysqli->rpl_query_type

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_rpl_query_type

mysqli->rpl_query_type

Returns RPL query type

Description

Procedural style:

int mysqli_rpl_query_type(mysqli link,
string query);

Object oriented style (method)

mysqli {

int rpl_query_type(string query);

}

Returns MYSQLI_RPL_MASTER , MYSQLI_RPL_SLAVE or MYSQLI_RPL_ADMIN depending on a query type. INSERT, UP-
DATE and similar are master queries, SELECT is slave, and FLUSH, REPAIR and similar are admin.

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.18. mysqli_send_long_data

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_send_long_data

Alias for mysqli_stmt_send_long_data

Description

This function is an alias of mysqli_stmt_send_long_data.

Notes

Note

mysqli_send_long_data is deprecated and will be removed.

See Also

mysqli_stmt_send_long_data

MySQL PHP API

465

8.2.10.19. mysqli_send_query, mysqli->send_query

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_send_query

mysqli->send_query

Send the query and return

Description

Procedural style:

bool mysqli_send_query(mysqli link,
string query);

Object oriented style (method)

mysqli {

bool send_query(string query);

}

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

8.2.10.20. mysqli_set_opt

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_set_opt

Alias of mysqli_options

Description

This function is an alias of mysqli_options.

8.2.10.21. mysqli_slave_query

Copyright 1997-2008 the PHP Documentation Group.

• mysqli_slave_query

Force execution of a query on a slave in a master/slave setup

Description

bool mysqli_slave_query(mysqli link,
string query);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

MySQL PHP API

466

8.3. MySQL Functions (PDO_MYSQL)
Copyright 1997-2008 the PHP Documentation Group.

PDO_MYSQL is a driver that implements the PHP Data Objects (PDO) interface to enable access from PHP to MySQL 3.x, 4.x
and 5.x databases.

PDO_MYSQL will take advantage of native prepared statement support present in MySQL 4.1 and higher. If you're using an older
version of the mysql client libraries, PDO will emulate them for you.

Warning

Beware: Some MySQL table types (storage engines) do not support transactions. When writing transactional database
code using a table type that does not support transactions, MySQL will pretend that a transaction was initiated suc-
cessfully. In addition, any DDL queries issued will implicitly commit any pending transactions.

The constants below are defined by this driver, and will only be available when the extension has been either compiled into PHP or
dynamically loaded at runtime. In addition, these driver-specific constants should only be used if you are using this driver. Using
mysql-specific attributes with the postgres driver may result in unexpected behaviour. PDO::getAttribute may be used to ob-
tain the PDO_ATTR_DRIVER_NAME attribute to check the driver, if your code can run against multiple drivers.

PDO::MYSQL_ATTR_USE_BUFF
ERED_QUERY (integer)

If this attribute is set to TRUE on a PDOStatement, the MySQL driver will use the buf-
fered versions of the MySQL API. If you're writing portable code, you should use
PDOStatement::fetchAll instead.

Example 8.182. Forcing queries to be buffered in mysql

<?php
if ($db->getAttribute(PDO::ATTR_DRIVER_NAME) == 'mysql') {

$stmt = $db->prepare('select * from foo',
array(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY => true));

} else {
die("my application only works with mysql; I should use \$stmt->fetchAll() instead");

}
?>

PDO::MYSQL_ATTR_LOCAL_IN
FILE (integer)

Enable LOAD LOCAL INFILE.

PDO::MYSQL_ATTR_INIT_COM
MAND (integer)

Command to execute when connecting to the MySQL server. Will automatically be re-
executed when reconnecting.

PDO::MYSQL_ATTR_READ_DEF
AULT_FILE (integer)

Read options from the named option file instead of from my.cnf.

PDO::MYSQL_ATTR_READ_DEF
AULT_GROUP (integer)

Read options from the named group from my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE .

PDO::MYSQL_ATTR_MAX_BUFF
ER_SIZE (integer)

Maximum buffer size. Defaults to 1 MiB.

PDO::MYSQL_ATTR_DIRECT_Q
UERY (integer)

Perform direct queries, don't use prepared statements.

8.3.1. PDO_MYSQL DSN

Copyright 1997-2008 the PHP Documentation Group.

• PDO_MYSQL DSN

Connecting to MySQL databases

Description

The PDO_MYSQL Data Source Name (DSN) is composed of the following elements:

MySQL PHP API

467

http://www.php.net/manual/en/intro.pdo.php

DSN prefix The DSN prefix is mysql:.

host The hostname on which the database server resides.

port The port number where the database server is listening.

dbname The name of the database.

unix_socket The MySQL Unix socket (shouldn't be used with host or port).

Examples

Example 8.183. PDO_MYSQL DSN examples

The following example shows a PDO_MYSQL DSN for connecting to MySQL databases:

mysql:host=localhost;dbname=testdb

More complete examples:

mysql:host=localhost;port=3307;dbname=testdb
mysql:unix_socket=/tmp/mysql.sock;dbname=testdb

8.4. Connector/PHP
The MySQL Connector/PHP is a version of the mysql and mysqli extensions for PHP optimized for the Windows operating
system. Later versions of the main PHP mysql/mysqli drivers are compatible with Windows and a separate, Windows specific
driver is no longer required.

For PHP for all platforms, including Windows, you should use the mysql or mysqli extensions shipped with the PHP sources.
See Chapter 8, MySQL PHP API.

8.5. Common Problems with MySQL and PHP

• Error: Maximum Execution Time Exceeded: This is a PHP limit; go into the php.ini file and set the maximum
execution time up from 30 seconds to something higher, as needed. It is also not a bad idea to double the RAM allowed per
script to 16MB instead of 8MB.

• Fatal error: Call to unsupported or undefined function mysql_connect() in ...: This
means that your PHP version isn't compiled with MySQL support. You can either compile a dynamic MySQL module and load
it into PHP or recompile PHP with built-in MySQL support. This process is described in detail in the PHP manual.

• Error: Undefined reference to 'uncompress': This means that the client library is compiled with support for a
compressed client/server protocol. The fix is to add -lz last when linking with -lmysqlclient.

• Error: Client does not support authentication protocol: This is most often encountered when trying
to use the older mysql extension with MySQL 4.1.1 and later. Possible solutions are: downgrade to MySQL 4.0; switch to
PHP 5 and the newer mysqli extension; or configure the MySQL server with --old-passwords. (See Client does
not support authentication protocol, for more information.)

Those with PHP4 legacy code can make use of a compatibility layer for the old and new MySQL libraries, such as this one: ht-
tp://www.coggeshall.org/oss/mysql2i.

8.6. Enabling Both mysql and mysqli in PHP
If you're experiencing problems with enabling both the mysql and the mysqli extension when building PHP on Linux yourself,
you should try the following procedure.

MySQL PHP API

468

http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.0/en/common-errors.html#old-client
http://dev.mysql.com/doc/refman/5.0/en/common-errors.html#old-client
http://www.coggeshall.org/oss/mysql2i
http://www.coggeshall.org/oss/mysql2i

1. Configure PHP like this:

./configure --with-mysqli=/usr/bin/mysql_config --with-mysql=/usr

2. Edit the Makefile and search for a line that starts with EXTRA_LIBS. It might look like this (all on one line):

EXTRA_LIBS = -lcrypt -lcrypt -lmysqlclient -lz -lresolv -lm -ldl -lnsl
-lxml2 -lz -lm -lxml2 -lz -lm -lmysqlclient -lz -lcrypt -lnsl -lm
-lxml2 -lz -lm -lcrypt -lxml2 -lz -lm -lcrypt

Remove all duplicates, so that the line looks like this (all on one line):

EXTRA_LIBS = -lcrypt -lcrypt -lmysqlclient -lz -lresolv -lm -ldl -lnsl
-lxml2

3. Build and install PHP:

make
make install

MySQL Enterprise
MySQL Enterprise subscribers will find more information about the mysqli extension in the Knowledge
Base articles found at mysqli. Access to the MySQL Knowledge Base collection of articles is one of the ad-
vantages of subscribing to MySQL Enterprise. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

MySQL PHP API

469

https://kb.mysql.com/search.php?cat=search&cat=search&keywords=mysqli&go=Go
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html

Appendix A. MySQL Connector/ODBC (MyODBC) Change
History

A.1. Changes in MySQL Connector/ODBC 5.1.6 (Not yet released)
Bugs fixed:

• Connector/ODBC failed to build with MySQL 5.1.30 due to incorrect use of the data type bool. (Bug#42120)

• Calling SQLDescribeCol() with a NULL buffer and nonzero buffer length caused a crash. (Bug#41942)

• MySQL Connector/ODBC updated some fields with random values, rather than with NULL. (Bug#41256)

• Calling SQLDriverConnect() with a NULL pointer for the output buffer caused a crash if SQL_DRIVER_NOPROMPT was
also specified:

SQLDriverConnect(dbc, NULL, "DSN=myodbc5", SQL_NTS, NULL, 0, NULL, SQL_DRIVER_NOPROMPT)

(Bug#40316)

• Setting the ADO Recordset decimal field value to 44.56 resulted in an incorrect value of 445600.0000 being stored when
the record set was updated with the Update method. (Bug#39961)

• The SQLTablesW API gave incorrect results. For example, table name and table type were returned as NULL rather than as
the correct values. (Bug#39957)

• MyODBC would crash when a character set was being used on the server that was not supported in the client, for example
cp1251:

[MySQL][ODBC 5.1 Driver][mysqld-5.0.27-community-nt]Restricted data type attribute violation

The fix causes MyODBC to return an error message instead of crashing. (Bug#39831)

• When the SQLTables method was called with NULL passed as the tablename parameter, only one row in the
resultset, with table name of NULL was returned, instead of all tables for the given database. (Bug#39561)

• The SQLGetInfo() function returned 0 for SQL_CATALOG_USAGE information. (Bug#39560)

• MyODBC Driver 5.1.5 was not able to connect if the connection string parameters contained spaces or tab symbols. For ex-
ample, if the SERVER parameter was specified as “SERVER= localhost” instead of “SERVER=localhost” the following error
message will be displayed:

[MySQL][ODBC 5.1 Driver] Unknown MySQL server host ' localhost' (11001).

(Bug#39085)

• The pointer passed to the SQLDriverConnect method to retrieve the output connection string length was one greater than it
should have been due to the inclusion of the NULL terminator. (Bug#38949)

• Data-at-execution parameters were not supported during positioned update. This meant updating a long text field with a cursor
update would erroneously set the value to null. This would lead to the error Column 'column_name' cannot be
null while updating the database, even when column_name had been assigned a valid non-null string. (Bug#37649)

• The SQLDriverConnect method truncated the OutputConnectionString parameter to 52 characters. (Bug#37278)

• The connection string option Enable Auto-reconnect did not work. When the connection failed, it could not be restored,
and the errors generated were the same as if the option had not been selected. (Bug#37179)

• Insertion of data into a LONGTEXT table field did not work. If such an attempt was made the corresponding field would be
found to be empty on examination, or contain random characters. (Bug#36071)

• No result record was returned for SQLGetTypeInfo for the TIMESTAMP data type. An application would receive the result
return code 100 (SQL_NO_DATA_FOUND). (Bug#30626)

• It was not possible to use Connector/ODBC to connect to a server using SSL. The following error was generated:

Runtime error '-2147467259 (80004005)':

470

http://bugs.mysql.com/42120
http://bugs.mysql.com/41942
http://bugs.mysql.com/41256
http://bugs.mysql.com/40316
http://bugs.mysql.com/39961
http://bugs.mysql.com/39957
http://bugs.mysql.com/39831
http://bugs.mysql.com/39561
http://bugs.mysql.com/39560
http://bugs.mysql.com/39085
http://bugs.mysql.com/38949
http://bugs.mysql.com/37649
http://bugs.mysql.com/37278
http://bugs.mysql.com/37179
http://bugs.mysql.com/36071
http://bugs.mysql.com/30626

[MySQL][ODBC 3.51 Driver]SSL connection error.

(Bug#29955)

• When the recordSet.Update function was called to update an adLongVarChar field, the field was updated but the re-
cordset was immediately lost. This happened with driver cursors, whether the cursor was opened in optimistic or pessimistic
mode.

When the next update was called the test code would exit with the following error:

-2147467259 : Query-based update failed because the row to update could not be found.

(Bug#26950)

A.2. Changes in MySQL Connector/ODBC 5.1.5 (18 August 2008)
Bugs fixed:

• ODBC TIMESTAMP string format is not handled properly by the MyODBC driver. When passing a TIMESTAMP or DATE to
MyODBC, in the ODBC format: {d <date>} or {ts <timestamp>}, the string that represents this is copied once into the SQL
statement, and then added again, as an escaped string. (Bug#37342)

• The connector failed to prompt for additional information required to create a DSN-less connection from an application such as
Microsoft Excel. (Bug#37254)

• SQLDriverConnect does not return SQL_NO_DATA on cancel. The ODBC documentation specifies that this method
should return SQL_NO_DATA when the user cancels the dialog to connect. The connector, however, returns SQL_ERROR.
(Bug#36293)

• Assigning a string longer than 67 characters to the TableType parameter resulted in a buffer overrun when the SQLT-
ables() function was called. (Bug#36275)

• The ODBC connector randomly uses logon information stored in odbc-profile, or prompts the user for connection inform-
ation and ignores any settings stored in odbc-profile. (Bug#36203)

• After having successfully established a connection, a crash occurs when calling SQLProcedures() followed by SQL-
FreeStmt(), using the ODBC C API. (Bug#36069)

A.3. Changes in MySQL Connector/ODBC 5.1.4 (15 April 2008)
Bugs fixed:

• Wrong result obtained when using sum() on a decimal(8,2) field type. (Bug#35920)

• The driver installer could not create a new DSN if many other drivers were already installed. (Bug#35776)

• The SQLColAttribute() function returned SQL_TRUE when querying the SQL_DESC_FIXED_PREC_SCALE
(SQL_COLUMN_MONEY) attribute of a DECIMAL column. Previously, the correct value of SQL_FALSE was returned; this is
now again the case. (Bug#35581)

• On Linux, SQLGetDiagRec() returned SQL_SUCCESS in cases when it should have returned SQL_NO_DATA.
(Bug#33910)

• The driver crashes ODBC Administrator on attempting to add a new DSN. (Bug#32057)

A.4. Changes in MySQL Connector/ODBC 5.1.3 (26 March 2008)
Platform specific notes:

• Important Change: You must uninstall previous 5.1.x editions of Connector/ODBC before installing the new version.

MySQL Connector/ODBC (MyODBC) Change History

471

http://bugs.mysql.com/29955
http://bugs.mysql.com/26950
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/37342
http://bugs.mysql.com/37254
http://bugs.mysql.com/36293
http://bugs.mysql.com/36275
http://bugs.mysql.com/36203
http://bugs.mysql.com/36069
http://bugs.mysql.com/35920
http://bugs.mysql.com/35776
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/35581
http://bugs.mysql.com/33910
http://bugs.mysql.com/32057

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• The installer for 64-bit Windows installs both the 32-bit and 64-bit driver. Please note that Microsoft does not yet supply a
64-bit bridge from ADO to ODBC.

Bugs fixed:

• Important Change: In previous versions, the SSL certificate would automatically be verified when used as part of the Con-
nector/ODBC connection. The default mode is now to ignore the verificate of certificates. To enforce verification of the SSL
certificate during connection, use the SSLVERIFY DSN parameter, setting the value to 1. (Bug#29955, Bug#34648)

• Inserting characters to a UTF8 table using surrogate pairs would fail and insert invalid data. (Bug#34672)

• Installation of Connector/ODBC would fail because it was unable to uninstall a previous installed version. The file being re-
quested would match an older release version than any installed version of the connector. (Bug#34522)

• Using SqlGetData in combination with SQL_C_WCHAR would return overlapping data. (Bug#34429)

• Descriptor records were not cleared correctly when calling SQLFreeStmt(SQL_UNBIND). (Bug#34271)

• The dropdown selection for databases on a server when creating a DSN was too small. The list size now automatically adjusts
up to a maximum size of 20 potential databases. (Bug#33918)

• Microsoft Access would be unable to use DBEngine.RegisterDatabase to create a DSN using the Connector/ODBC
driver. (Bug#33825)

• Connector/ODBC erroneously reported that it supported the CAST() and CONVERT() ODBC functions for parsing values in
SQL statements, which could lead to bad SQL generation during a query. (Bug#33808)

• Using a linked table in Access 2003 where the table has a BIGINT column as the first column in the table, and is configured as
the primary key, shows #DELETED for all rows of the table. (Bug#24535)

• Updating a RecordSet when the query involves a BLOB field would fail. (Bug#19065)

A.5. Changes in MySQL Connector/ODBC 5.1.2 (13 February 2008)
MySQL Connector/ODBC 5.1.2-beta, a new version of the ODBC driver for the MySQL database management system, has been
released. This release is the second beta (feature-complete) release of the new 5.1 series and is suitable for use with any MySQL
server version since MySQL 4.1, including MySQL 5.0, 5.1, and 6.0. (It will not work with 4.0 or earlier releases.)

Keep in mind that this is a beta release, and as with any other pre-production release, caution should be taken when installing on
production level systems or systems with critical data.

Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• The installer for 64-bit Windows installs both the 32-bit and 64-bit driver. Please note that Microsoft does not yet supply a
64-bit bridge from ADO to ODBC.

• Due to differences with the installation process used on Windows and potential registry corruption, it is recommended that un-
install any existing versions of Connector/ODBC 5.1.x before upgrading.

See also Bug#34571.

Functionality added or changed:

• Explicit descriptors are implemented. (Bug#32064)

MySQL Connector/ODBC (MyODBC) Change History

472

http://bugs.mysql.com/29955
http://bugs.mysql.com/34648
http://bugs.mysql.com/34672
http://bugs.mysql.com/34522
http://bugs.mysql.com/34429
http://bugs.mysql.com/34271
http://bugs.mysql.com/33918
http://bugs.mysql.com/33825
http://bugs.mysql.com/33808
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/24535
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/19065
http://bugs.mysql.com/34571
http://bugs.mysql.com/32064

• A full implementation of SQLForeignKeys based on the information available from INFORMATION_SCHEMA in 5.0 and
later versions of the server has been implemented.

• Changed SQL_ATTR_PARAMSET_SIZE to return an error until support for it is implemented.

• Disabled MYSQL_OPT_SSL_VERIFY_SERVER_CERT when using an SSL connection.

• SQLForeignKeys uses INFORMATION_SCHEMA when it is available on the server, which allows more complete informa-
tion to be returned.

Bugs fixed:

• The SSLCIPHER option would be incorrectly recorded within the SSL configuration on Windows. (Bug#33897)

• Within the GUI interface, when connecting to a MySQL server on a non-standard port, the connection test within the GUI
would fail. The issue was related to incorrect parsing of numeric values within the DSN when the option was not configured as
the last parameter within the DSN. (Bug#33822)

• Specifying a non-existent database name within the GUI dialog would result in an empty list, not an error. (Bug#33615)

• When deleting rows from a static cursor, the cursor position would be incorrectly reported. (Bug#33388)

• SQLGetInfo() reported characters for SQL_SPECIAL_CHARACTERS that were not encoded correctly. (Bug#33130)

• Retrieving data from a BLOB column would fail within SQLGetDatawhen the target data type was SQL_C_WCHAR due to in-
correct handling of the character buffer. (Bug#32684)

• Renaming an existing DSN entry would create a new entry with the new name without deleting the old entry. (Bug#31165)

• Reading a TEXT column that had been used to store UTF8 data would result in the wrong information being returned during a
query. (Bug#28617)

• SQLForeignKeys would return an empty string for the schema columns instead of NULL. (Bug#19923)

• When accessing column data, FLAG_COLUMN_SIZE_S32 did not limit the octet length or display size reported for fields,
causing problems with Microsoft Visual FoxPro.

The list of ODBC functions that could have caused failures in Microsoft software when retrieving the length of LONGBLOB or
LONGTEXT columns includes:

• SQLColumns

• SQLColAttribute

• SQLColAttributes

• SQLDescribeCol

• SQLSpecialColumns (theoretically can have the same problem)
(Bug#12805, Bug#30890)

• Dynamic cursors on statements with parameters were not supported. (Bug#11846)

• Evaluating a simple numeric expression when using the OLEDB for ODBC provider and ADO would return an error, instead of
the result. (Bug#10128)

• Adding or updating a row using SQLSetPos() on a result set with aliased columns would fail. (Bug#6157)

A.6. Changes in MySQL Connector/ODBC 5.1.1 (13 December 2007)
MySQL Connector/ODBC 5.1.1-beta, a new version of the ODBC driver for the MySQL database management system, has been
released. This release is the first beta (feature-complete) release of the new 5.1 series and is suitable for use with any MySQL serv-
er version since MySQL 4.1, including MySQL 5.0, 5.1, and 6.0. (It will not work with 4.0 or earlier releases.)

Keep in mind that this is a beta release, and as with any other pre-production release, caution should be taken when installing on
production level systems or systems with critical data.

Includes changes from Connector/ODBC 3.51.21 and 3.51.22.

MySQL Connector/ODBC (MyODBC) Change History

473

http://bugs.mysql.com/33897
http://bugs.mysql.com/33822
http://bugs.mysql.com/33615
http://bugs.mysql.com/33388
http://bugs.mysql.com/33130
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/32684
http://bugs.mysql.com/31165
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/28617
http://bugs.mysql.com/19923
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/12805
http://bugs.mysql.com/30890
http://bugs.mysql.com/11846
http://bugs.mysql.com/10128
http://bugs.mysql.com/6157

Built using MySQL 5.0.52.

Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• The installer for 64-bit Windows installs both the 32-bit and 64-bit driver. Please note that Microsoft does not yet supply a
64-bit bridge from ADO to ODBC.

• Due to differences with the installation process used on Windows and potential registry corruption, it is recommended that un-
install any existing versions of Connector/ODBC 5.1.x before upgrading.

See also Bug#34571.

Functionality added or changed:

• Incompatible Change: Replaced myodbc3i (now myodbc-installer) with Connector/ODBC 5.0 version.

• Incompatible Change: Removed monitor (myodbc3m) and dsn-editor (myodbc3c).

• Incompatible Change: Disallow SET NAMES in initial statement and in executed statements.

• A wrapper for the SQLGetPrivateProfileStringW() function, which is required for Unicode support, has been cre-
ated. This function is missing from the unixODBC driver manager. (Bug#32685)

• Added MSI installer for Windows 64-bit. (Bug#31510)

• Implemented support for SQLCancel(). (Bug#15601)

• Added support for SQL_NUMERIC_STRUCT. (Bug#3028, Bug#24920)

• Removed non-threadsafe configuration of the driver. The driver is now always built against the threadsafe version of libmysql.

• Implemented native Windows setup library

• Replaced the internal library which handles creation and loading of DSN information. The new library, which was originally a
part of Connector/ODBC 5.0, supports Unicode option values.

• The Windows installer now places files in a subdirectory of the Program Files directory instead of the Windows system
directory.

Bugs fixed:

• The SET NAMES statement has been disabled because it causes problems in the ODBC driver when determining the current
client character set. (Bug#32596)

• SQLDescribeColW returned UTF-8 column as SQL_VARCHAR instead of SQL_WVARCHAR. (Bug#32161)

• ADO was unable to open record set using dynamic cursor. (Bug#32014)

• ADO applications would not open a RecordSet that contained a DECIMAL field. (Bug#31720)

• Memory usage would increase considerably. (Bug#31115)

• SQL statements are limited to 64KB. (Bug#30983, Bug#30984)

• SQLSetPos with SQL_DELETE advances dynamic cursor incorrectly. (Bug#29765)

• Using an ODBC prepared statement with bound columns would produce an empty result set when called immediately after in-
serting a row into a table. (Bug#29239)

• ADO Not possible to update a client side cursor. (Bug#27961)

• Recordset Update() fails when using adUseClient cursor. (Bug#26985)

MySQL Connector/ODBC (MyODBC) Change History

474

http://bugs.mysql.com/34571
http://bugs.mysql.com/32685
http://bugs.mysql.com/31510
http://bugs.mysql.com/15601
http://bugs.mysql.com/3028
http://bugs.mysql.com/24920
http://bugs.mysql.com/32596
http://bugs.mysql.com/32161
http://bugs.mysql.com/32014
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/31720
http://bugs.mysql.com/31115
http://bugs.mysql.com/30983
http://bugs.mysql.com/30984
http://bugs.mysql.com/29765
http://bugs.mysql.com/29239
http://bugs.mysql.com/27961
http://bugs.mysql.com/26985

• Connector/ODBC would fail to connect to the server if the password contained certain characters, including the semicolon and
other punctuation marks. (Bug#16178)

• Fixed SQL_ATTR_PARAM_BIND_OFFSET, and fixed row offsets to work with updatable cursors.

• SQLSetConnectAttr() did not clear previous errors, possibly confusing SQLError().

• SQLError() incorrectly cleared the error information, making it unavailable from subsequent calls to SQLGetDiagRec().

• NULL pointers passed to SQLGetInfo() could result in a crash.

• SQL_ODBC_SQL_CONFORMANCE was not handled by SQLGetInfo().

• SQLCopyDesc() did not correctly copy all records.

• Diagnostics were not correctly cleared on connection and environment handles.

A.7. Changes in MySQL Connector/ODBC 5.1.0 (10 September 2007)
This release is the first of the new 5.1 series and is suitable for use with any MySQL server version since MySQL 4.1, including
MySQL 5.0, 5.1, and 6.0. (It will not work with 4.0 or earlier releases.)

Keep in mind that this is a alpha release, and as with any other pre-production release, caution should be taken when installing on
production level systems or systems with critical data. Not all of the features planned for the final Connector/ODBC 5.1 release are
implemented.

Functionality is based on Connector/ODBC 3.51.20.

Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• There are no installer packages for Microsoft Windows x64 Edition.

• Due to differences with the installation process used on Windows and potential registry corruption, it is recommended that un-
install any existing versions of Connector/ODBC 5.1.x before upgrading.

See also Bug#34571.

Functionality added or changed:

• Added support for Unicode functions (SQLConnectW, etc).

• Added descriptor support (SQLGetDescField, SQLGetDescRec, etc).

• Added support for SQL_C_WCHAR.

A.8. Changes in MySQL Connector/ODBC 5.0.12 (Never released)
Note

Development on Connector/ODBC 5.0.x has ceased. New features and functionality will be incorporated into Con-
nector/ODBC 5.1. See Section 1.2.1, “Connector/ODBC Roadmap”.

Bugs fixed:

• Inserting NULL values into a DATETIME column from Access reports an error. (Bug#27896)

• Tables with TEXT columns would be incorrectly identified, returning an Unknown SQL type - 65535 error.
(Bug#20127)

MySQL Connector/ODBC (MyODBC) Change History

475

http://bugs.mysql.com/16178
http://bugs.mysql.com/34571
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/27896
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/20127

A.9. Changes in MySQL Connector/ODBC 5.0.11 (31 January 2007)
Functionality added or changed:

• Added support for ODBC v2 statement options using attributes.

• Driver now builds and is partially tested under Linux with the iODBC driver manager.

Bugs fixed:

• Connection string parsing for DSN-less connections could fail to identify some parameters. (Bug#25316)

• Updates of MEMO or TEXT columns from within Microsoft Access would fail. (Bug#25263)

• Transaction support has been added and tested. (Bug#25045)

• Internal function, my_setpos_delete_ignore() could cause a crash. (Bug#22796)

• Fixed occasional mis-handling of the SQL_NUMERIC_C type.

• Fixed the binding of certain integer types.

A.10. Changes in MySQL Connector/ODBC 5.0.10 (14 December
2006)

Connector/ODBC 5.0.10 is the sixth BETA release.

Functionality added or changed:

• Significant performance improvement when retrieving large text fields in pieces using SQLGetData() with a buffer smaller
than the whole data. Mainly used in Access when fetching very large text fields. (Bug#24876)

• Added initial unicode support in data and metadata. (Bug#24837)

• Added initial support for removing braces when calling stored procedures and retrieving result sets from procedure calls.
(Bug#24485)

• Added loose handling of retrieving some diagnostic data. (Bug#15782)

• Added wide-string type info for SQLGetTypeInfo().

Bugs fixed:

• Editing DSN no longer crashes ODBC data source administrator. (Bug#24675)

• String query parameters are new escaped correctly. (Bug#19078)

A.11. Changes in MySQL Connector/ODBC 5.0.9 (22 November 2006)
Connector/ODBC 5.0.9 is the fifth BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

Functionality added or changed:

• Added support for column binding as SQL_NUMBERIC_STRUCT.

• Added recognition of SQL_C_SHORT and SQL_C_TINYINT as C types.

Bugs fixed:

MySQL Connector/ODBC (MyODBC) Change History

476

http://bugs.mysql.com/25316
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/25263
http://bugs.mysql.com/25045
http://bugs.mysql.com/22796
http://bugs.mysql.com/24876
http://bugs.mysql.com/24837
http://bugs.mysql.com/24485
http://bugs.mysql.com/15782
http://bugs.mysql.com/24675
http://bugs.mysql.com/19078

• Fixed wildcard handling of and listing of catalogs and tables in SQLTables.

• Added limit of display size when requested via SQLColAttribute/SQL_DESC_DISPLAY_SIZE.

• Fixed buffer length return for SQLDriverConnect.

• ODBC v2 behaviour in driver now supports ODBC v3 date/time types (since DriverManager maps them).

• Catch use of SQL_ATTR_PARAMSET_SIZE and report error until we fully support.

• Fixed statistics to fail if it couldn't be completed.

• Corrected retrieval multiple field types bit and blob/text.

• Fixed SQLGetData to clear the NULL indicator correctly during multiple calls.

A.12. Changes in MySQL Connector/ODBC 5.0.8 (17 November 2006)
Connector/ODBC 5.0.8 is the fourth BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

Functionality added or changed:

• Also made SQL_DESC_NAME only fill in the name if there was a data pointer given, otherwise just the length.

• Fixed display size to be length if max length isn’t available.

• Made distinction between CHAR/BINARY (and VAR versions).

• Wildcards now support escaped chars and underscore matching (needed to link tables with underscores in access).

Bugs fixed:

• Fixed binding using SQL_C_LONG.

• Fixed using wrong pointer for SQL_MAX_DRIVER_CONNECTIONS in SQLGetInfo.

• Set default return to SQL_SUCCESS if nothing is done for SQLSpecialColumns.

• Fixed MDiagnostic to use correct v2/v3 error codes.

• Allow SQLDescribeCol to be called to retrieve the length of the column name, but not the name itself.

• Length now used when handling bind parameter (needed in particular for SQL_WCHAR) - this enables updating char data in MS
Access.

• Updated retrieval of descriptor fields to use the right pointer types.

• Fixed hanlding of numeric pointers in SQLColAttribute.

• Fixed type returned for MYSQL_TYPE_LONG to SQL_INTEGER instead of SQL_TINYINT.

• Fix size return from SQLDescribeCol.

• Fixed string length to chars, not bytes, returned by SQLGetDiagRec.

A.13. Changes in MySQL Connector/ODBC 5.0.7 (08 November 2006)
Connector/ODBC 5.0.7 is the third BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

Functionality added or changed:

MySQL Connector/ODBC (MyODBC) Change History

477

http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html

• Added support for SQLStatistics to MYODBCShell.

• Improved trace/log.

Bugs fixed:

• SQLBindParameter now handles SQL_C_DEFAULT.

• Corrected incorrect column index within SQLStatistics. Many more tables can now be linked into MS Access.

• Fixed SQLDescribeCol returning column name length in bytes rather than chars.

A.14. Changes in MySQL Connector/ODBC 5.0.6 (03 November 2006)
Connector/ODBC 5.0.6 is the second BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

Features, limitations and notes on this release

• Connector/ODBC supports both User and System DSNs.

• Installation is provided in the form of a standard Microsoft System Installer (MSI).

• You no longer have to have Connector/ODBC 3.51 installed before installing this version.

Bugs fixed:

• You no longer have to have Connector/ODBC 3.51 installed before installing this version.

• Connector/ODBC supports both User and System DSNs.

• Installation is provided in the form of a standard Microsoft System Installer (MSI).

A.15. Changes in MySQL Connector/ODBC 5.0.5 (17 October 2006)
Connector/ODBC 5.0.5 is the first BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

You no longer have to have Connector/ODBC 3.51 installed before installing this version.

Bugs fixed:

• You no longer have to have Connector/ODBC 3.51 installed before installing this version.

A.16. Changes in Connector/ODBC 5.0.3 (Connector/ODBC 5.0 Alpha
3) (20 June 2006)

This is an implementation and testing release, and is not designed for use within a production environment.

Features, limitations and notes on this release:

• The following ODBC API functions have been added in this release:

• SQLBindParameter

• SQLBindCol

MySQL Connector/ODBC (MyODBC) Change History

478

A.17. Changes in Connector/ODBC 5.0.2 (Never released)
Connector/ODBC 5.0.2 was an internal implementation and testing release.

A.18. Changes in Connector/ODBC 5.0.1 (Connector/ODBC 5.0 Alpha
2) (05 June 2006)

Features, limitations and notes on this release:

• Connector/ODBC 5.0 is Unicode aware.

• Connector/ODBC is currently limited to basic applications. ADO applications and Microsoft Office are not supported.

• Connector/ODBC must be used with a Driver Manager.

• The following ODBC API functions are implemented:

• SQLAllocHandle

• SQLCloseCursor

• SQLColAttribute

• SQLColumns

• SQLConnect

• SQLCopyDesc

• SQLDisconnect

• SQLExecDirect

• SQLExecute

• SQLFetch

• SQLFreeHandle

• SQLFreeStmt

• SQLGetConnectAttr

• SQLGetData

• SQLGetDescField

• SQLGetDescRec

• SQLGetDiagField

• SQLGetDiagRec

• SQLGetEnvAttr

• SQLGetFunctions

• SQLGetStmtAttr

• SQLGetTypeInfo

• SQLNumResultCols

• SQLPrepare

• SQLRowcount

• SQLTables

The following ODBC API function are implemented, but not yet support all the available attributes/options:

MySQL Connector/ODBC (MyODBC) Change History

479

• SQLSetConnectAttr

• SQLSetDescField

• SQLSetDescRec

• SQLSetEnvAttr

• SQLSetStmtAttr

A.19. Changes in MySQL Connector/ODBC 3.51.27 (20 November
2008)

Bugs fixed:

• The client program hung when the network connection to the server was interrupted. (Bug#40407)

• The connection string option Enable Auto-reconnect did not work. When the connection failed, it could not be restored,
and the errors generated were the same as if the option had not been selected. (Bug#37179)

• It was not possible to use Connector/ODBC to connect to a server using SSL. The following error was generated:

Runtime error '-2147467259 (80004005)':

[MySQL][ODBC 3.51 Driver]SSL connection error.

(Bug#29955)

A.20. Changes in MySQL Connector/ODBC 3.51.26 (07 July 2008)
Functionality added or changed:

• There is a new connection option, FLAG_NO_BINARY_RESULT. When set this option disables charset 63 for columns with an
empty org_table. (Bug#29402)

Bugs fixed:

• When an ADOConnection is created and attempts to open a schema with ADOConnection.OpenSchema an access viol-
ation occurs in myodbc3.dll. (Bug#30770)

• When SHOW CREATE TABLE was invoked and then the field values read, the result was truncated and unusable if the table
had many rows and indexes. (Bug#24131)

A.21. Changes in MySQL Connector/ODBC 3.51.25 (11 April 2008)
Bugs fixed:

• The SQLColAttribute() function returned SQL_TRUE when querying the SQL_DESC_FIXED_PREC_SCALE
(SQL_COLUMN_MONEY) attribute of a DECIMAL column. Previously, the correct value of SQL_FALSE was returned; this is
now again the case. (Bug#35581)

• The driver crashes ODBC Administrator on attempting to add a new DSN. (Bug#32057)

• When accessing column data, FLAG_COLUMN_SIZE_S32 did not limit the octet length or display size reported for fields,
causing problems with Microsoft Visual FoxPro.

The list of ODBC functions that could have caused failures in Microsoft software when retrieving the length of LONGBLOB or
LONGTEXT columns includes:

• SQLColumns

MySQL Connector/ODBC (MyODBC) Change History

480

http://bugs.mysql.com/40407
http://bugs.mysql.com/37179
http://bugs.mysql.com/29955
http://bugs.mysql.com/29402
http://bugs.mysql.com/30770
http://dev.mysql.com/doc/refman/5.0/en/show-create-table.html
http://bugs.mysql.com/24131
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/35581
http://bugs.mysql.com/32057
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html

• SQLColAttribute

• SQLColAttributes

• SQLDescribeCol

• SQLSpecialColumns (theoretically can have the same problem)
(Bug#12805, Bug#30890)

A.22. Changes in MySQL Connector/ODBC 3.51.24 (14 March 2008)
Bugs fixed:

• Security Enhancement: Accessing a parameer with the type of SQL_C_CHAR, but with a numeric type and a length of zero,
the parameter marker would get stropped from the query. In addition, an SQL injection was possible if the parameter value had
a nonzero length and was not numeric, the text would be inserted verbatim. (Bug#34575)

• Important Change: In previous versions, the SSL certificate would automatically be verified when used as part of the Con-
nector/ODBC connection. The default mode is now to ignore the verificate of certificates. To enforce verification of the SSL
certificate during connection, use the SSLVERIFY DSN parameter, setting the value to 1. (Bug#29955, Bug#34648)

• When using ADO, the count of parameters in a query would always return zero. (Bug#33298)

• Using tables with a single quote or other non-standard characters in the table or column names through ODBC would fail.
(Bug#32989)

• When using Crystal Reports, table and column names would be truncated to 21 characters, and truncated columns in tables
where the truncated name was the duplicated would lead to only a single column being displayed. (Bug#32864)

• SQLExtendedFetch() and SQLFetchScroll() ignored the rowset size if the Don't cache result DSN option
was set. (Bug#32420)

• When using the ODBC SQL_TXN_READ_COMMITTED option, 'dirty' records would be read from tables as if the option had
not been applied. (Bug#31959)

• When creating a System DSN using the ODBC Administrator on Mac OS X, a User DSN would be created instead. The root
cause is a problem with the iODBC driver manager used on Mac OS X. The fix works around this issue.

Note

ODBC Administrator may still be unable to register a System DSN unless the /Library/ODBC/odbc.ini file
has the correct permissions. You should ensure that the file is writable by the admin group.

(Bug#31495)

• Calling SQLFetch or SQLFetchScroll would return negative data lengths when using SQL_C_WCHAR. (Bug#31220)

• SQLSetParam() caused memory allocation errors due to driver manager's mapping of deprecated functions (buffer length -
1). (Bug#29871)

• Static cursor was unable to be used through ADO when dynamic cursors were enabled. (Bug#27351)

• Using connection.Execute to create a record set based on a table without declaring the cmd option as adCmdTable will
fail when communicating with versions of MySQL 5.0.37 and higher. The issue is related to the way that SQLSTATE is re-
turned when ADO tries to confirm the existence of the target object. (Bug#27158)

• Updating a RecordSet when the query involves a BLOB field would fail. (Bug#19065)

• With some connections to MySQL databases using Connector/ODBC, the connection would mistakenly report 'user cancelled'
for accesses to the database information. (Bug#16653)

A.23. Changes in MySQL Connector/ODBC 3.51.23 (09 January 2008)
Platform specific notes:

MySQL Connector/ODBC (MyODBC) Change History

481

http://bugs.mysql.com/12805
http://bugs.mysql.com/30890
http://bugs.mysql.com/34575
http://bugs.mysql.com/29955
http://bugs.mysql.com/34648
http://bugs.mysql.com/33298
http://bugs.mysql.com/32989
http://bugs.mysql.com/32864
http://bugs.mysql.com/32420
http://bugs.mysql.com/31959
http://bugs.mysql.com/31495
http://bugs.mysql.com/31220
http://bugs.mysql.com/29871
http://bugs.mysql.com/27351
http://bugs.mysql.com/27158
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/19065
http://bugs.mysql.com/16653

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• There are no installer packages for Microsoft Windows x64 Edition.

Bugs fixed:

• Connector/ODBC would incorrectly return SQL_SUCCESS when checking for distributed transaction support. (Bug#32727)

• When using unixODBC or directly linked applications where the thread level is set to less than 3 (within odbcinst.ini), a
thread synchronization issue would lead to an application crash. This was because SQLAllocStmt() and SQLFreeStmt()
did not synchronize access to the list of statements associated with a connection. (Bug#32587)

• Cleaning up environment handles in multithread environments could result in a five (or more) second delay. (Bug#32366)

• Renaming an existing DSN entry would create a new entry with the new name without deleting the old entry. (Bug#31165)

• Setting the default database using the DefaultDatabase property of an ADO Connection object would fail with the er-
ror Provider does not support this property. The SQLGetInfo() returned the wrong value for
SQL_DATABASE_NAME when no database was selected. (Bug#3780)

A.24. Changes in MySQL Connector/ODBC 3.51.22 (13 November
2007)

Functionality added or changed:

• The workaround for this bug was removed due to the fixes in MySQL Server 5.0.48 and 5.1.21.

This regression was introduced by Bug#10491.

Bugs fixed:

• The English locale would be used when formatting floating point values. The C locale is now used for these values.
(Bug#32294)

• When accessing information about supported operations, the driver would return incorrect information about the support for
UNION. (Bug#32253)

• Unsigned integer values greater than the maximum value of a signed integer would be handled incorrectly. (Bug#32171)

• The wrong result was returned by SQLGetData() when the data was an empty string and a zero-sized buffer was specified.
(Bug#30958)

• Added the FLAG_COLUMN_SIZE_S32 option to limit the reported column size to a signed 32-bit integer. This option is auto-
matically enabled for ADO applications to provide a work around for a bug in ADO. (Bug#13776)

A.25. Changes in MySQL Connector/ODBC 3.51.21 (08 October 2007)
Bugs fixed:

• When using a rowset/cursor and add a new row with a number of fields, subsequent rows with fewer fields will include the ori-
ginal fields from the previous row in the final INSERT statement. (Bug#31246)

• Uninitiated memory could be used when C/ODBC internally calls SQLGetFunctions(). (Bug#31055)

• The wrong SQL_DESC_LITERAL_PREFIX would be returned for date/time types. (Bug#31009)

• The wrong COLUMN_SIZE would be returned by SQLGetTypeInfo for the TIME columns (SQL_TYPE_TIME).
(Bug#30939)

MySQL Connector/ODBC (MyODBC) Change History

482

http://bugs.mysql.com/32727
http://bugs.mysql.com/32587
http://bugs.mysql.com/32366
http://bugs.mysql.com/31165
http://bugs.mysql.com/3780
http://bugs.mysql.com/10491
http://bugs.mysql.com/32294
http://dev.mysql.com/doc/refman/5.0/en/union.html
http://bugs.mysql.com/32253
http://bugs.mysql.com/32171
http://bugs.mysql.com/30958
http://bugs.mysql.com/13776
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://bugs.mysql.com/31246
http://bugs.mysql.com/31055
http://bugs.mysql.com/31009
http://bugs.mysql.com/30939

• Clicking outside the character set selection box when configuring a new DSN could cause the wrong character set to be selec-
ted. (Bug#30568)

• Not specifying a user in the DSN dialog would raise a warning even though the parameter is optional. (Bug#30499)

• SQLSetParam() caused memory allocation errors due to driver manager's mapping of deprecated functions (buffer length -
1). (Bug#29871)

• When using ADO, a column marked as AUTO_INCREMENT could incorrectly report that the column allowed NULL values.
This was dur to an issue with NULLABLE and IS_NULLABLE return values from the call to SQLColumns(). (Bug#26108)

• Connector/ODBC would return the wrong the error code when the server disconnects the active connection because the con-
figured wait_timeout has expired. Previously it would return HY000. Connector/ODBC now correctly returns an SQL-
STATE of 08S01. (Bug#3456)

A.26. Changes in MySQL Connector/ODBC 3.51.20 (10 September
2007)

Bugs fixed:

• Using FLAG_NO_PROMPT doesn't suppress the dialogs normally handled by SQLDriverConnect. (Bug#30840)

• The specified length of the user name and authentication parameters to SQLConnect() were not being honored.
(Bug#30774)

• The wrong column size was returned for binary data. (Bug#30547)

• SQLGetData() will now always return SQL_NO_DATA_FOUND on second call when no data left, even if requested size is 0.
(Bug#30520)

• SQLGetConnectAttr() did not reflect the connection state correctly. (Bug#14639)

• Removed checkbox in setup dialog for FLAG_FIELD_LENGTH (identified as Don't Optimize Column Width within
the GUI dialog), which was removed from the driver in 3.51.18.

A.27. Changes in MySQL Connector/ODBC 3.51.19 (10 August 2007)
Connector/ODBC 3.51.19 fixes a specific issue with the 3.51.18 release. For a list of changes in the 3.51.18 release, see Sec-
tion A.28, “Changes in MySQL Connector/ODBC 3.51.18 (08 August 2007)”.

Functionality added or changed:

• Because of Bug#10491 in the server, character string results were sometimes incorrectly identified as SQL_VARBINARY. Until
this server bug is corrected, the driver will identify all variable-length strings as SQL_VARCHAR.

A.28. Changes in MySQL Connector/ODBC 3.51.18 (08 August 2007)
Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• Binary packages for Sun Solaris are now available as PKG packages.

• Binary packages as disk images with installers are now available for Mac OS X.

• A binary package without an installer is available for Microsoft Windows x64 Edition. There are no installer packages for Mi-
crosoft Windows x64 Edition.

Functionality added or changed:

MySQL Connector/ODBC (MyODBC) Change History

483

http://bugs.mysql.com/30568
http://bugs.mysql.com/30499
http://bugs.mysql.com/29871
http://bugs.mysql.com/26108
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_wait_timeout
http://bugs.mysql.com/3456
http://bugs.mysql.com/30840
http://bugs.mysql.com/30774
http://bugs.mysql.com/30547
http://bugs.mysql.com/30520
http://bugs.mysql.com/14639
http://bugs.mysql.com/10491

• Incompatible Change: The FLAG_DEBUG option was removed.

• When connecting to a specific database when using a DSN, the system tables from the mysql database are no longer also
available. Previously, tables from the mysql database (catalog) were listed as SYSTEM TABLES by SQLTables() even
when a different catalog was being queried. (Bug#28662)

• Installed for Mac OS X has been re-instated. The installer registers the driver at a system (not user) level and makes it possible
to create both user and system DSNs using the Connector/ODBC driver. The installer also fixes the situation where the neces-
sary drivers would bge installed local to the user, not globally. (Bug#15326, Bug#10444)

• Connector/ODBC now supports batched statements. In order to enable cached statement support you must switch enable the
batched statement option (FLAG_MULTI_STATEMENTS, 67108864, or ALLOW MULTIPLE STATEMENTS within a GUI con-
figuration). Be aware that batched statements create an increased chance of SQL injection attacks and you must ensure that
your application protects against this scenario. (Bug#7445)

• The SQL_ATTR_ROW_BIND_OFFSET_PTR is now supported for row bind offsets. (Bug#6741)

• The TRACE and TRACEFILE DSN options have been removed. Use the ODBC driver manager trace options instead.

Bugs fixed:

• When using a table with multiple TIMESTAMP columns, the final TIMESTAMP column within the table definition would not
be updateable. Note that there is still a limitation in MySQL server regarding multiple TIMESTAMP columns . (Bug#9927)
(Bug#30081)

• Fixed an issue where the myodbc3i would update the user ODBC configuration file
(~/Library/ODBC/odbcinst.ini) instead of the system /Library/ODBC/odbcinst.ini. This was caused be-
cause myodbc3i was not honoring the s and u modifiers for the -d command-line option. (Bug#29964)

• Getting table metadata (through the SQLColumns() would fail, returning a bad table definition to calling applications.
(Bug#29888)

• DATETIME column types would return FALSE in place of SQL_SUCCESS when requesting the column type information.
(Bug#28657)

• The SQL_COLUMN_TYPE, SQL_COLUMN_DISPLAY and SQL_COLUMN_PRECISION values would be returned incorrectly
by SQLColumns(), SQLDescribeCol() and SQLColAttribute() when accessing character columns, especially
those generated through concat(). The lengths returned should now conform to the ODBC specification. The
FLAG_FIELD_LENGTH option no longer has any affect on the results returned. (Bug#27862)

• Obtaining the length of a column when using a character set for the connection of utf8 would result in the length being re-
turned incorrectly. (Bug#19345)

• The SQLColumns() function could return incorrect information about TIMESTAMP columns, indicating that the field was
not nullable. (Bug#14414)

• The SQLColumns() function could return incorrect information about AUTO_INCREMENT columns, indicating that the field
was not nullable. (Bug#14407)

• A binary package without an installer is available for Microsoft Windows x64 Edition. There are no installer packages for Mi-
crosoft Windows x64 Edition.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• BIT(n) columns are now treated as SQL_BIT data where n = 1 and binary data where n > 1.

• The wrong value from SQL_DESC_LITERAL_SUFFIX was returned for binary fields.

• The SQL_DATETIME_SUB column in SQLColumns() was not correctly set for date and time types.

• The value for SQL_DESC_FIXED_PREC_SCALE was not returned correctly for values in MySQL 5.0 and later.

• The wrong value for SQL_DESC_TYPE was returned for date and time types.

• SQLConnect() and SQLDriverConnect() were rewritten to eliminate duplicate code and ensure all options were sup-
ported using both connection methods. SQLDriverConnect() now only requires the setup library to be present when the
call requires it.

MySQL Connector/ODBC (MyODBC) Change History

484

http://bugs.mysql.com/28662
http://bugs.mysql.com/15326
http://bugs.mysql.com/10444
http://bugs.mysql.com/7445
http://bugs.mysql.com/6741
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/9927
http://bugs.mysql.com/30081
http://bugs.mysql.com/29964
http://bugs.mysql.com/29888
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/28657
http://bugs.mysql.com/27862
http://bugs.mysql.com/19345
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/14414
http://bugs.mysql.com/14407

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• Binary packages as disk images with installers are now available for Mac OS X.

• Binary packages for Sun Solaris are now available as PKG packages.

• The wrong value for DECIMAL_DIGITS in SQLColumns() was reported for FLOAT and DOUBLE fields, as well as the
wrong value for the scale parameter to SQLDescribeCol(), and the SQL_DESC_SCALE attribute from SQLColAttrib-
ute().

• The SQL_DATA_TYPE column in SQLColumns() results did not report the correct value for date and time types.

A.29. Changes in MySQL Connector/ODBC 3.51.17 (14 July 2007)
Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• Binary packages for Sun Solaris are now available as PKG packages.

• Binary packages as disk images with installers are now available for Mac OS X.

• A binary package without an installer is available for Microsoft Windows x64 Edition. There are no installer packages for Mi-
crosoft Windows x64 Edition.

Functionality added or changed:

• It is now possible to specify a different character set as part of the DSN or connection string. This must be used instead of the
SET NAMES statement. You can also configure the character set value from the GUI configuration. (Bug#9498, Bug#6667)

• Fixed calling convention ptr and wrong free in myodbc3i, and fixed the null terminating (was only one, not two) when writ-
ing DSN to string.

• Dis-allow NULL ptr for null indicator when calling SQLGetData() if value is null. Now returns SQL_ERROR w/state 22002.

• The setup library has been split into its own RPM package, to allow installing the driver itself with no GUI dependencies.

Bugs fixed:

• myodbc3i did not correctly format driver info, which could cause the installation to fail. (Bug#29709)

• Connector/ODBC crashed with Crystal Reports due to a rproblem with SQLProcedures(). (Bug#28316)

• Fixed a problem where the GUI would crash when configuring or removing a System or User DSN. (Bug#27315)

• Fixed error handling of out-of-memory and bad connections in catalog functions. This might raise errors in code paths that had
ignored them in the past. (Bug#26934)

• For a stored procedure that returns multiple result sets, Connector/ODBC returned only the first result set. (Bug#16817)

• Calling SQLGetDiagField with RecNumber 0, DiagIdentifier NOT 0 returned SQL_ERROR, preventing access
to diagnostic header fields. (Bug#16224)

• Added a new DSN option (FLAG_ZERO_DATE_TO_MIN) to retrieve XXXX-00-00 dates as the minimum allowed ODBC
date (XXXX-01-01). Added another option (FLAG_MIN_DATE_TO_ZERO) to mirror this but for bound parameters.
FLAG_MIN_DATE_TO_ZERO only changes 0000-01-01 to 0000-00-00. (Bug#13766)

• If there was more than one unique key on a table, the correct fields were not used in handling SQLSetPos(). (Bug#10563)

• When inserting a large BLOB field, Connector/ODBC would crash due to a memory allocation error. (Bug#10562)

• The driver was using mysql_odbc_escape_string(), which does not handle the NO_BACKSLASH_ESCAPES SQL

MySQL Connector/ODBC (MyODBC) Change History

485

http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/9498
http://bugs.mysql.com/6667
http://bugs.mysql.com/29709
http://bugs.mysql.com/28316
http://bugs.mysql.com/27315
http://bugs.mysql.com/26934
http://bugs.mysql.com/16817
http://bugs.mysql.com/16224
http://bugs.mysql.com/13766
http://bugs.mysql.com/10563
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/10562
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html#sqlmode_no_backslash_escapes

mode. Now it uses mysql_real_escape_string(), which does. (Bug#9498)

• SQLColumns() did not handle many of its parameters correctly, which could lead to incorrect results. The table name argu-
ment was not handled as a pattern value, and most arguments were not escaped correctly when they contained non-al-
phanumeric characters. (Bug#8860)

• There are no binary packages for Microsoft Windows x64 Edition.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC ver-
sion of iODBC.

• Correctly return error if SQLBindCol is called with an invalid column.

• Fixed possible crash if SQLBindCol() was not called before SQLSetPos().

• The Mac OS X binary packages are only provided as tarballs, there is no installer.

• The binary packages for Sun Solaris are only provided as tarballs, not the PKG format.

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

A.30. Changes in MySQL Connector/ODBC 3.51.16 (14 June 2007)
Functionality added or changed:

• Connector/ODBC now supports using SSL for communication. This is not yet exposed in the setup GUI, but must be enabled
through configuration files or the DSN. (Bug#12918)

Bugs fixed:

• Calls to SQLNativeSql() could cause stack corruption due to an incorrect pointer cast. (Bug#28758)

• Using curors on results sets with multi-column keys could select the wrong value. (Bug#28255)

• SQLForeignKeys does not escape _ and % in the table name arguments. (Bug#27723)

• When using stored procedures, making a SELECT or second stored procedure call after an initial stored procedure call, the
second statement will fail. (Bug#27544)

• SQLTables() did not distinguish tables from views. (Bug#23031)

• Data in TEXT columns would fail to be read correctly. (Bug#16917)

• Specifying strings as parameters using the adBSTR or adVarWChar types, (SQL_WVARCHAR and SQL_WLONGVARCHAR)
would be incorrectly quoted. (Bug#16235)

• SQL_WVARCHAR and SQL_WLONGVARCHAR parameters were not properly quoted and escaped. (Bug#16235)

• Using BETWEEN with date values, the wrong results could be returned. (Bug#15773)

• When using the Don't Cache Results (option value 1048576) with Microsoft Access, the connection will fail using
DAO/VisualBasic. (Bug#4657)

• Return values from SQLTables() may be truncated. (Bugs #22797)

A.31. Changes in MySQL Connector/ODBC 3.51.15 (07 May 2007)
Bugs fixed:

• Connector/ODBC would incorrectly claim to support SQLProcedureColumns (by returning true when queried about SQL-
PROCEDURECOLUMNS with SQLGetFunctions), but this functionality is not supported. (Bug#27591)

• An incorrect transaction isolation level may not be returned when accessing the connection attributes. (Bug#27589)

MySQL Connector/ODBC (MyODBC) Change History

486

http://dev.mysql.com/doc/refman/5.0/en/mysql-real-escape-string.html
http://bugs.mysql.com/9498
http://bugs.mysql.com/8860
http://bugs.mysql.com/12918
http://bugs.mysql.com/28758
http://bugs.mysql.com/28255
http://bugs.mysql.com/27723
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://bugs.mysql.com/27544
http://bugs.mysql.com/23031
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/16917
http://bugs.mysql.com/16235
http://bugs.mysql.com/16235
http://bugs.mysql.com/15773
http://bugs.mysql.com/4657
http://bugs.mysql.com/27591
http://bugs.mysql.com/27589

• Adding a new DSN with the myodbc3i utility under AIX would fail. (Bug#27220)

• When inserting data using bulk statements (through SQLBulkOperations), the indicators for all rows within the insert
would not updated correctly. (Bug#24306)

• Using SQLProcedures does not return the database name within the returned resultset. (Bug#23033)

• The SQLTransact() function did not support an empty connection handle. (Bug#21588)

• Using SQLDriverConnect instead of SQLConnect could cause later operations to fail. (Bug#7912)

• When using blobs and parameter replacement in a statement with WHERE CURSOR OF, the SQL is truncated. (Bug#5853)

• Connector/ODBC would return too many foreign key results when accessing tables with similar names. (Bug#4518)

A.32. Changes in MySQL Connector/ODBC 3.51.14 (08 March 2007)
Functionality added or changed:

• Use of SQL_ATTR_CONNECTION_TIMEOUT on the server has now been disabled. If you attempt to set this attribute on your
connection the SQL_SUCCESS_WITH_INFO will be returned, with an error number/string of HYC00: Optional fea-
ture not supported. (Bug#19823)

• Added auto is null option to Connector/ODBC option parameters. (Bug#10910)

• Added auto-reconnect option to Connector/ODBC option parameters.

• Added support for the HENV handlers in SQLEndTran().

Bugs fixed:

• On 64-bit systems, some types would be incorrectly returned. (Bug#26024)

• When retrieving TIME columns, C/ODBC would incorrectly interpret the type of the string and could interpret it as a DATE
type instead. (Bug#25846)

• Connector/ODBC may insert the wrong parameter values when using prepared statements under 64-bit Linux. (Bug#22446)

• Using Connector/ODBC, with SQLBindCol and binding the length to the return value from SQL_LEN_DATA_AT_EXEC
fails with a memory allocation error. (Bug#20547)

• Using DataAdapter, Connector/ODBC may continually consume memory when reading the same records within a loop
(Windows Server 2003 SP1/SP2 only). (Bug#20459)

• When retrieving data from columns that have been compressed using COMPRESS(), the retrieved data would be truncated to
8KB. (Bug#20208)

• The ODBC driver name and version number were incorrectly reported by the driver. (Bug#19740)

• A string format exception would be raised when using iODBC, Connector/ODBC and the embedded MySQL server.
(Bug#16535)

• The SQLDriverConnect() ODBC method did not work with recent Connector/ODBC releases. (Bug#12393)

A.33. Changes in MySQL Connector/ODBC 3.51.13 (Never released)
Connector/ODBC 3.51.13 was an internal implementation and testing release.

A.34. Changes in MySQL Connector/ODBC 3.51.12 (11 February
2005)

Functionality added or changed:

MySQL Connector/ODBC (MyODBC) Change History

487

http://bugs.mysql.com/27220
http://bugs.mysql.com/24306
http://bugs.mysql.com/23033
http://bugs.mysql.com/21588
http://bugs.mysql.com/7912
http://bugs.mysql.com/5853
http://bugs.mysql.com/4518
http://bugs.mysql.com/19823
http://bugs.mysql.com/10910
http://bugs.mysql.com/26024
http://dev.mysql.com/doc/refman/5.0/en/time.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/25846
http://bugs.mysql.com/22446
http://bugs.mysql.com/20547
http://bugs.mysql.com/20459
http://bugs.mysql.com/20208
http://bugs.mysql.com/19740
http://bugs.mysql.com/16535
http://bugs.mysql.com/12393

• N/A

Bugs fixed:

• Using stored procedures with ADO, where the CommandType has been set correctly to adCmdStoredProc, calls to stored
procedures would fail. (Bug#15635)

• File DSNs could not be saved. (Bug#12019)

• SQLColumns() returned no information for tables that had a column named using a reserved word. (Bug#9539)

A.35. Changes in MySQL Connector/ODBC 3.51.11 (28 January 2005)
Bugs fixed:

• mysql_list_dbcolumns() and insert_fields() were retrieving all rows from a table. Fixed the queries generated
by these functions to return no rows. (Bug#8198)

• SQLGetTypoInfo() returned tinyblob for SQL_VARBINARY and nothing for SQL_BINARY. Fixed to return varbin-
ary for SQL_VARBINARY, binary for SQL_BINARY, and longblob for SQL_LONGVARBINARY. (Bug#8138)

MySQL Connector/ODBC (MyODBC) Change History

488

http://bugs.mysql.com/15635
http://bugs.mysql.com/12019
http://bugs.mysql.com/9539
http://bugs.mysql.com/8198
http://bugs.mysql.com/8138

Appendix B. MySQL Connector/NET Change History

B.1. Changes in MySQL Connector/NET 6.0.4 (Not yet released beta)
This is a new Beta development release, fixing recently discovered bugs.

Bugs fixed:

• A SQL query string containing an escaped backslash caused an exception to be generated:

Index and length must refer to a location within the string.
Parameter name: length
at System.String.InternalSubStringWithChecks(Int32 startIndex, Int32 length, Boolean
fAlwaysCopy)
at MySql.Data.MySqlClient.MySqlTokenizer.NextParameter()
at MySql.Data.MySqlClient.Statement.InternalBindParameters(String sql,
MySqlParameterCollection parameters, MySqlPacket packet)
at MySql.Data.MySqlClient.Statement.BindParameters()
at MySql.Data.MySqlClient.PreparableStatement.Execute()
at MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior be havior)
at MySql.Data.MySqlClient.MySqlCommand.ExecuteNonQuery()

(Bug#44960)

• The Microsoft Visual Studio solution file MySQL-VS2005.sln was invalid. Several projects could not be loaded and thus it
was not possible to build Connector/NET from source. (Bug#44822)

• The DataReader in Connector/NET 6.0.3 considered a BINARY(16) field as a GUID with a length of 16. (Bug#44507)

• When creating a new DataSet the following error was generated:

Failed to open a connection to database.
Cannot load type with name 'MySQL.Data.VisualStudio.StoredProcedureColumnEnumerator'

(Bug#44460)

• The Connector/NET MySQLRoleProvider reported that there were no roles, even when roles existed. (Bug#44414)

B.2. Changes in MySQL Connector/NET 6.0.3 (28 April 2009 beta)
This is a new Beta development release, fixing recently discovered bugs.

Functionality added or changed:

• The MySqlTokenizer failed to split fieldnames from values if they were not separated by a space. This also happened if the
string contained certain characters. As a result MySqlCommand.ExecuteNonQuery raised an index out of range exception.

The resulting errors are illustrated by the following examples. Note, the example statements do not have delimiting spaces
around the = operator.

INSERT INTO anytable SET Text='test--test';

The tokenizer incorrectly interpreted the value as containing a comment.

UPDATE anytable SET Project='123-456',Text='Can you explain this ?',Duration=15 WHERE
ID=4711;'

A MySqlException was generated, as the ? in the value was interpreted by the tokenizer as a parameter sign. The error
message generated was:

Fatal error encountered during command execution.
EXCEPTION: MySqlException - Parameter '?'' must be defined.

(Bug#44318)

Bugs fixed:

489

http://bugs.mysql.com/44960
http://bugs.mysql.com/44822
http://bugs.mysql.com/44507
http://bugs.mysql.com/44460
http://bugs.mysql.com/44414
http://bugs.mysql.com/44318

• MySQL.Data was not displayed as a Reference inside Microsoft Visual Studio 2008 Professional.

When a new C# project was created in Microsoft Visual Studio 2008 Professional, MySQL.Data was not displayed when
REFERENCES, ADD REFERENCE was selected. (Bug#44141)

• Column types for SchemaProvider and ISSchemaProvider did not match.

When the source code in SchemaProvider.cs and ISSchemaProvider.cs were compared it was apparent that they
were not using the same column types. The base provider used SQL such as SHOW CREATE TABLE, while ISSchemaPro-
vider used the schema information tables. Column types used by the base class were INT64 and the column types used by
ISSchemaProvider were UNSIGNED. (Bug#44123)

B.3. Changes in MySQL Connector/NET 6.0.2 (07 April 2009 beta)
This is a new Beta development release, fixing recently discovered bugs.

Bugs fixed:

• Connector/Net 6.0.1 did not load in Microsoft Visual Studio 2008 and Visual Studio 2005 Pro.

The following error message was generated:

.NET Framework Data Provider for MySQL: The data provider object factory service was not
found.

(Bug#44064)

B.4. Changes in MySQL Connector/NET 6.0.1 (02 April 2009 beta)
This is a new Beta development release, fixing recently discovered bugs.

Bugs fixed:

• An insert and update error was generated by the decimal data type in the Entity Framework, when a German collation was used.
(Bug#43574)

• Generating an Entity Data Model (EDM) schema with a table containing columns with data types MEDIUMTEXT and LONG-
TEXT generated a runtime error message “Max value too long or too short for Int32”. (Bug#43480)

B.5. Changes in MySQL Connector/NET 6.0.0 (02 March 2009 alpha)
This is a new Alpha development release.

Bugs fixed:

• A null reference exception was generated when MySqlConnection.ClearPool(connection) was called.
(Bug#42801)

B.6. Changes in MySQL Connector/NET 5.3.0 (Not yet released)
Bugs fixed:

• The Web Provider did not work at all on a remote host, and did not create a database when using autogenerates-
chema="true". (Bug#39072)

• The Connector/NET installer program ended prematurely without reporting the specific error. (Bug#39019)

• When called with an incorrect password the MembershipProvider.GetPassword() method threw a MySQLExcep-
tion instead of a MembershipPasswordException . (Bug#38939)

• Possible overflow in MySqlPacket.ReadLong(). (Bug#36997)

MySQL Connector/NET Change History

490

http://bugs.mysql.com/44141
http://bugs.mysql.com/44123
http://bugs.mysql.com/44064
http://bugs.mysql.com/43574
http://bugs.mysql.com/43480
http://bugs.mysql.com/42801
http://bugs.mysql.com/39072
http://bugs.mysql.com/39019
http://bugs.mysql.com/38939
http://bugs.mysql.com/36997

• The TokenizeSql method was adding query overhead and causing high CPU utilization for larger queries. (Bug#36836)

B.7. Changes in MySQL Connector/NET 5.2.7 (Not yet released)
Bugs fixed:

• The Microsoft Visual Studio solution file MySQL-VS2005.sln was invalid. Several projects could not be loaded and thus it
was not possible to build Connector/NET from source. (Bug#44822)

• The Connector/NET MySQLRoleProvider reported that there were no roles, even when roles existed. (Bug#44414)

• When a TableAdapter was created on a DataSet, it was not possible to use a stored procedure with variables. The following er-
ror was generated:

The method or operation is not implemented

(Bug#39409)

B.8. Changes in MySQL Connector/NET 5.2.6 (28 April 2009)
Functionality added or changed:

• A new connection string option has been added: use affected rows. When true the connection will report changed
rows instead of found rows. (Bug#44194)

Bugs fixed:

• Calling GetSchema() on Indexes or IndexColumns failed where index or column names were restricted.

In SchemaProvider.cs, methods GetIndexes() and GetIndexColumns() passed their restrictions directly to
GetTables(). This only worked if the restrictions were no more specific than schemaName and tableName. If Index-
Name was given, this was passed to GetTables() where it was treated as TableType. As a result no tables were returned,
unless the index name happened to be BASE TABLE or VIEW. This meant that both methods failed to return any rows.
(Bug#43991)

• GetSchema("MetaDataCollections") should have returned a table with a column named “NumberOfRestrictions”
not “NumberOfRestriction”.

This can be confirmed by referencing the Microsoft Documentation. (Bug#43990)

• Requests sent to the Connector/NET role provider to remove a user from a role failed. The query log showed the query was cor-
rectly executed within a transaction which was immediately rolled back. The rollback was caused by a missing call to the Com-
plete method of the transaction. (Bug#43553)

• When using MySqlBulkLoader.Load(), the text file is opened by NativeDriver.SendFileToServer. If it en-
countered a problem opening the file as a stream, an exception was generated and caught. An attempt to clean up resources was
then made in the finally{} clause by calling fs.Close(), but since the stream was never successfully opened, this was
an attempt to execute a method of a null reference. (Bug#43332)

• A null reference exception was generated when MySqlConnection.ClearPool(connection) was called.
(Bug#42801)

• MySQLMembershipProvider.ValidateUser only used the userId to validate. However, it should also use the ap-
plicationId to perform the validation correctly.

The generated query was, for example:

SELECT Password, PasswordKey, PasswordFormat, IsApproved, Islockedout
FROM my_aspnet_Membership WHERE userId=13

Note that applicationId is not used. (Bug#42574)

• There was an error in the ProfileProvider class in the private ProfileInfoCollection GetProfiles()

MySQL Connector/NET Change History

491

http://bugs.mysql.com/36836
http://bugs.mysql.com/44822
http://bugs.mysql.com/44414
http://bugs.mysql.com/39409
http://bugs.mysql.com/44194
http://bugs.mysql.com/43991
http://msdn.microsoft.com/en-us/library/system.data.common.dbmetadatacolumnnames.numberofrestrictions.aspx
http://bugs.mysql.com/43990
http://bugs.mysql.com/43553
http://bugs.mysql.com/43332
http://bugs.mysql.com/42801
http://bugs.mysql.com/42574

function. The column of the final table was named “lastUpdatdDate” ('e' is missing) instead of the correct “lastUpdatedDate”.
(Bug#41654)

• The GetGuid() method of MySqlDataReader did not treat BINARY(16) column data as a GUID. When operating on
such a column a FormatException exception was generated. (Bug#41452)

• When ASP.NET membership was configured to not require password question and answer using requiresQuestion-
AndAnswer="false", a SqlNullValueException was generated when using Member-
shipUser.ResetPassword() to reset the user password. (Bug#41408)

• If a Stored Procedure contained spaces in its parameter list, and was then called from Connector/NET, an exception was
generated. However, the same Stored Procedure called from the MySQL Query Analyzer or the MySQL Client worked
correctly.

The exception generated was:

Parameter '0' not found in the collection.

(Bug#41034)

• The DATETIME format contained an erroneous space. (Bug#41021)

• When MySql.Web.Profile.MySQLProfileProvider was configured, it was not possible to assign a name other than
the default name MySQLProfileProvider.

If the name SCC_MySQLProfileProvider was assigned, an exception was generated when attempting to use
Page.Context.Profile['custom prop'].

The exception generated was:

The profile default provider was not found.

Note that the exception stated: 'the profile default provider...', even though a different name was explicitly requested.
(Bug#40871)

• When ExecuteNonQuery was called with a command type of Stored Procedure it worked for one user but resulted in
a hang for another user with the same database permissions.

However, if CALL was used in the command text and ExecuteNonQuery was used with a command type of Text, the call
worked for both users. (Bug#40139)

B.9. Changes in MySQL Connector/NET 5.2.5 (19 November 2008)
Bugs fixed:

• Visual Studio 2008 displayed the following error three times on start-up:

"Package Load Failure

Package 'MySql.Data.VisualStudio.MySqlDataProviderPackage, MySql.VisualStudio,
Version=5.2.4, Culture=neutral, PublicKeyTopen=null' has failed to load properly (GUID =
{79A115C9-B133-4891-9E7B-242509DAD272}). Please contact the package vendor for
assistance. Application restart is recommended, due to possible environment corruption.
Would you like to disable loading the package in the future? You may use
'devenve/resetskippkgs' to re-enable package loading."

(Bug#40726)

B.10. Changes in MySQL Connector/NET 5.2.4 (13 November 2008)
Bugs fixed:

• MySqlDataReader did not feature a GetSByte method. (Bug#40571)

• When working with stored procedures Connector/NET generated an exception Unknown "table parameters" in
information_schema. (Bug#40382)

MySQL Connector/NET Change History

492

http://bugs.mysql.com/41654
http://bugs.mysql.com/41452
http://bugs.mysql.com/41408
http://bugs.mysql.com/41034
http://bugs.mysql.com/41021
http://bugs.mysql.com/40871
http://bugs.mysql.com/40139
http://bugs.mysql.com/40726
http://bugs.mysql.com/40571
http://bugs.mysql.com/40382

• GetDefaultCollation and GetMaxLength were not thread safe. These functions called the database to get a set of
parameters and cached them in two static dictionaries in the function InitCollections. However, if many threads called
them they would try to insert the same keys in the collections resulting in duplicate key exceptions. (Bug#40231)

• If connection pooling was not set explicitly in the connection string, Connector/NET added “;Pooling=False” to the end of the
connection string when MySqlCommand.ExecuteReader() was called.

If connection pooling was explicitly set in the connection string, when MySqlConnection.Open() was called it converted
“Pooling=True” to “pooling=True”.

If MySqlCommand.ExecuteReader() was subsequently called, it concatenated “;Pooling=False” to the end of the con-
nection string. The resulting connection string was thus terminated with “pooling=True;Pooling=False”. This disabled connec-
tion pooling completely. (Bug#40091)

• The connection string option Functions Return String did not set the correct encoding for the result string. Even
though the connection string option Functions Return String=true; is set, the result of SELECT
DES_DECRYPT() contained “??” instead of the correct national character symbols. (Bug#40076)

• If, when using the MySqlTransaction transaction object, an exception was thrown, the transaction object was not disposed
of and the transaction was not rolled back. (Bug#39817)

• After the ConnectionString property was initialized via the public setter of DbConnectionStringBuilder, the
GetConnectionString method of MySqlConnectionStringBuilder incorrectly returned null when true was
assigned to the includePass parameter. (Bug#39728)

• When using ProfileProvider, attempting to update a previously saved property failed. (Bug#39330)

• Reading a negative time value greater than -01:00:00 returned the absolute value of the original time value. (Bug#39294)

• Inserting a negative time value (negative TimeSpan) into a Time column through the use of MySqlParameter caused
MySqlException to be thrown. (Bug#39275)

• When a data connection was created in the server explorer of Visual Studio 2008 Team, an error was generated when trying to
expand stored procedures that had parameters.

Also, if TABLEADAPTER was right-clicked and then ADD, QUERY, USE EXISTING STORED PROCEDURES selected, if you then
attempted to select a stored procedure, the window would close and no error message would be displayed. (Bug#39252)

• The Web Provider did not work at all on a remote host, and did not create a database when using autogenerates-
chema="true". (Bug#39072)

• Connector/NET called hashed password methods not supported in Mono 2.0 Preview 2. (Bug#38895)

B.11. Changes in MySQL Connector/NET 5.2.3 (19 August 2008)
Functionality added or changed:

• Error string was returned after a 28000 second wait_timeout. This has been changed to generate a Connection-
State.Closed event. (Bug#38119)

• Changed how the procedure schema collection is retrieved. If the connection string contains “use procedure bod-
ies=true” then a SELECT is performed on the mysql.proc table directly, as this is up to 50 times faster than the current
Information Schema implementation. If the connection string contains “use procedure bodies=false”, then the In-
formation Schema collection is queried. (Bug#36694)

• Changed how the procedure schema collection is retrieved. If use procedure bodies=true then the mysql.proc ta-
ble is selected directly as this is up to 50 times faster than the current information_schema implementation. If use
procedure bodies=false, then the information_schema collection is queried. (Bug#36694)

• String escaping functionality has been moved from the MySqlString class to the MySqlHelper class, where it can be ac-
cessed by the EscapeString method. (Bug#36205)

Bugs fixed:

• The GetOrdinal() method failed to return the ordinal if the column name string contained an accent. (Bug#38721)

• Connector/Net uninstaller did not clean up all installed files. (Bug#38534)

MySQL Connector/NET Change History

493

http://bugs.mysql.com/40231
http://bugs.mysql.com/40091
http://bugs.mysql.com/40076
http://bugs.mysql.com/39817
http://bugs.mysql.com/39728
http://bugs.mysql.com/39330
http://bugs.mysql.com/39294
http://bugs.mysql.com/39275
http://bugs.mysql.com/39252
http://bugs.mysql.com/39072
http://bugs.mysql.com/38895
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_wait_timeout
http://bugs.mysql.com/38119
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://bugs.mysql.com/36694
http://bugs.mysql.com/36694
http://bugs.mysql.com/36205
http://bugs.mysql.com/38721
http://bugs.mysql.com/38534

• There was a short circuit evaluation error in the MySqlCommand.CheckState() method. When the statement connec-
tion == null was true a NullReferenceException was thrown and not the expected InvalidOperationEx-
ception. (Bug#38276)

• The provider did not silently create the user if the user did not exist. (Bug#38243)

• Executing a command that resulted in a fatal exception did not close the connection. (Bug#37991)

• When a prepared insert query is run that contains an UNSIGNED TINYINT in the parameter list, the complete query and data
that should be inserted is corrupted and no error is thrown. (Bug#37968)

• In a .NET application MySQL Connector/NET modifies the connection string so that it contains several occurrences of the
same option with different values. This is illustrated by the example that follows.

The original connection string:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25; auto enlist=false;pooling=false;

The connection string after after closing MySqlDataReader:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25;auto enlist=false;pooling=false;
Allow User Variables=True;Allow User Variables=False;
Allow User Variables=True;Allow User Variables=False;

(Bug#37955)

• Unnecessary network traffic was generated for the normal case where the web provider schema was up to date. (Bug#37469)

• MySqlReader.GetOrdinal() performance enhancements break existing functionality. (Bug#37239)

• The autogenerateschema option produced tables with incorrect collations. (Bug#36444)

• GetSchema did not work correctly when querying for a collection, if using a non-English locale. (Bug#35459)

• When reading back a stored double or single value using the .NET provider, the value had less precision than the one stored.
(Bug#33322)

• Using the MySQL Visual Studio plugin and a MySQL 4.1 server, certain field types (ENUM) would not be identified correctly.
Also, when looking for tables, the plugin would list all tables matching a wildcard pattern of the database name supplied in the
connection string, instead of only tables within the specified database. (Bug#30603)

B.12. Changes in MySQL Connector/NET 5.2.2 (12 May 2008)
Bugs fixed:

• Product documentation incorrectly stated '?' is the preferred parameter marker. (Bug#37349)

• An incorrect value for a bit field would returned in a multi-row query if a preceding value for the field returned NULL.
(Bug#36313)

• Tables with GEOMETRY field types would return an unknown datatype exception. (Bug#36081)

• When using the MySQLProfileProvider, setting profile details and then reading back saved data would result in the de-
fault values being returned instead of the updated values. (Bug#36000)

• When creating a connection, setting the ConnectionString property of MySqlConnection to NULL would throw an
exception. (Bug#35619)

• The DbCommandBuilder.QuoteIdentifer method was not implemented. (Bug#35492)

• When using encrypted passwords, the GetPassword() function would return the wrong string. (Bug#35336)

• An error would be raised when calling GetPassword() with a NULL value. (Bug#35332)

• When retreiving data where a field has been identified as containing a GUID value, the incorrect value would be returned when
a previous row contained a NULL value for that field. (Bug#35041)

MySQL Connector/NET Change History

494

http://bugs.mysql.com/38276
http://bugs.mysql.com/38243
http://bugs.mysql.com/37991
http://bugs.mysql.com/37968
http://bugs.mysql.com/37955
http://bugs.mysql.com/37469
http://bugs.mysql.com/37239
http://bugs.mysql.com/36444
http://bugs.mysql.com/35459
http://bugs.mysql.com/33322
http://dev.mysql.com/doc/refman/5.0/en/enum.html
http://bugs.mysql.com/30603
http://bugs.mysql.com/37349
http://bugs.mysql.com/36313
http://bugs.mysql.com/36081
http://bugs.mysql.com/36000
http://bugs.mysql.com/35619
http://bugs.mysql.com/35492
http://bugs.mysql.com/35336
http://bugs.mysql.com/35332
http://bugs.mysql.com/35041

• Using the TableAdapter Wizard would fail when generating commands that used stored procedures due to the change in
supported parameter characters. (Bug#34941)

• When creating a new stored procedured, the new parameter code which allows the use of the @ symbol would interfere with the
specification of a DEFINER. (Bug#34940)

• When using SqlDataSource to open a connection, the connection would not automatically be closed when access had com-
pleted. (Bug#34460)

• There was a high level of contention in the connection pooling code that could lead to delays when opening connections and
submitting queries. The connection pooling code has been modified to try and limit the effects of the contention issue.
(Bug#34001)

• Using the TableAdaptor wizard in combination with a suitable SELECT statement, only the associated INSERT statement
would also be created, rather than the required DELETE and UPDATE statements. (Bug#31338)

• Fixed problem in datagrid code related to creating a new table. This problem may have been introduced with .NET 2.0 SP1.

• Fixed profile provider that would throw an exception if you were updating a profile that already existed.

B.13. Changes in MySQL Connector/NET 5.2.1 (27 February 2008)
Bugs fixed:

• When using the provider to generate or update users and passwords, the password checking algorithm would not validate the
password strength or requirements correctly. (Bug#34792)

• When executing statements that used stored procedures and functions, the new parameter code could fail to identify the correct
parameter format. (Bug#34699)

• The installer would fail to the DDEX provider binary if the Visual Studio 2005 component was not selected. The result would
lead to Connector/NET not loading properly when using the interface to a MySQL server within Visual Studio. (Bug#34674)

• A number issues were identified in the case, connection and scema areas of the code for MembershipProvider, Role-
Provider, ProfileProvider. (Bug#34495)

• When using web providers, the Connector/NET would check the schema and cache the application id, even when the connec-
tion string had been set. The effect would be to break the memvership provider list. (Bug#34451)

• Attempting to use an isolation level other than the default with a transaction scope would use the default isolation level.
(Bug#34448)

• When altering a stored procedure within Visual Studio, the parameters to the procedure could be lost. (Bug#34359)

• A race condition could occur within the procedure cache resulting the cache contents overflowing beyond the configured cache
size. (Bug#34338)

• Fixed problem with Visual Studio 2008 integration that caused pop-up menus on server explorer nodes to not function

• The provider code has been updated to fix a number of outstanding issues.

B.14. Changes in MySQL Connector/NET 5.2.0 (11 February 2008)
Functionality added or changed:

• Performing GetValue() on a field TINYINT(1) returned a BOOLEAN. While not a bug, this caused problems in software
that expected an INT to be returned. A new connection string option Treat Tiny As Boolean has been added with a de-
fault value of true. If set to false the provider will treat TINYINT(1) as INT. (Bug#34052)

• Added support for DbDataAdapter UpdateBatchSize. Batching is fully supported including collapsing inserts down in-
to the multi-value form if possible.

• DDEX provider now works under Visual Studio 2008 beta 2.

• Added ClearPool and ClearAllPools features.

MySQL Connector/NET Change History

495

http://bugs.mysql.com/34941
http://bugs.mysql.com/34940
http://bugs.mysql.com/34460
http://bugs.mysql.com/34001
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/delete.html
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://bugs.mysql.com/31338
http://bugs.mysql.com/34792
http://bugs.mysql.com/34699
http://bugs.mysql.com/34674
http://bugs.mysql.com/34495
http://bugs.mysql.com/34451
http://bugs.mysql.com/34448
http://bugs.mysql.com/34359
http://bugs.mysql.com/34338
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/34052

Bugs fixed:

• Some speed improvements have been implemented in the TokenizeSql process used to identify elements of SQL state-
ments. (Bug#34220)

• When accessing tables from different databases within the same TransactionScope, the same user/password combination
would be used for each database connection. Connector/NET does not handle multiple connections within the same transaction
scope. An error is now returned if you attempt this process, instead of using the incorrect authorization information.
(Bug#34204)

• The status of connections reported through the state change handler was not being updated correctly. (Bug#34082)

• Incorporated some connection string cache optimizations sent to us by Maxim Mass. (Bug#34000)

• In an open connection where the server had disconnected unexpectedly, the status information of the connection would not be
updated properly. (Bug#33909)

• Data cached from the connection string could return invalid information because the internal routines were not using case-
sensitive semantics. This lead to updated connection string options not being recognized if they were of a different case than the
existing cached values. (Bug#31433)

• Column name metadata was not using the character set as deifned within the connection string being used. (Bug#31185)

• Memory usage could increase and decrease significantly when updating or inserting a large number of rows. (Bug#31090)

• Commands executed from within the state change handeler would fail with a NULL exception. (Bug#30964)

• When running a stored procedure multiple times on the same connection, the memory usage could increase indefinitely.
(Bug#30116)

• Using compression in the MySQL connection with Connector/NET would be slower than using native (uncompressed) commu-
nication. (Bug#27865)

• The MySqlDbType.Datetime has been replaced with MySqlDbType.DateTime. The old format has been obsoleted.
(Bug#26344)

B.15. Changes in MySQL Connector/NET 5.1.8 (Not yet released)
Bugs fixed:

• Calling GetSchema() on Indexes or IndexColumns failed where index or column names were restricted.

In SchemaProvider.cs, methods GetIndexes() and GetIndexColumns() passed their restrictions directly to
GetTables(). This only worked if the restrictions were no more specific than schemaName and tableName. If Index-
Name was given, this was passed to GetTables() where it was treated as TableType. As a result no tables were returned,
unless the index name happened to be BASE TABLE or VIEW. This meant that both methods failed to return any rows.
(Bug#43991)

• The DATETIME format contained an erroneous space. (Bug#41021)

• If connection pooling was not set explicitly in the connection string, Connector/NET added “;Pooling=False” to the end of the
connection string when MySqlCommand.ExecuteReader() was called.

If connection pooling was explicitly set in the connection string, when MySqlConnection.Open() was called it converted
“Pooling=True” to “pooling=True”.

If MySqlCommand.ExecuteReader() was subsequently called, it concatenated “;Pooling=False” to the end of the con-
nection string. The resulting connection string was thus terminated with “pooling=True;Pooling=False”. This disabled connec-
tion pooling completely. (Bug#40091)

• If, when using the MySqlTransaction transaction object, an exception was thrown, the transaction object was not disposed
of and the transaction was not rolled back. (Bug#39817)

• When a prepared insert query is run that contains an UNSIGNED TINYINT in the parameter list, the complete query and data
that should be inserted is corrupted and no error is thrown. (Bug#37968)

MySQL Connector/NET Change History

496

http://bugs.mysql.com/34220
http://bugs.mysql.com/34204
http://bugs.mysql.com/34082
http://bugs.mysql.com/34000
http://bugs.mysql.com/33909
http://bugs.mysql.com/31433
http://bugs.mysql.com/31185
http://bugs.mysql.com/31090
http://bugs.mysql.com/30964
http://bugs.mysql.com/30116
http://bugs.mysql.com/27865
http://bugs.mysql.com/26344
http://bugs.mysql.com/43991
http://bugs.mysql.com/41021
http://bugs.mysql.com/40091
http://bugs.mysql.com/39817
http://bugs.mysql.com/37968

B.16. Changes in MySQL Connector/NET 5.1.7 (21 August 2008)
Bugs fixed:

• There was a short circuit evaluation error in the MySqlCommand.CheckState() method. When the statement connec-
tion == null was true a NullReferenceException was thrown and not the expected InvalidOperationEx-
ception. (Bug#38276)

• Executing a command that resulted in a fatal exception did not close the connection. (Bug#37991)

• In a .NET application MySQL Connector/NET modifies the connection string so that it contains several occurrences of the
same option with different values. This is illustrated by the example that follows.

The original connection string:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25; auto enlist=false;pooling=false;

The connection string after after closing MySqlDataReader:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25;auto enlist=false;pooling=false;
Allow User Variables=True;Allow User Variables=False;
Allow User Variables=True;Allow User Variables=False;

(Bug#37955)

• As MySqlDbType.DateTime is not available in VB.Net the warning THE DATETIME ENUM VALUE IS OBSOLETE was al-
ways shown during compilation. (Bug#37406)

• An unknown MySqlErrorCode was encountered when opening a connection with an incorrect password. (Bug#37398)

• Documentation incorrectly stated that “the DataColumn class in .NET 1.0 and 1.1 does not allow columns with type of UInt16,
UInt32, or UInt64 to be autoincrement columns”. (Bug#37350)

• SemaphoreFullException is generated when application is closed. (Bug#36688)

• GetSchema did not work correctly when querying for a collection, if using a non-English locale. (Bug#35459)

• When reading back a stored double or single value using the .NET provider, the value had less precision than the one stored.
(Bug#33322)

• Using the MySQL Visual Studio plugin and a MySQL 4.1 server, certain field types (ENUM) would not be identified correctly.
Also, when looking for tables, the plugin would list all tables matching a wildcard pattern of the database name supplied in the
connection string, instead of only tables within the specified database. (Bug#30603)

B.17. Changes in MySQL Connector/NET 5.1.6 (12 May 2008)
Bugs fixed:

• When creating a connection pool, specifying an invalid IP address will cause the entire application to crash, instead of provid-
ing an exception. (Bug#36432)

• An incorrect value for a bit field would returned in a multi-row query if a preceding value for the field returned NULL.
(Bug#36313)

• The MembershipProvider will raise an exception when the connection string is configured with enablePasswordRe-
trival = true and RequireQuestionAndAnswer = false. (Bug#36159)

• When calling GetNumberOfUsersOnline an exception is raised on the submitted query due to a missing parameter.
(Bug#36157)

• Tables with GEOMETRY field types would return an unknown datatype exception. (Bug#36081)

• When creating a connection, setting the ConnectionString property of MySqlConnection to NULL would throw an
exception. (Bug#35619)

• The DbCommandBuilder.QuoteIdentifer method was not implemented. (Bug#35492)

MySQL Connector/NET Change History

497

http://bugs.mysql.com/38276
http://bugs.mysql.com/37991
http://bugs.mysql.com/37955
http://bugs.mysql.com/37406
http://bugs.mysql.com/37398
http://bugs.mysql.com/37350
http://bugs.mysql.com/36688
http://bugs.mysql.com/35459
http://bugs.mysql.com/33322
http://dev.mysql.com/doc/refman/5.0/en/enum.html
http://bugs.mysql.com/30603
http://bugs.mysql.com/36432
http://bugs.mysql.com/36313
http://bugs.mysql.com/36159
http://bugs.mysql.com/36157
http://bugs.mysql.com/36081
http://bugs.mysql.com/35619
http://bugs.mysql.com/35492

• When using SqlDataSource to open a connection, the connection would not automatically be closed when access had com-
pleted. (Bug#34460)

• Attempting to use an isolation level other than the default with a transaction scope would use the default isolation level.
(Bug#34448)

• When altering a stored procedure within Visual Studio, the parameters to the procedure could be lost. (Bug#34359)

• A race condition could occur within the procedure cache resulting the cache contents overflowing beyond the configured cache
size. (Bug#34338)

• Using the TableAdaptor wizard in combination with a suitable SELECT statement, only the associated INSERT statement
would also be created, rather than the required DELETE and UPDATE statements. (Bug#31338)

B.18. Changes in MySQL Connector/NET 5.1.5 (Not yet released)
Functionality added or changed:

• Performing GetValue() on a field TINYINT(1) returned a BOOLEAN. While not a bug, this caused problems in software
that expected an INT to be returned. A new connection string option Treat Tiny As Boolean has been added with a de-
fault value of true. If set to false the provider will treat TINYINT(1) as INT. (Bug#34052)

Bugs fixed:

• Some speed improvements have been implemented in the TokenizeSql process used to identify elements of SQL state-
ments. (Bug#34220)

• When accessing tables from different databases within the same TransactionScope, the same user/password combination
would be used for each database connection. Connector/NET does not handle multiple connections within the same transaction
scope. An error is now returned if you attempt this process, instead of using the incorrect authorization information.
(Bug#34204)

• The status of connections reported through the state change handler was not being updated correctly. (Bug#34082)

• Incorporated some connection string cache optimizations sent to us by Maxim Mass. (Bug#34000)

• In an open connection where the server had disconnected unexpectedly, the status information of the connection would not be
updated properly. (Bug#33909)

• Connector/NET would fail to compile properly with nant. (Bug#33508)

• Problem with membership provider would mean that FindUserByEmail would fail with a MySqlException because it
was trying to add a second parameter with the same name as the first. (Bug#33347)

• Using compression in the MySQL connection with Connector/NET would be slower than using native (uncompressed) commu-
nication. (Bug#27865)

B.19. Changes in MySQL Connector/NET 5.1.4 (20 November 2007)
Bugs fixed:

• Setting the size of a string parameter after the value could cause an exception. (Bug#32094)

• Creation of parameter objects with non-input direction using a constructor would fail. This was cause by some old legacy code
preventing their use. (Bug#32093)

• A date string could be returned incorrectly by MySqlDataTime.ToString() when the date returned by MySQL was
0000-00-00 00:00:00. (Bug#32010)

• A syntax error in a set of batch statements could leave the data adapter in a state that appears hung. (Bug#31930)

• Installing over a failed uninstall of a previous version could result in multiple clients being registered in the ma-
chine.config. This would prevent certain aspects of the MySQL connection within Visual Studio to work properly.
(Bug#31731)

MySQL Connector/NET Change History

498

http://bugs.mysql.com/34460
http://bugs.mysql.com/34448
http://bugs.mysql.com/34359
http://bugs.mysql.com/34338
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/delete.html
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://bugs.mysql.com/31338
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/34052
http://bugs.mysql.com/34220
http://bugs.mysql.com/34204
http://bugs.mysql.com/34082
http://bugs.mysql.com/34000
http://bugs.mysql.com/33909
http://bugs.mysql.com/33508
http://bugs.mysql.com/33347
http://bugs.mysql.com/27865
http://bugs.mysql.com/32094
http://bugs.mysql.com/32093
http://bugs.mysql.com/32010
http://bugs.mysql.com/31930
http://bugs.mysql.com/31731

• Connector/NET would incorrectly report success when enlisting in a distributed transaction, although distributed transactions
are not supported. (Bug#31703)

• Data cached from the connection string could return invalid information because the internal routines were not using case-
sensitive semantics. This lead to updated connection string options not being recognized if they were of a different case than the
existing cached values. (Bug#31433)

• Trying to use a connection that was not open could return an ambiguous and misleading error message. (Bug#31262)

• Column name metadata was not using the character set as deifned within the connection string being used. (Bug#31185)

• Memory usage could increase and decrease significantly when updating or inserting a large number of rows. (Bug#31090)

• Commands executed from within the state change handeler would fail with a NULL exception. (Bug#30964)

• Extracting data through XML functions within a query returns the data as System.Byte[]. This was due to Connector/NET
incorrectly identifying BLOB fields as binary, rather than text. (Bug#30233)

• When running a stored procedure multiple times on the same connection, the memory usage could increase indefinitely.
(Bug#30116)

• Column types with only 1-bit (such as BOOLEAN and TINYINT(1) were not returned as boolean fields. (Bug#27959)

• When accessing certain statements, the command would timeout before the command completed. Because this cannot always
be controlled through the individual command timeout options, a default command timeout has been added to the con-
nection string options. (Bug#27958)

• The server error code was not updated in the Data[] hash, which prevented DbProviderFactory users from accessing
the server error code. (Bug#27436)

• The MySqlDbType.Datetime has been replaced with MySqlDbType.DateTime. The old format has been obsoleted.
(Bug#26344)

• Changing the connection string of a connection to one that changes the parameter marker after the connection had been as-
signed to a command but before the connection is opened could cause parameters to not be found. (Bug#13991)

B.20. Changes in MySQL Connector/NET 5.1.3 (21 September 2007
beta)

This is a new Beta development release, fixing recently discovered bugs.

Bugs fixed:

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table with a multiple-column
unique key index. (Bug#30204)

• A DATE field would be updated with a date/time value, causing a MySqlDataAdapter.Update() exception.
(Bug#30077)

• The Saudi Hijri calendar was not supported. (Bug#29931)

• Calling SHOW CREATE PROCEDURE for routines with a hyphen in the catalog name produced a syntax error. (Bug#29526)

• Connecting to a MySQL server earlier than version 4.1 would raise a NullException. (Bug#29476)

• The availability of a MySQL server would not be reset when using pooled connections (pooling=true). This would lead to
the server being reported as unavailable, even if the server become available while the application was still running.
(Bug#29409)

• A FormatException error would be raised if a parameter had not been found, instead of Re-
sources.ParameterMustBeDefined. (Bug#29312)

• An exception would be thrown when using the Manage Role functionality within the web administrator to assign a role to a
user. (Bug#29236)

• Using the membership/role providers when validationKey or decryptionKey parameters are set to AutoGenerate,
an exception would be raised when accessing the corresponding values. (Bug#29235)

MySQL Connector/NET Change History

499

http://bugs.mysql.com/31703
http://bugs.mysql.com/31433
http://bugs.mysql.com/31262
http://bugs.mysql.com/31185
http://bugs.mysql.com/31090
http://bugs.mysql.com/30964
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/30233
http://bugs.mysql.com/30116
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/27959
http://bugs.mysql.com/27958
http://bugs.mysql.com/27436
http://bugs.mysql.com/26344
http://bugs.mysql.com/13991
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://bugs.mysql.com/30204
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/30077
http://bugs.mysql.com/29931
http://dev.mysql.com/doc/refman/5.0/en/show-create-procedure.html
http://bugs.mysql.com/29526
http://bugs.mysql.com/29476
http://bugs.mysql.com/29409
http://bugs.mysql.com/29312
http://bugs.mysql.com/29236
http://bugs.mysql.com/29235

• Certain operations would not check the UsageAdvisor setting, causing log messages from the Usage Advisor even when it
was disabled. (Bug#29124)

• Using the same connection string multiple times would result in Database=dbname appearing multiple times in the resulting
string. (Bug#29123)

• Visual Studio Plugin: Adding a new query based on a stored procedure that uses the SELECT statement would terminate the
query/TableAdapter wizard. (Bug#29098)

• Using TransactionScope would cause an InvalidOperationException. (Bug#28709)

B.21. Changes in MySQL Connector/NET 5.1.2 (18 June 2007)
This is a new Beta development release, fixing recently discovered bugs.

Bugs fixed:

• Log messages would be truncated to 300 bytes. (Bug#28706)

• Creating a user would fail due to the application name being set incorrectly. (Bug#28648)

• Visual Studio Plugin: Adding a new query based on a stored procedure that used a UPDATE, INSERT or DELETE statement
would terminate the query/TableAdapter wizard. (Bug#28536)

• Visual Studio Plugin: Query Builder would fail to show TINYTEXT columns, and any columns listed after a TINYTEXT
column correctly. (Bug#28437)

• Accessing the results from a large query when using data compression in the connection would fail to return all the data.
(Bug#28204)

• Visual Studio Plugin: Update commands would not be generated correctly when using the TableAdapter wizard. (Bug#26347)

B.22. Changes in MySQL Connector/NET 5.1.1 (23 May 2007)
Bugs fixed:

• Running the statement SHOW PROCESSLIST would return columns as byte arrays instead of native columns. (Bug#28448)

• Installation of the Connector/NET on Windows would fail if VisualStudio had not already been installed. (Bug#28260)

• Connector/NET would look for the wrong table when executing User.IsRole(). (Bug#28251)

• Building a connection string within a tight loop would show slow performance. (Bug#28167)

• The UNSIGNED flag for parameters in a stored procedure would be ignored when using MySqlCommandBuilder to obtain
the parameter information. (Bug#27679)

• Using MySQLDataAdapter.FillSchema() on a stored procedure would raise an exception: Invalid attempt to
access a field before calling Read(). (Bug#27668)

• DATETIME fields from versions of MySQL bgefore 4.1 would be incorrectly parsed, resulting in a exception. (Bug#23342)

• Fixed password property on MySqlConnectionStringBuilder to use PasswordPropertyText attribute. This
causes dots to show instead of actual password text.

B.23. Changes in MySQL Connector/NET 5.1.0 (01 May 2007)
Functionality added or changed:

• Now compiles for .NET CF 2.0.

• Rewrote stored procedure parsing code using a new SQL tokenizer. Really nasty procedures including nested comments are
now supported.

MySQL Connector/NET Change History

500

http://bugs.mysql.com/29124
http://bugs.mysql.com/29123
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://bugs.mysql.com/29098
http://bugs.mysql.com/28709
http://bugs.mysql.com/28706
http://bugs.mysql.com/28648
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/delete.html
http://bugs.mysql.com/28536
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/28437
http://bugs.mysql.com/28204
http://bugs.mysql.com/26347
http://dev.mysql.com/doc/refman/5.0/en/show-processlist.html
http://bugs.mysql.com/28448
http://bugs.mysql.com/28260
http://bugs.mysql.com/28251
http://bugs.mysql.com/28167
http://bugs.mysql.com/27679
http://bugs.mysql.com/27668
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/23342

• GetSchema will now report objects relative to the currently selected database. What this means is that passing in null as a data-
base restriction will report objects on the currently selected database only.

• Added Membership and Role provider contributed by Sean Wright (thanks!).

B.24. Changes in MySQL Connector/NET 5.0.10 (Not yet released)
Bugs fixed:

• If, when using the MySqlTransaction transaction object, an exception was thrown, the transaction object was not disposed
of and the transaction was not rolled back. (Bug#39817)

• Executing a command that resulted in a fatal exception did not close the connection. (Bug#37991)

• When a prepared insert query is run that contains an UNSIGNED TINYINT in the parameter list, the complete query and data
that should be inserted is corrupted and no error is thrown. (Bug#37968)

• In a .NET application MySQL Connector/NET modifies the connection string so that it contains several occurrences of the
same option with different values. This is illustrated by the example that follows.

The original connection string:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25; auto enlist=false;pooling=false;

The connection string after after closing MySqlDataReader:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25;auto enlist=false;pooling=false;
Allow User Variables=True;Allow User Variables=False;
Allow User Variables=True;Allow User Variables=False;

(Bug#37955)

• When creating a connection pool, specifying an invalid IP address will cause the entire application to crash, instead of provid-
ing an exception. (Bug#36432)

• GetSchema did not work correctly when querying for a collection, if using a non-English locale. (Bug#35459)

• When reading back a stored double or single value using the .NET provider, the value had less precision than the one stored.
(Bug#33322)

B.25. Changes in MySQL Connector/NET 5.0.9 (Not yet released)
Bugs fixed:

• The DbCommandBuilder.QuoteIdentifer method was not implemented. (Bug#35492)

• Setting the size of a string parameter after the value could cause an exception. (Bug#32094)

• Creation of parameter objects with non-input direction using a constructor would fail. This was cause by some old legacy code
preventing their use. (Bug#32093)

• A date string could be returned incorrectly by MySqlDataTime.ToString() when the date returned by MySQL was
0000-00-00 00:00:00. (Bug#32010)

• A syntax error in a set of batch statements could leave the data adapter in a state that appears hung. (Bug#31930)

• Installing over a failed uninstall of a previous version could result in multiple clients being registered in the ma-
chine.config. This would prevent certain aspects of the MySQL connection within Visual Studio to work properly.
(Bug#31731)

• Data cached from the connection string could return invalid information because the internal routines were not using case-
sensitive semantics. This lead to updated connection string options not being recognized if they were of a different case than the
existing cached values. (Bug#31433)

MySQL Connector/NET Change History

501

http://bugs.mysql.com/39817
http://bugs.mysql.com/37991
http://bugs.mysql.com/37968
http://bugs.mysql.com/37955
http://bugs.mysql.com/36432
http://bugs.mysql.com/35459
http://bugs.mysql.com/33322
http://bugs.mysql.com/35492
http://bugs.mysql.com/32094
http://bugs.mysql.com/32093
http://bugs.mysql.com/32010
http://bugs.mysql.com/31930
http://bugs.mysql.com/31731
http://bugs.mysql.com/31433

• Column name metadata was not using the character set as deifned within the connection string being used. (Bug#31185)

• Memory usage could increase and decrease significantly when updating or inserting a large number of rows. (Bug#31090)

• Commands executed from within the state change handeler would fail with a NULL exception. (Bug#30964)

• When running a stored procedure multiple times on the same connection, the memory usage could increase indefinitely.
(Bug#30116)

• The server error code was not updated in the Data[] hash, which prevented DbProviderFactory users from accessing
the server error code. (Bug#27436)

• Changing the connection string of a connection to one that changes the parameter marker after the connection had been as-
signed to a command but before the connection is opened could cause parameters to not be found. (Bug#13991)

B.26. Changes in MySQL Connector/NET 5.0.8 (21 August 2007)
Note

This version introduces a new installer technology.

Bugs fixed:

• Extracting data through XML functions within a query returns the data as System.Byte[]. This was due to Connector/NET
incorrectly identifying BLOB fields as binary, rather than text. (Bug#30233)

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table with a multiple-column
unique key index. (Bug#30204)

• A DATE field would be updated with a date/time value, causing a MySqlDataAdapter.Update() exception.
(Bug#30077)

• Fixed bug where Connector/Net was hand building some date time patterns rather than using the patterns provided under Cul-
tureInfo. This caused problems with some calendars that do not support the same ranges as Gregorian.. (Bug#29931)

• Calling SHOW CREATE PROCEDURE for routines with a hyphen in the catalog name produced a syntax error. (Bug#29526)

• The availability of a MySQL server would not be reset when using pooled connections (pooling=true). This would lead to
the server being reported as unavailable, even if the server become available while the application was still running.
(Bug#29409)

• A FormatException error would be raised if a parameter had not been found, instead of Re-
sources.ParameterMustBeDefined. (Bug#29312)

• Certain operations would not check the UsageAdvisor setting, causing log messages from the Usage Advisor even when it
was disabled. (Bug#29124)

• Using the same connection string multiple times would result in Database=dbname appearing multiple times in the resulting
string. (Bug#29123)

• Log messages would be truncated to 300 bytes. (Bug#28706)

• Accessing the results from a large query when using data compression in the connection will fail to return all the data.
(Bug#28204)

• Fixed problem where MySqlConnection.BeginTransaction checked the drivers status var before checking if the con-
nection was open. The result was that the driver could report an invalid condition on a previously opened connection.

• Fixed problem where we were not closing prepared statement handles when commands are disposed. This could lead to using
up all prepared statement handles on the server.

• Fixed the database schema collection so that it works on servers that are not properly respecting the
lower_case_table_names setting.

• Fixed problem where any attempt to not read all the records returned from a select where each row of the select is greater than
1024 bytes would hang the driver.

• Fixed problem where a command timing out just after it actually finished would cause an exception to be thrown on the com-

MySQL Connector/NET Change History

502

http://bugs.mysql.com/31185
http://bugs.mysql.com/31090
http://bugs.mysql.com/30964
http://bugs.mysql.com/30116
http://bugs.mysql.com/27436
http://bugs.mysql.com/13991
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/30233
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://bugs.mysql.com/30204
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/30077
http://bugs.mysql.com/29931
http://dev.mysql.com/doc/refman/5.0/en/show-create-procedure.html
http://bugs.mysql.com/29526
http://bugs.mysql.com/29409
http://bugs.mysql.com/29312
http://bugs.mysql.com/29124
http://bugs.mysql.com/29123
http://bugs.mysql.com/28706
http://bugs.mysql.com/28204
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_lower_case_table_names

mand timeout thread which would then be seen as an unhandled exception.

• Fixed some serious issues with command timeout and cancel that could present as exceptions about thread ownership. The issue
was that not all queries cancel the same. Some produce resultsets while others don't. ExecuteReader had to be changed to check
for this.

B.27. Changes in MySQL Connector/NET 5.0.7 (18 May 2007)
Bugs fixed:

• Running the statement SHOW PROCESSLIST would return columns as byte arrays instead of native columns. (Bug#28448)

• Building a connection string within a tight loop would show slow performance. (Bug#28167)

• Using logging (with the logging=true parameter to the connection string) would not generate a log file. (Bug#27765)

• The UNSIGNED flag for parameters in a stored procedure would be ignored when using MySqlCommandBuilder to obtain
the parameter information. (Bug#27679)

• Using MySQLDataAdapter.FillSchema() on a stored procedure would raise an exception: Invalid attempt to
access a field before calling Read(). (Bug#27668)

• If you close an open connection with an active transaction, the transaction is not automatically rolled back. (Bug#27289)

• When cloning an open MySqlClient.MySqlConnection with the Persist Security Info=False option set,
the cloned connection is not usable because the security information has not been cloned. (Bug#27269)

• Enlisting a null transaction would affect the current connection object, such that further enlistment operations to the transaction
are not possible. (Bug#26754)

• Attempting to change the Connection Protocol property within a PropertyGrid control would raise an exception.
(Bug#26472)

• The characterset property would not be identified during a connection (also affected Visual Studion Plugin). (Bug#26147,
Bug#27240)

• The CreateFormat column of the DataTypes collection did not contain a format specification for creating a new column
type. (Bug#25947)

• DATETIME fields from versions of MySQL bgefore 4.1 would be incorrectly parsed, resulting in a exception. (Bug#23342)

B.28. Changes in MySQL Connector/NET 5.0.6 (22 March 2007)
Bugs fixed:

• Publisher listed in "Add/Remove Programs" is not consistent with other MySQL products. (Bug#27253)

• DESCRIBE SQL statement returns byte arrays rather than data on MySQL versions older than 4.1.15. (Bug#27221)

• cmd.Parameters.RemoveAt("Id") will cause an error if the last item is requested. (Bug#27187)

• MySqlParameterCollection and parameters added with Insert method can not be retrieved later using Paramet-
erName. (Bug#27135)

• Exception thrown when using large values in UInt64 parameters. (Bug#27093)

• MySQL Visual Studio Plugin 1.1.2 does not work with Connector/Net 5.0.5. (Bug#26960)

B.29. Changes in MySQL Connector/NET 5.0.5 (07 March 2007)
Functionality added or changed:

• Reverted behavior that required parameter names to start with the parameter marker. We apologize for this back and forth but

MySQL Connector/NET Change History

503

http://dev.mysql.com/doc/refman/5.0/en/show-processlist.html
http://bugs.mysql.com/28448
http://bugs.mysql.com/28167
http://bugs.mysql.com/27765
http://bugs.mysql.com/27679
http://bugs.mysql.com/27668
http://bugs.mysql.com/27289
http://bugs.mysql.com/27269
http://bugs.mysql.com/26754
http://bugs.mysql.com/26472
http://bugs.mysql.com/26147
http://bugs.mysql.com/27240
http://bugs.mysql.com/25947
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/23342
http://bugs.mysql.com/27253
http://bugs.mysql.com/27221
http://bugs.mysql.com/27187
http://bugs.mysql.com/27135
http://bugs.mysql.com/27093
http://bugs.mysql.com/26960

we mistakenly changed the behavior to not match what SqlClient supports. We now support using either syntax for adding
parameters however we also respond exactly like SqlClient in that if you ask for the index of a parameter using a syntax
different from when you added the parameter, the result will be -1.

• Assembly now properly appears in the Visual Studio 2005 Add/Remove Reference dialog.

• Fixed problem that prevented use of SchemaOnly or SingleRow command behaviors with stored procedures or prepared
statements.

• Added MySqlParameterCollection.AddWithValue and marked the Add(name, value) method as obsolete.

• Return parameters created with DeriveParameters now have the name RETURN_VALUE.

• Fixed problem with parameter name hashing where the hashes were not getting updated when parameters were removed from
the collection.

• Fixed problem with calling stored functions when a return parameter was not given.

• Added Use Procedure Bodies connection string option to allow calling procedures without using procedure metadata.

Bugs fixed:

• MySqlConnection.GetSchema fails with NullReferenceException for Foreign Keys. (Bug#26660)

• Connector/NET would fail to install under Windows Vista. (Bug#26430)

• Opening a connection would be slow due to host name lookup. (Bug#26152)

• Incorrect values/formats would be applied when the OldSyntax connection string option was used. (Bug#25950)

• Registry would be incorrectly populated with installation locations. (Bug#25928)

• Times with negative values would be returned incorrectly. (Bug#25912)

• Returned data types of a DataTypes collection do not contain the right correctl CLR Datatype. (Bug#25907)

• GetSchema and DataTypes would throw an exception due to an incorrect table name. (Bug#25906)

• MySqlConnection throws an exception when connecting to MySQL v4.1.7. (Bug#25726)

• SELECT did not work correctly when using a WHERE clause containing a UTF-8 string. (Bug#25651)

• When closing and then re-opening a connection to a database, the character set specification is lost. (Bug#25614)

• Filling a table schema through a stored procedure triggers a runtime error. (Bug#25609)

• BINARY and VARBINARY columns would be returned as a string, not binary, datatype. (Bug#25605)

• A critical ConnectionPool error would result in repeated System.NullReferenceException. (Bug#25603)

• The UpdateRowSource.FirstReturnedRecord method does not work. (Bug#25569)

• When connecting to a MySQL Server earlier than version 4.1, the connection would hang when reading data. (Bug#25458)

• Using ExecuteScalar() with more than one query, where one query fails, will hang the connection. (Bug#25443)

• When a MySqlConversionException is raised on a remote object, the client application would receive a Serializa-
tionException instead. (Bug#24957)

• When connecting to a server, the return code from the connection could be zero, even though the host name was incorrect.
(Bug#24802)

• High CPU utilization would be experienced when there is no idle connection waiting when using pooled connections through
MySqlPool.GetConnection. (Bug#24373)

• Connector/NET would not compile properly when used with Mono 1.2. (Bug#24263)

• Applications would crash when calling with CommandType set to StoredProcedure.

MySQL Connector/NET Change History

504

http://bugs.mysql.com/26660
http://bugs.mysql.com/26430
http://bugs.mysql.com/26152
http://bugs.mysql.com/25950
http://bugs.mysql.com/25928
http://bugs.mysql.com/25912
http://bugs.mysql.com/25907
http://bugs.mysql.com/25906
http://bugs.mysql.com/25726
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://bugs.mysql.com/25651
http://bugs.mysql.com/25614
http://bugs.mysql.com/25609
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/25605
http://bugs.mysql.com/25603
http://bugs.mysql.com/25569
http://bugs.mysql.com/25458
http://bugs.mysql.com/25443
http://bugs.mysql.com/24957
http://bugs.mysql.com/24802
http://bugs.mysql.com/24373
http://bugs.mysql.com/24263

B.30. Changes in MySQL Connector/NET 5.0.4 (Not released)
This is a new Beta development release, fixing recently discovered bugs.

B.31. Changes in MySQL Connector/NET 5.0.3 (05 January 2007)
Functionality added or changed:

• Usage Advisor has been implemented. The Usage Advisor checks your queries and will report if you are using the connection
inefficiently.

• PerfMon hooks have been added to monitor the stored procedure cache hits and misses.

• The MySqlCommand object now supports asynchronous query methods. This is implemented useg the BeginExecuteNon-
Query and EndExecuteNonQuery methods.

• Metadata from storaed procedures and stored function execution are cached.

• The CommandBuilder.DeriveParameters function has been updated to the procedure cache.

• The ViewColumns GetSchema collection has been updated.

• Improved speed and performance by re-architecting certain sections of the code.

• Support for the embedded server and client library have been removed from this release. Support will be added back to a later
release.

• The ShapZipLib library has been replaced with the deflate support provided within .NET 2.0.

• SSL support has been updated.

Bugs fixed:

• Additional text added to error message (Bug#25178)

• An exception would be raised, or the process would hang, if SELECT privileges on a database were not granted and a stored
procedure was used. (Bug#25033)

• When adding parameter objects to a command object, if the parameter direction is set to ReturnValue before the parameter
is added to the command object then when the command is executed it throws an error. (Bug#25013)

• Using Driver.IsTooOld() would return the wrong value. (Bug#24661)

• When using a DbNull.Value as the value for a parameter value, and then later setting a specific value type, the command
would fail with an exception because the wrong type was implied from the DbNull.Value. (Bug#24565)

• Stored procedure executions are not thread safe. (Bug#23905)

• Deleting a connection to a disconnected server when using the Visual Studio Plugin would cause an assertion failure.
(Bug#23687)

• Nested transactions (which are unsupported)do not raise an error or warning. (Bug#22400)

B.32. Changes in MySQL Connector/NET 5.0.2 (06 November 2006)
Functionality added or changed:

• An Ignore Prepare option has been added to the connection string options. If enabled, prepared statements will be dis-
abled application-wide. The default for this option is true.

• Implemented a stored procedure cache. By default, the connector caches the metadata for the last 25 procedures that are seen.
You can change the numbver of procedures that are cacheds by using the procedure cache connection string.

• Important change: Due to a number of issues with the use of server-side prepared statements, Connector/NET 5.0.2 has dis-
abled their use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any

MySQL Connector/NET Change History

505

http://bugs.mysql.com/25178
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_select
http://bugs.mysql.com/25033
http://bugs.mysql.com/25013
http://bugs.mysql.com/24661
http://bugs.mysql.com/24565
http://bugs.mysql.com/23905
http://bugs.mysql.com/23687
http://bugs.mysql.com/22400

way.

To enable server-side prepared statements you must add the following configuration property to your connector string proper-
ties:

ignore prepare=false

The default value of this property is true.

Bugs fixed:

• One system where IPv6 was enabled, Connector/NET would incorrectly resolve host names. (Bug#23758)

• Column names with accented characters were not parsed properly causing malformed column names in result sets.
(Bug#23657)

• An exception would be thrown when calling GetSchemaTable and fields was null. (Bug#23538)

• A System.FormatException exception would be raised when invoking a stored procedure with an ENUM input paramet-
er. (Bug#23268)

• During installation, an antivirus error message would be raised (indicating a malicious script problem). (Bug#23245)

• Creating a connection through the Server Explorer when using the Visual Studio Plugin would fail. The installer for the Visual
Studio Plugin has been updated to ensure that Connector/NET 5.0.2 must be installed. (Bug#23071)

• Using Windows Vista (RC2) as a non-privileged user would raise a Registry key 'Global' access denied.
(Bug#22882)

• Within Mono, using the PreparedStatement interface could result in an error due to a BitArray copying error.
(Bug#18186)

• Connector/NET did not work as a data source for the SqlDataSource object used by ASP.NET 2.0. (Bug#16126)

B.33. Changes in MySQL Connector/NET 5.0.1 (01 October 2006)
Bugs fixed:

• Connector/NET on a Tukish operating system, may fail to execute certain SQL statements correctly. (Bug#22452)

• Starting a transaction on a connection created by MySql.Data.MySqlClient.MySqlClientFactory, using Begin-
Transaction without specifying an isolation level, causes the SQL statement to fail with a syntax error. (Bug#22042)

• The MySqlexception class is now derived from the DbException class. (Bug#21874)

• The # would not be accepted within column/table names, even though it was valid. (Bug#21521)

• You can now install the Connector/NET MSI package from the command line using the /passive, /quiet, /q options.
(Bug#19994)

• Submitting an empty string to a command object through prepare raises an System.IndexOutOfRangeException,
rather than a Connector/Net exception. (Bug#18391)

• Using ExecuteScalar with a datetime field, where the value of the field is "0000-00-00 00:00:00", a MySqlConver-
sionException exception would be raised. (Bug#11991)

• An MySql.Data.Types.MySqlConversionException would be raised when trying to update a row that contained a
date field, where the date field contained a zero value (0000-00-00 00:00:00). (Bug#9619)

• Executing multiple queries as part of a transaction returns There is already an openDataReader associated
with this Connection which must be closed first. (Bug#7248)

• Incorrect field/data lengths could be returned for VARCHAR UTF8 columns. Bug (#14592)

B.34. Changes in MySQL Connector/NET 5.0.0 (08 August 2006)

MySQL Connector/NET Change History

506

http://bugs.mysql.com/23758
http://bugs.mysql.com/23657
http://bugs.mysql.com/23538
http://dev.mysql.com/doc/refman/5.0/en/enum.html
http://bugs.mysql.com/23268
http://bugs.mysql.com/23245
http://bugs.mysql.com/23071
http://bugs.mysql.com/22882
http://bugs.mysql.com/18186
http://bugs.mysql.com/16126
http://bugs.mysql.com/22452
http://bugs.mysql.com/22042
http://bugs.mysql.com/21874
http://bugs.mysql.com/21521
http://bugs.mysql.com/19994
http://bugs.mysql.com/18391
http://bugs.mysql.com/11991
http://bugs.mysql.com/9619
http://bugs.mysql.com/7248
http://dev.mysql.com/doc/refman/5.0/en/char.html

Functionality added or changed:

• Replaced use of ICSharpCode with .NET 2.0 internal deflate support.

• Refactored test suite to test all protocols in a single pass.

• Added usage advisor warnings for requesting column values by the wrong type.

• Reimplemented PacketReader/PacketWriter support into MySqlStream class.

• Reworked connection string classes to be simpler and faster.

• Added procedure metadata caching.

• Added internal implemention of SHA1 so we don't have to distribute the OpenNetCF on mobile devices.

• Implemented MySqlClientFactory class.

• Added perfmon hooks for stored procedure cache hits and misses.

• Implemented classes and interfaces for ADO.Net 2.0 support.

• Added Async query methods.

• Implemented Usage Advisor.

• Completely refactored how column values are handled to avoid boxing in some cases.

• Implemented MySqlConnectionBuilder class.

Bugs fixed:

• CommandText: Question mark in comment line is being parsed as a parameter. (Bug#6214)

B.35. Changes in MySQL Connector/NET 1.0.11 (Not yet released)
Bugs fixed:

• Attempting to utilize MySQL Connector .Net version 1.0.10 throws a fatal exception under Mono when pooling is enabled.
(Bug#33682)

• Setting the size of a string parameter after the value could cause an exception. (Bug#32094)

• Creation of parameter objects with non-input direction using a constructor would fail. This was cause by some old legacy code
preventing their use. (Bug#32093)

• Memory usage could increase and decrease significantly when updating or inserting a large number of rows. (Bug#31090)

• Commands executed from within the state change handeler would fail with a NULL exception. (Bug#30964)

• Extracting data through XML functions within a query returns the data as System.Byte[]. This was due to Connector/NET
incorrectly identifying BLOB fields as binary, rather than text. (Bug#30233)

• Using compression in the MySQL connection with Connector/NET would be slower than using native (uncompressed) commu-
nication. (Bug#27865)

• Changing the connection string of a connection to one that changes the parameter marker after the connection had been as-
signed to a command but before the connection is opened could cause parameters to not be found. (Bug#13991)

B.36. Changes in MySQL Connector/NET 1.0.10 (24 August 2007)
Bugs fixed:

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table with a multiple-column

MySQL Connector/NET Change History

507

http://bugs.mysql.com/6214
http://bugs.mysql.com/33682
http://bugs.mysql.com/32094
http://bugs.mysql.com/32093
http://bugs.mysql.com/31090
http://bugs.mysql.com/30964
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/30233
http://bugs.mysql.com/27865
http://bugs.mysql.com/13991
http://dev.mysql.com/doc/refman/5.0/en/insert.html

unique key index. (Bug#30204)

• The availability of a MySQL server would not be reset when using pooled connections (pooling=true). This would lead to
the server being reported as unavailable, even if the server become available while the application was still running.
(Bug#29409)

• Publisher listed in "Add/Remove Programs" is not consistent with other MySQL products. (Bug#27253)

• MySqlParameterCollection and parameters added with Insert method can not be retrieved later using Paramet-
erName. (Bug#27135)

• BINARY and VARBINARY columns would be returned as a string, not binary, datatype. (Bug#25605)

• A critical ConnectionPool error would result in repeated System.NullReferenceException. (Bug#25603)

• When a MySqlConversionException is raised on a remote object, the client application would receive a Serializa-
tionException instead. (Bug#24957)

• High CPU utilization would be experienced when there is no idle connection waiting when using pooled connections through
MySqlPool.GetConnection. (Bug#24373)

B.37. Changes in MySQL Connector/NET 1.0.9 (02 February 2007)
Functionality added or changed:

• The ICSharpCode ZipLib is no longer used by the Connector, and is no longer distributed with it.

• Important change: Binaries for .NET 1.0 are no longer supplied with this release. If you need support for .NET 1.0, you must
build from source.

• Improved CommandBuilder.DeriveParameters to first try and use the procedure cache before querying for the stored
procedure metadata. Return parameters created with DeriveParameters now have the name RETURN_VALUE.

• An Ignore Prepare option has been added to the connection string options. If enabled, prepared statements will be dis-
abled application-wide. The default for this option is true.

• Implemented a stored procedure cache. By default, the connector caches the metadata for the last 25 procedures that are seen.
You can change the numbver of procedures that are cacheds by using the procedure cache connection string.

• Important change: Due to a number of issues with the use of server-side prepared statements, Connector/NET 5.0.2 has dis-
abled their use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any
way.

To enable server-side prepared statements you must add the following configuration property to your connector string proper-
ties:

ignore prepare=false

The default value of this property is true.

Bugs fixed:

• Times with negative values would be returned incorrectly. (Bug#25912)

• MySqlConnection throws a NullReferenceException and ArgumentNullException when connecting to
MySQL v4.1.7. (Bug#25726)

• SELECT did not work correctly when using a WHERE clause containing a UTF-8 string. (Bug#25651)

• When closing and then re-opening a connection to a database, the character set specification is lost. (Bug#25614)

• Trying to fill a table schema through a stored procedure triggers a runtime error. (Bug#25609)

• Using ExecuteScalar() with more than one query, where one query fails, will hang the connection. (Bug#25443)

• Additional text added to error message. (Bug#25178)

MySQL Connector/NET Change History

508

http://bugs.mysql.com/30204
http://bugs.mysql.com/29409
http://bugs.mysql.com/27253
http://bugs.mysql.com/27135
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/25605
http://bugs.mysql.com/25603
http://bugs.mysql.com/24957
http://bugs.mysql.com/24373
http://bugs.mysql.com/25912
http://bugs.mysql.com/25726
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://bugs.mysql.com/25651
http://bugs.mysql.com/25614
http://bugs.mysql.com/25609
http://bugs.mysql.com/25443
http://bugs.mysql.com/25178

• When adding parameter objects to a command object, if the parameter direction is set to ReturnValue before the parameter
is added to the command object then when the command is executed it throws an error. (Bug#25013)

• When connecting to a server, the return code from the connection could be zero, even though the host name was incorrect.
(Bug#24802)

• Using Driver.IsTooOld() would return the wrong value. (Bug#24661)

• When using a DbNull.Value as the value for a parameter value, and then later setting a specific value type, the command
would fail with an exception because the wrong type was implied from the DbNull.Value. (Bug#24565)

• Stored procedure executions are not thread safe. (Bug#23905)

• The CommandBuilder would mistakenly add insert parameters for a table column with auto incrementation enabled.
(Bug#23862)

• One system where IPv6 was enabled, Connector/NET would incorrectly resolve host names. (Bug#23758)

• Nested transactions do not raise an error or warning. (Bug#22400)

• An System.OverflowException would be raised when accessing a varchar field over 255 bytes. Bug (#23749)

• Within Mono, using the PreparedStatement interface could result in an error due to a BitArray copying error. (Bug
18186)

B.38. Changes in MySQL Connector/NET 1.0.8 (20 October 2006)
Functionality added or changed:

• Stored procedures are now cached.

• The method for retrieving stored procedured metadata has been changed so that users without SELECT privileges on the
mysql.proc table can use a stored procedure.

Bugs fixed:

• Connector/NET on a Tukish operating system, may fail to execute certain SQL statements correctly. (Bug#22452)

• The # would not be accepted within column/table names, even though it was valid. (Bug#21521)

• Calling Close on a connection after calling a stored procedure would trigger a NullReferenceException. (Bug#20581)

• You can now install the Connector/NET MSI package from the command line using the /passive, /quiet, /q options.
(Bug#19994)

• The DiscoverParameters function would fail when a stored procedure used a NUMERIC parameter type. (Bug#19515)

• When running a query that included a date comparison, a DateReader error would be raised. (Bug#19481)

• IDataRecord.GetString would raise NullPointerException for null values in returned rows. Method now throws
SqlNullValueException. (Bug#19294)

• Parameter substitution in queries where the order of parameters and table fields did not match would substitute incorrect values.
(Bug#19261)

• Submitting an empty string to a command object through prepare raises an System.IndexOutOfRangeException,
rather than a Connector/Net exception. (Bug#18391)

• An exception would be raised when using an output parameter to a System.String value. (Bug#17814)

• CHAR type added to MySqlDbType. (Bug#17749)

• A SELECT query on a table with a date with a value of '0000-00-00' would hang the application. (Bug#17736)

• The CommandBuilder ignored Unsigned flag at Parameter creation. (Bug#17375)

• When working with multiple threads, character set initialization would generate errors. (Bug#17106)

MySQL Connector/NET Change History

509

http://bugs.mysql.com/25013
http://bugs.mysql.com/24802
http://bugs.mysql.com/24661
http://bugs.mysql.com/24565
http://bugs.mysql.com/23905
http://bugs.mysql.com/23862
http://bugs.mysql.com/23758
http://bugs.mysql.com/22400
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_select
http://bugs.mysql.com/22452
http://bugs.mysql.com/21521
http://bugs.mysql.com/20581
http://bugs.mysql.com/19994
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/19515
http://bugs.mysql.com/19481
http://bugs.mysql.com/19294
http://bugs.mysql.com/19261
http://bugs.mysql.com/18391
http://bugs.mysql.com/17814
http://bugs.mysql.com/17749
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://bugs.mysql.com/17736
http://bugs.mysql.com/17375
http://bugs.mysql.com/17106

• When using an unsigned 64-bit integer in a stored procedure, the unsigned bit would be lost stored. (Bug#16934)

• DataReader would show the value of the previous row (or last row with non-null data) if the current row contained a date-
time field with a null value. (Bug#16884)

• Unsigned data types were not properly supported. (Bug#16788)

• The connection string parser did not allow single or double quotes in the password. (Bug#16659)

• The MySqlDateTime class did not contain constructors. (Bug#15112)

• Called MySqlCommandBuilder.DeriveParameters for a stored procedure that has no paramers would cause an ap-
plication crash. (Bug#15077)

• Using ExecuteScalar with a datetime field, where the value of the field is "0000-00-00 00:00:00", a MySqlConver-
sionException exception would be raised. (Bug#11991)

• An MySql.Data.Types.MySqlConversionException would be raised when trying to update a row that contained a
date field, where the date field contained a zero value (0000-00-00 00:00:00). (Bug#9619)

• When using MySqlDataAdapter, connections to a MySQL server may remain open and active, even though the use of the
connection has been completed and the data received. (Bug#8131)

• Executing multiple queries as part of a transaction returns There is already an openDataReader associated
with this Connection which must be closed first. (Bug#7248)

• Incorrect field/data lengths could be returned for VARCHAR UTF8 columns. Bug (#14592)

B.39. Changes in MySQL Connector/NET 1.0.7 (21 November 2005)
Bugs fixed:

• Unsigned tinyint (NET byte) would lead to and incorrectly determined parameter type from the parameter value.
(Bug#18570)

• A #42000Query was empty exception occurred when executing a query built with MySqlCommandBuilder, if the
query string ended with a semicolon. (Bug#14631)

• The parameter collection object's Add() method added parameters to the list without first checking to see whether they already
existed. Now it updates the value of the existing parameter object if it exists. (Bug#13927)

• Added support for the cp932 character set. (Bug#13806)

• Calling a stored procedure where a parameter contained special characters (such as '@') would produce an exception. Note
that ANSI_QUOTES had to be enabled to make this possible. (Bug#13753)

• The Ping() method did not update the State property of the Connection object. (Bug#13658)

• Implemented the MySqlCommandBuilder.DeriveParameters method that is used to discover the parameters for a
stored procedure. (Bug#13632)

• A statement that contained multiple references to the same parameter could not be prepared. (Bug#13541)

B.40. Changes in MySQL Connector/NET 1.0.6 (03 October 2005)
Bugs fixed:

• Connector/NET 1.0.5 could not connect on Mono. (Bug#13345)

• Serializing a parameter failed if the first value passed in was NULL. (Bug#13276)

• Field names that contained the following characters caused errors: ()%<>/ (Bug#13036)

• The nant build sequence had problems. (Bug#12978)

• The Connector/NET 1.0.5 installer would not install alongside Connector/NET 1.0.4. (Bug#12835)

MySQL Connector/NET Change History

510

http://bugs.mysql.com/16934
http://bugs.mysql.com/16884
http://bugs.mysql.com/16788
http://bugs.mysql.com/16659
http://bugs.mysql.com/15112
http://bugs.mysql.com/15077
http://bugs.mysql.com/11991
http://bugs.mysql.com/9619
http://bugs.mysql.com/8131
http://bugs.mysql.com/7248
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://bugs.mysql.com/18570
http://bugs.mysql.com/14631
http://bugs.mysql.com/13927
http://bugs.mysql.com/13806
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html#sqlmode_ansi_quotes
http://bugs.mysql.com/13753
http://bugs.mysql.com/13658
http://bugs.mysql.com/13632
http://bugs.mysql.com/13541
http://bugs.mysql.com/13345
http://bugs.mysql.com/13276
http://bugs.mysql.com/13036
http://bugs.mysql.com/12978
http://bugs.mysql.com/12835

B.41. Changes in MySQL Connector/NET 1.0.5 (29 August 2005)
Bugs fixed:

• Connector/NET could not connect to MySQL 4.1.14. (Bug#12771)

• With multiple hosts in the connection string, Connector/NET would not connect to the last host in the list. (Bug#12628)

• The ConnectionString property could not be set when a MySqlConnection object was added with the designer.
(Bug#12551, Bug#8724)

• The cp1250 character set was not supported. (Bug#11621)

• A call to a stored procedure caused an exception if the stored procedure had no parameters. (Bug#11542)

• Certain malformed queries would trigger a Connection must be valid and open error message. (Bug#11490)

• Trying to use a stored procedure when Connection.Database was not populated generated an exception. (Bug#11450)

• Connector/NET interpreted the new decimal data type as a byte array. (Bug#11294)

• Added support to call a stored function from Connector/NET. (Bug#10644)

• Connection could fail when .NET thread pool had no available worker threads. (Bug#10637)

• Calling MySqlConnection.clone when a connection string had not yet been set on the original connection would gener-
ate an error. (Bug#10281)

• Decimal parameters caused syntax errors. (Bug#10152, Bug#11550, Bug#10486)

• Parameters were not recognized when they were separated by linefeeds. (Bug#9722)

• The MySqlCommandBuilder class could not handle queries that referenced tables in a database other than the default data-
base. (Bug#8382)

• Trying to read a TIMESTAMP column generated an exception. (Bug#7951)

• Connector/NET could not work properly with certain regional settings. (WL#8228)

B.42. Changes in MySQL Connector/NET 1.0.4 (20 January 2005)
Bugs fixed:

• MySqlReader.GetInt32 throws exception if column is unsigned. (Bug#7755)

• Quote character \222 not quoted in EscapeString. (Bug#7724)

• GetBytes is working no more. (Bug#7704)

• MySqlDataReader.GetString(index) returns non-Null value when field is Null. (Bug#7612)

• Clone method bug in MySqlCommand. (Bug#7478)

• Problem with Multiple resultsets. (Bug#7436)

• MySqlAdapter.Fill method throws error message Non-negative number required. (Bug#7345)

• MySqlCommand.Connection returns an IDbConnection. (Bug#7258)

• Calling prepare causing exception. (Bug#7243)

• Fixed problem with shared memory connections.

• Added or filled out several more topics in the API reference documentation.

• Fixed another small problem with prepared statements.

• Fixed problem that causes named pipes to not work with some blob functionality.

MySQL Connector/NET Change History

511

http://bugs.mysql.com/12771
http://bugs.mysql.com/12628
http://bugs.mysql.com/12551
http://bugs.mysql.com/8724
http://bugs.mysql.com/11621
http://bugs.mysql.com/11542
http://bugs.mysql.com/11490
http://bugs.mysql.com/11450
http://bugs.mysql.com/11294
http://bugs.mysql.com/10644
http://bugs.mysql.com/10637
http://bugs.mysql.com/10281
http://bugs.mysql.com/10152
http://bugs.mysql.com/11550
http://bugs.mysql.com/10486
http://bugs.mysql.com/9722
http://bugs.mysql.com/8382
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/7951
http://bugs.mysql.com/7755
http://bugs.mysql.com/7724
http://bugs.mysql.com/7704
http://bugs.mysql.com/7612
http://bugs.mysql.com/7478
http://bugs.mysql.com/7436
http://bugs.mysql.com/7345
http://bugs.mysql.com/7258
http://bugs.mysql.com/7243

B.43. Changes in MySQL Connector/NET 1.0.3 (12 October 2004
gamma)

Bugs fixed:

• Invalid query string when using inout parameters (Bug#7133)

• Inserting DateTime causes System.InvalidCastException to be thrown. (Bug#7132)

• MySqlDateTime in Datatables sorting by Text, not Date. (Bug#7032)

• Exception stack trace lost when re-throwing exceptions. (Bug#6983)

• Errors in parsing stored procedure parameters. (Bug#6902)

• InvalidCast when using DATE_ADD-function. (Bug#6879)

• Int64 Support in MySqlCommand Parameters. (Bug#6863)

• Test suite fails with MySQL 4.0 because of case sensitivity of table names. (Bug#6831)

• MySqlDataReader.GetChar(int i) throws IndexOutOfRange exception. (Bug#6770)

• Integer "out" parameter from stored procedure returned as string. (Bug#6668)

• An Open Connection has been Closed by the Host System. (Bug#6634)

• Fixed Invalid character set index: 200. (Bug#6547)

• Connections now do not have to give a database on the connection string.

• Installer now includes options to install into GAC and create START MENU items.

• Fixed major problem with detecting null values when using prepared statements.

• Fixed problem where multiple resultsets having different numbers of columns would cause a problem.

• Added ServerThread property to MySqlConnection to expose server thread id.

• Added Ping method to MySqlConnection.

• Changed the name of the test suite to MySql.Data.Tests.dll.

• Now SHOW COLLATION is used upon connection to retrieve the full list of charset ids.

• Made MySQL the default named pipe name.

B.44. Changes in MySQL Connector/NET 1.0.2 (15 November 2004
gamma)

Bugs fixed:

• Fixed Objects not being disposed (Bug#6649)

• Fixed Charset-map for UCS-2 (Bug#6541)

• Fixed Zero date "0000-00-00" is returned wrong when filling Dataset (Bug#6429)

• Fixed double type handling in MySqlParameter(string parameterName, object value) (Bug#6428)

• Fixed Installation directory ignored using custom installation (Bug#6329)

• Fixed #HY000 Illegal mix of collations (latin1_swedish_ci,IMPLICIT) and (utf8_general_ (Bug#6322)

• Added the TableEditor CS and VB sample

• Added charset connection string option

MySQL Connector/NET Change History

512

http://bugs.mysql.com/7133
http://bugs.mysql.com/7132
http://bugs.mysql.com/7032
http://bugs.mysql.com/6983
http://bugs.mysql.com/6902
http://bugs.mysql.com/6879
http://bugs.mysql.com/6863
http://bugs.mysql.com/6831
http://bugs.mysql.com/6770
http://bugs.mysql.com/6668
http://bugs.mysql.com/6634
http://bugs.mysql.com/6547
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://bugs.mysql.com/6649
http://bugs.mysql.com/6541
http://bugs.mysql.com/6429
http://bugs.mysql.com/6428
http://bugs.mysql.com/6329
http://bugs.mysql.com/6322

• Fixed problem with MySqlBinary where string values could not be used to update extended text columns

• Provider is now using character set specified by server as default

• Updated the installer to include the new samples

• Fixed problem where setting command text leaves the command in a prepared state

• Fixed Long inserts take very long time (Bu #5453)

• Fixed problem where calling stored procedures might cause an "Illegal mix of collations" problem.

B.45. Changes in MySQL Connector/NET 1.0.1 (27 October 2004
beta)

Bugs fixed:

• Fixed IndexOutOfBounds when reading BLOB with DataReader with GetString(index) (Bug#6230)

• Fixed GetBoolean returns wrong values (Bug#6227)

• Fixed Method TokenizeSql() uses only a limited set of valid characters for parameters (Bug#6217)

• Fixed NET Connector source missing resx files (Bug#6216)

• Fixed System.OverflowException when using YEAR datatype (Bug#6036)

• Fixed MySqlDateTime sets IsZero property on all subseq.records after first zero found (Bug#6006)

• Fixed serializing of floating point parameters (double, numeric, single, decimal) (Bug#5900)

• Fixed missing Reference in DbType setter (Bug#5897)

• Fixed Parsing the ';' char (Bug#5876)

• Fixed DBNull Values causing problems with retrieving/updating queries. (Bug#5798)

• IsNullable error (Bug#5796)

• Fixed problem where MySqlParameterCollection.Add() would throw unclear exception when given a null value (Bug#5621)

• Fixed construtor initialize problems in MySqlCommand() (Bug#5613)

• Fixed Yet Another "object reference not set to an instance of an object" (Bug#5496)

• Fixed Can't display Chinese correctly (Bug#5288)

• Fixed MySqlDataReader and 'show tables from ...' behavior (Bug#5256)

• Fixed problem in PacketReader where it could try to allocate the wrong buffer size in EnsureCapacity

• Fixed problem where using old syntax while using the interfaces caused problems

• Fixed Bug#5458 Calling GetChars on a longtext column throws an exception

• Added test case for resetting the command text on a prepared command

• Fixed Bug#5388 DataReader reports all rows as NULL if one row is NULL

• Fixed problem where connection lifetime on the connect string was not being respected

• Fixed Bug#5602 Possible bug in MySqlParameter(string, object) constructor

• Field buffers being reused to decrease memory allocations and increase speed

• Fixed Bug#5392 MySqlCommand sees "?" as parameters in string literals

• Added Aggregate function test (wasn't really a bug)

MySQL Connector/NET Change History

513

http://bugs.mysql.com/6230
http://bugs.mysql.com/6227
http://bugs.mysql.com/6217
http://bugs.mysql.com/6216
http://bugs.mysql.com/6036
http://bugs.mysql.com/6006
http://bugs.mysql.com/5900
http://bugs.mysql.com/5897
http://bugs.mysql.com/5876
http://bugs.mysql.com/5798
http://bugs.mysql.com/5796
http://bugs.mysql.com/5621
http://bugs.mysql.com/5613
http://bugs.mysql.com/5496
http://bugs.mysql.com/5288
http://bugs.mysql.com/5256
http://bugs.mysql.com/5458
http://bugs.mysql.com/5388
http://bugs.mysql.com/5602
http://bugs.mysql.com/5392

• Using PacketWriter instead of Packet for writing to streams

• Implemented SequentialAccess

• Fixed problem with ConnectionInternal where a key might be added more than once

• Fixed Russian character support as well

• Fixed Bug#5474 cannot run a stored procedure populating mysqlcommand.parameters

• Fixed problem where connector was not issuing a CMD_QUIT before closing the socket

• Fixed problem where Min Pool Size was not being respected

• Refactored compression code into CompressedStream to clean up NativeDriver

• CP1252 is now used for Latin1 only when the server is 4.1.2 and later

• Fixed Bug#5469 Setting DbType throws NullReferenceException

• Virtualized driver subsystem so future releases could easily support client or embedded server support

B.46. Changes in MySQL Connector/NET 1.0.0 (01 September 2004)
Bugs fixed:

• Thai encoding not correctly supported. (Bug#3889)

• Bumped version number to 1.0.0 for beta 1 release.

• Removed all of the XML comment warnings.

• Added COPYING.rtf file for use in installer.

• Updated many of the test cases.

• Fixed problem with using compression.

• Removed some last references to ByteFX.

B.47. Changes in MySQL Connector/NET Version 0.9.0 (30 August
2004)

• Added test fixture for prepared statements.

• All type classes now implement a SerializeBinary method for sending their data to a PacketWriter.

• Added PacketWriter class that will enable future low-memory large object handling.

• Fixed many small bugs in running prepared statements and stored procedures.

• Changed command so that an exception will not be thrown in executing a stored procedure with parameters in old syntax mode.

• SingleRow behavior now working right even with limit.

• GetBytes now only works on binary columns.

• Logger now truncates long sql commands so blob columns do not blow out our log.

• host and database now have a default value of "" unless otherwise set.

• Connection Timeout seems to be ignored. (Bug#5214)

• Added test case for bug# 5051: GetSchema not working correctly.

• Fixed problem where GetSchema would return false for IsUnique when the column is key.

MySQL Connector/NET Change History

514

http://bugs.mysql.com/5474
http://bugs.mysql.com/5469
http://bugs.mysql.com/3889
http://bugs.mysql.com/5214

• MySqlDataReader GetXXX methods now using the field level MySqlValue object and not performing conversions.

• DataReader returning NULL for time column. (Bug#5097)

• Added test case for LOAD DATA LOCAL INFILE.

• Added replacetext custom nant task.

• Added CommandBuilderTest fixture.

• Added Last One Wins feature to CommandBuilder.

• Fixed persist security info case problem.

• Fixed GetBool so that 1, true, "true", and "yes" all count as true.

• Make parameter mark configurable.

• Added the "old syntax" connection string parameter to allow use of @ parameter marker.

• MySqlCommandBuilder. (Bug#4658)

• ByteFX.MySqlClient caches passwords if Persist Security Info is false. (Bug#4864)

• Updated license banner in all source files to include FLOSS exception.

• Added new .Types namespace and implementations for most current MySql types.

• Added MySqlField41 as a subclass of MySqlField.

• Changed many classes to now use the new .Types types.

• Changed type enum int to Int32, short to Int16, and bigint to Int64.

• Added dummy types UInt16, UInt32, and UInt64 to allow an unsigned parameter to be made.

• Connections are now reset when they are pulled from the connection pool.

• Refactored auth code in driver so it can be used for both auth and reset.

• Added UserReset test in PoolingTests.cs.

• Connections are now reset using COM_CHANGE_USER when pulled from the pool.

• Implemented SingleResultSet behavior.

• Implemented support of unicode.

• Added char set mappings for utf-8 and ucs-2.

• Time fields overflow using bytefx .net mysql driver (Bug#4520)

• Modified time test in data type test fixture to check for time spans where hours > 24.

• Wrong string with backslash escaping in ByteFx.Data.MySqlClient.MySqlParameter. (Bug#4505)

• Added code to Parameter test case TestQuoting to test for backslashes.

• MySqlCommandBuilder fails with multi-word column names. (Bug#4486)

• Fixed bug in TokenizeSql where underscore would terminate character capture in parameter name.

• Added test case for spaces in column names.

• MySqlDataReader.GetBytes do not work correctly. (Bug#4324)

• Added GetBytes() test case to DataReader test fixture.

• Now reading all server variables in InternalConnection.Configure into Hashtable.

• Now using string[] for index map in CharSetMap.

MySQL Connector/NET Change History

515

http://bugs.mysql.com/5097
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://bugs.mysql.com/4658
http://bugs.mysql.com/4864
http://bugs.mysql.com/4520
http://bugs.mysql.com/4505
http://bugs.mysql.com/4486
http://bugs.mysql.com/4324

• Added CRInSQL test case for carriage returns in SQL.

• Setting maxPacketSize to default value in Driver.ctor.

• Setting MySqlDbType on a parameter doesn't set generic type. (Bug#4442)

• Removed obsolete data types Long and LongLong.

• Overflow exception thrown when using "use pipe" on connection string. (Bug#4071)

• Changed "use pipe" keyword to "pipe name" or just "pipe".

• Allow reading multiple resultsets from a single query.

• Added flags attribute to ServerStatusFlags enum.

• Changed name of ServerStatus enum to ServerStatusFlags.

• Inserted data row doesn't update properly.

• Error processing show create table. (Bug#4074)

• Change Packet.ReadLenInteger to ReadPackedLong and added packet.ReadPackedInteger that always
reads integers packed with 2,3,4.

• Added syntax.cs test fixture to test various SQL syntax bugs.

• Improper handling of time values. Now time value of 00:00:00 is not treated as null. (Bug#4149)

• Moved all test suite files into TestSuite folder.

• Fixed bug where null column would move the result packet pointer backward.

• Added new nant build script.

• Clear tablename so it will be regen'ed properly during the next GenerateSchema. (Bug#3917)

• GetValues was always returning zero and was also always trying to copy all fields rather than respecting the size of the array
passed in. (Bug#3915)

• Implemented shared memory access protocol.

• Implemented prepared statements for MySQL 4.1.

• Implemented stored procedures for MySQL 5.0.

• Renamed MySqlInternalConnection to InternalConnection.

• SQL is now parsed as chars, fixes problems with other languages.

• Added logging and allow batch connection string options.

• RowUpdating event not set when setting the DataAdapter property. (Bug#3888)

• Fixed bug in char set mapping.

• Implemented 4.1 authentication.

• Improved open/auth code in driver.

• Improved how connection bits are set during connection.

• Database name is now passed to server during initial handshake.

• Changed namespace for client to MySql.Data.MySqlClient.

• Changed assembly name of client to MySql.Data.dll.

• Changed license text in all source files to GPL.

• Added the MySqlClient.build Nant file.

MySQL Connector/NET Change History

516

http://bugs.mysql.com/4442
http://bugs.mysql.com/4071
http://bugs.mysql.com/4074
http://bugs.mysql.com/4149
http://bugs.mysql.com/3917
http://bugs.mysql.com/3915
http://bugs.mysql.com/3888

• Removed the mono batch files.

• Moved some of the unused files into notused folder so nant build file can use wildcards.

• Implemented shared memory access.

• Major revamp in code structure.

• Prepared statements now working for MySql 4.1.1 and later.

• Finished implementing auth for 4.0, 4.1.0, and 4.1.1.

• Changed namespace from MySQL.Data.MySQLClient back to MySql.Data.MySqlClient.

• Fixed bug in CharSetMapping where it was trying to use text names as ints.

• Changed namespace to MySQL.Data.MySQLClient.

• Integrated auth changes from UC2004.

• Fixed bug where calling any of the GetXXX methods on a datareader before or after reading data would not throw the appropri-
ate exception (thanks Luca Morelli).

• Added TimeSpan code in parameter.cs to properly serialize a timespan object to mysql time format (thanks Gianluca
Colombo).

• Added TimeStamp to parameter serialization code. Prevented DataAdatper updates from working right (thanks Michael
King).

• Fixed a misspelling in MySqlHelper.cs (thanks Patrick Kristiansen).

B.48. Changes in MySQL Connector/NET Version 0.76

• Driver now using charset number given in handshake to create encoding.

• Changed command editor to point to MySqlClient.Design.

• Fixed bug in Version.isAtLeast.

• Changed DBConnectionString to support changes done to MySqlConnectionString.

• Removed SqlCommandEditor and DataAdapterPreviewDialog.

• Using new long return values in many places.

• Integrated new CompressedStream class.

• Changed ConnectionString and added attributes to allow it to be used in MySqlClient.Design.

• Changed packet.cs to support newer lengths in ReadLenInteger.

• Changed other classes to use new properties and fields of MySqlConnectionString.

• ConnectionInternal is now using PING to see whether the server is alive.

• Moved toolbox bitmaps into resource folder.

• Changed field.cs to allow values to come directly from row buffer.

• Changed to use the new driver.Send syntax.

• Using a new packet queueing system.

• Started work handling the "broken" compression packet handling.

• Fixed bug in StreamCreator where failure to connect to a host would continue to loop infinitly (thanks Kevin Casella).

• Improved connectstring handling.

MySQL Connector/NET Change History

517

• Moved designers into Pro product.

• Removed some old commented out code from command.cs.

• Fixed a problem with compression.

• Fixed connection object where an exception throw prior to the connection opening would not leave the connection in the con-
necting state (thanks Chris Cline).

• Added GUID support.

• Fixed sequence out of order bug (thanks Mark Reay).

B.49. Changes in MySQL Connector/NET Version 0.75

• Enum values now supported as parameter values (thanks Philipp Sumi).

• Year datatype now supported.

• Fixed compression.

• Fixed bug where a parameter with a TimeSpan as the value would not serialize properly.

• Fixed bug where default constructor would not set default connection string values.

• Added some XML comments to some members.

• Work to fix/improve compression handling.

• Improved ConnectionString handling so that it better matches the standard set by SqlClient.

• A MySqlException is now thrown if a user name is not included in the connection string.

• Localhost is now used as the default if not specified on the connection string.

• An exception is now thrown if an attempt is made to set the connection string while the connection is open.

• Small changes to ConnectionString docs.

• Removed MultiHostStream and MySqlStream. Replaced it with Common/StreamCreator.

• Added support for Use Pipe connection string value.

• Added Platform class for easier access to platform utility functions.

• Fixed small pooling bug where new connection was not getting created after IsAlive fails.

• Added Platform.cs and StreamCreator.cs.

• Fixed Field.cs to properly handle 4.1 style timestamps.

• Changed Common.Version to Common.DBVersion to avoid name conflict.

• Fixed field.cs so that text columns return the right field type.

• Added MySqlError class to provide some reference for error codes (thanks Geert Veenstra).

B.50. Changes in MySQL Connector/NET Version 0.74

• Added Unix socket support (thanks Mohammad DAMT).

• Only calling Thread.Sleep when no data is available.

• Improved escaping of quote characters in parameter data.

• Removed misleading comments from parameter.cs.

MySQL Connector/NET Change History

518

• Fixed pooling bug.

• Fixed ConnectionString editor dialog (thanks marco p (pomarc)).

• UserId now supported in connection strings (thanks Jeff Neeley).

• Attempting to create a parameter that is not input throws an exception (thanks Ryan Gregg).

• Added much documentation.

• Checked in new MultiHostStream capability. Big thanks to Dan Guisinger for this. he originally submitted the code and
idea of supporting multiple machines on the connect string.

• Added a lot of documentation.

• Fixed speed issue with 0.73.

• Changed to Thread.Sleep(0) in MySqlDataStream to help optimize the case where it doesn't need to wait (thanks Todd Ger-
man).

• Prepopulating the idlepools to MinPoolSize.

• Fixed MySqlPool deadlock condition as well as stupid bug where CreateNewPooledConnection was not ever adding new
connections to the pool. Also fixed MySqlStream.ReadBytes and ReadByte to not use TicksPerSecond which does
not appear to always be right. (thanks Matthew J. Peddlesden)

• Fix for precision and scale (thanks Matthew J. Peddlesden).

• Added Thread.Sleep(1) to stream reading methods to be more cpu friendly (thanks Sean McGinnis).

• Fixed problem where ExecuteReader would sometime return null (thanks Lloyd Dupont).

• Fixed major bug with null field handling (thanks Naucki).

• Enclosed queries for max_allowed_packet and characterset inside try catch (and set defaults).

• Fixed problem where socket was not getting closed properly (thanks Steve!).

• Fixed problem where ExecuteNonQuery was not always returning the right value.

• Fixed InternalConnection to not use @@session.max_allowed_packet but use @@max_allowed_packet.
(Thanks Miguel)

• Added many new XML doc lines.

• Fixed sql parsing to not send empty queries (thanks Rory).

• Fixed problem where the reader was not unpeeking the packet on close.

• Fixed problem where user variables were not being handled (thanks Sami Vaaraniemi).

• Fixed loop checking in the MySqlPool (thanks Steve M. Brown)

• Fixed ParameterCollection.Add method to match SqlClient (thanks Joshua Mouch).

• Fixed ConnectionString parsing to handle no and yes for boolean and not lowercase values (thanks Naucki).

• Added InternalConnection class, changes to pooling.

• Implemented Persist Security Info.

• Added security.cs and version.cs to project

• Fixed DateTime handling in Parameter.cs (thanks Burkhard Perkens-Golomb).

• Fixed parameter serialization where some types would throw a cast exception.

• Fixed DataReader to convert all returned values to prevent casting errors (thanks Keith Murray).

• Added code to Command.ExecuteReader to return null if the initial SQL statement throws an exception (thanks Burkhard
Perkens-Golomb).

MySQL Connector/NET Change History

519

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet

• Fixed ExecuteScalar bug introduced with restructure.

• Restructure to allow for LOCAL DATA INFILE and better sequencing of packets.

• Fixed several bugs related to restructure.

• Early work done to support more secure passwords in Mysql 4.1. Old passwords in 4.1 not supported yet.

• Parameters appearing after system parameters are now handled correctly (Adam M. (adammil)).

• Strings can now be assigned directly to blob fields (Adam M.).

• Fixed float parameters (thanks Pent).

• Improved Parameter constructor and ParameterCollection.Add methods to better match SqlClient (thanks Joshua
Mouch).

• Corrected Connection.CreateCommand to return a MySqlCommand type.

• Fixed connection string designer dialog box problem (thanks Abraham Guyt).

• Fixed problem with sending commands not always reading the response packet (thanks Joshua Mouch).

• Fixed parameter serialization where some blobs types were not being handled (thanks Sean McGinnis).

• Removed spurious MessageBox.show from DataReader code (thanks Joshua Mouch).

• Fixed a nasty bug in the split sql code (thanks everyone!).

B.51. Changes in MySQL Connector/NET Version 0.71

• Fixed bug in MySqlStream where too much data could attempt to be read (thanks Peter Belbin)

• Implemented HasRows (thanks Nash Pherson).

• Fixed bug where tables with more than 252 columns cause an exception (thanks Joshua Kessler).

• Fixed bug where SQL statements ending in ; would cause a problem (thanks Shane Krueger).

• Fixed bug in driver where error messages were getting truncated by 1 character (thanks Shane Krueger).

• Made MySqlException serializable (thanks Mathias Hasselmann).

B.52. Changes in MySQL Connector/NET Version 0.70

• Updated some of the character code pages to be more accurate.

• Fixed problem where readers could be opened on connections that had readers open.

• Moved test to separate assembly MySqlClientTests.

• Fixed stupid problem in driver with sequence out of order (Thanks Peter Belbin).

• Added some pipe tests.

• Increased default max pool size to 50.

• Compiles with Mono 0-24.

• Fixed connection and data reader dispose problems.

• Added String datatype handling to parameter serialization.

• Fixed sequence problem in driver that occurred after thrown exception (thanks Burkhard Perkens-Golomb).

• Added support for CommandBehavior.SingleRow to DataReader.

MySQL Connector/NET Change History

520

• Fixed command sql processing so quotes are better handled (thanks Theo Spears).

• Fixed parsing of double, single, and decimal values to account for non-English separators. You still have to use the right syntax
if you using hard coded sql, but if you use parameters the code will convert floating point types to use '.' appropriately internal
both into the server and out.

• Added MySqlStream class to simplify timeouts and driver coding.

• Fixed DataReader so that it is closed properly when the associated connection is closed. [thanks smishra]

• Made client more SqlClient compliant so that DataReaders have to be closed before the connection can be used to run another
command.

• Improved DBNull.Value handling in the fields.

• Added several unit tests.

• Fixed MySqlException base class.

• Improved driver coding

• Fixed bug where NextResult was returning false on the last resultset.

• Added more tests for MySQL.

• Improved casting problems by equating unsigned 32bit values to Int64 and unsigned 16bit values to Int32, and so forth.

• Added new constructor for MySqlParameter for (name, type, size, srccol)

• Fixed bug in MySqlDataReader where it didn't check for null fieldlist before returning field count.

• Started adding MySqlClient unit tests (added MySqlClient/Tests folder and some test cases).

• Fixed some things in Connection String handling.

• Moved INIT_DB to MySqlPool. I may move it again, this is in preparation of the conference.

• Fixed bug inside CommandBuilder that prevented inserts from happening properly.

• Reworked some of the internals so that all three execute methods of Command worked properly.

• Fixed many small bugs found during benchmarking.

• The first cut of CoonectionPooling is working. "min pool size" and "max pool size" are respected.

• Work to enable multiple resultsets to be returned.

• Character sets are handled much more intelligently now. The driver queries MySQL at startup for the default character set. That
character set is then used for conversions if that code page can be loaded. If not, then the default code page for the current OS is
used.

• Added code to save the inferred type in the name,value constructor of Parameter.

• Also, inferred type if value of null parameter is changed using Value property.

• Converted all files to use proper Camel case. MySQL is now MySql in all files. PgSQL is now PgSql.

• Added attribute to PgSql code to prevent designer from trying to show.

• Added MySQLDbType property to Parameter object and added proper conversion code to convert from DbType to MySQLD-
bType).

• Removed unused ObjectToString method from MySQLParameter.cs.

• Fixed Add(..) method in ParameterCollection so that it doesn't use Add(name, value) instead.

• Fixed IndexOf and Contains in ParameterCollection to be aware that parameter names are now stored without @.

• Fixed Command.ConvertSQLToBytes so it only allows characters that can be in MySQL variable names.

• Fixed DataReader and Field so that blob fields read their data from Field.cs and GetBytes works right.

MySQL Connector/NET Change History

521

• Added simple query builder editor to CommandText property of MySQLCommand.

• Fixed CommandBuilder and Parameter serialization to account for Parameters not storing @ in their names.

• Removed MySQLFieldType enum from Field.cs. Now using MySQLDbType enum.

• Added Designer attribute to several classes to prevent designer view when using VS.Net.

• Fixed Initial catalog typo in ConnectionString designer.

• Removed 3 parameter constructor for MySQLParameter that conflicted with (name, type, value).

• Changed MySQLParameter so paramName is now stored without leading @ (this fixed null inserts when using designer).

• Changed TypeConverter for MySQLParameter to use the constructor with all properties.

B.53. Changes in MySQL Connector/NET Version 0.68

• Fixed sequence issue in driver.

• Added DbParametersEditor to make parameter editing more like SqlClient.

• Fixed Command class so that parameters can be edited using the designer

• Update connection string designer to support Use Compression flag.

• Fixed string encoding so that European characters will work correctly.

• Creating base classes to aid in building new data providers.

• Added support for UID key in connection string.

• Field, parameter, command now using DBNull.Value instead of null.

• CommandBuilder using DBNull.Value.

• CommandBuilder now builds insert command correctly when an auto_insert field is not present.

• Field now uses typeof keyword to return System.Types (performance).

B.54. Changes in MySQL Connector/NET Version 0.65

• MySQLCommandBuilder now implemented.

• Transaction support now implemented (not all table types support this).

• GetSchemaTable fixed to not use xsd (for Mono).

• Driver is now Mono-compatible.

• TIME data type now supported.

• More work to improve Timestamp data type handling.

• Changed signatures of all classes to match corresponding SqlClient classes.

B.55. Changes in MySQL Connector/NET Version 0.60

• Protocol compression using SharpZipLib (www.icsharpcode.net).

• Named pipes on Windows now working properly.

• Work done to improve Timestamp data type handling.

MySQL Connector/NET Change History

522

• Implemented IEnumerable on DataReader so DataGrid would work.

B.56. Changes in MySQL Connector/NET Version 0.50

• Speed increased dramatically by removing bugging network sync code.

• Driver no longer buffers rows of data (more ADO.Net compliant).

• Conversion bugs related to TIMESTAMP and DATETIME fields fixed.

MySQL Connector/NET Change History

523

http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html

Appendix C. MySQL Visual Studio Plugin Change History
Note

As of Connector/NET 5.1.2 (14 June 2007), the Visual Studion Plugin is part of the main Connector/NET package.
For the change history for the Visual Studio Plugin, see Appendix B, MySQL Connector/NET Change History.

C.1. Changes in MySQL Visual Studio Plugin 1.0.3 (Not yet released)
Bugs fixed:

• Running queries based on a stored procedure would cause the data set designer to terminate. (Bugs #26364)

• DataSet wizard would show all tables instead of only the tables available within the selected database. (Bugs #26348)

C.2. Changes in MySQL Visual Studio Plugin 1.0.2 (Not yet released)
Bugs fixed:

• The Add Connection dialog of the Server Explorer would freeze when accessing databases with capitalized characters in their
name. (Bug#24875)

• Creating a connection through the Server Explorer when using the Visual Studio Plugin would fail. The installer for the Visual
Studio Plugin has been updated to ensure that Connector/NET 5.0.2 must be installed. (Bug#23071)

C.3. Changes in MySQL Visual Studio Plugin 1.0.1 (4 October 2006)
This is a bug fix release to resolve an incompatibility issue with Connector/NET 5.0.1.

It is critical that this release only be used with Connector/NET 5.0.1. After installing Connector/NET 5.0.1, you will need to make a
small change in your machine.config file. This file should be located at
%win%\Microsoft.Net\Framework\v2.0.50727\CONFIG\machine.config (%win% should be the location of
your Windows folder). Near the bottom of the file you will see a line like this:

<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient"
description=".Net Framework Data Provider for MySQL"
type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data"/>

It needs to be changed to be like this:

<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient"
description=".Net Framework Data Provider for MySQL"
type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data,
Version=5.0.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d"/>

C.4. Changes in MySQL Visual Studio Plugin 1.0.0 (4 October 2006)
Bugs fixed:

• Ability to work with MySQL objects (tables, views, stored procedures, etc) from within Server Explorer.

• DDEX (Data Designer Extensibility) compatibility.

524

http://bugs.mysql.com/24875
http://bugs.mysql.com/23071

Appendix D. MySQL Connector/J Change History

D.1. Changes in MySQL Connector/J 5.1.x

D.1.1. Changes in MySQL Connector/J 5.1.8 (Not yet released)
Bugs fixed:

• The result set returned by getIndexInfo() did not have the format defined in the JDBC API specifications. The fourth
column, DATA_TYPE, of the result set should be of type BOOLEAN. Connector/J however returns CHAR. (Bug#44869)

• The result set returned by getTypeInfo() did not have the format defined in the JDBC API specifications. The second
column, DATA_TYPE, of the result set should be of type INTEGER. Connector/J however returns SMALLINT. (Bug#44868)

• The DEFERRABILITY column in database metadata result sets was expected to be of type SHORT. However, Connector/J re-
turned it as INTEGER.

This affected the following methods: getImportedKeys(), getExportedKeys(), getCrossReference().
(Bug#44867)

• The result set returned by getColumns() did not have the format defined in the JDBC API specifications. The fifth column,
DATA_TYPE, of the result set should be of type INTEGER. Connector/J however returns SMALLINT. (Bug#44865)

• The result set returned by getVersionColumns() did not have the format defined in the JDBC API specifications. The
third column, DATA_TYPE, of the result set should be of type INTEGER. Connector/J however returns SMALLINT.
(Bug#44863)

• The result set returned by getBestRowIdentifier() did not have the format defined in the JDBC API specifications.
The third column, DATA_TYPE, of the result set should be of type INTEGER. Connector/J however returns SMALLINT.
(Bug#44862)

• Connector/J contains logic to generate a message text specifically for streaming result sets when there are Communication-
sException exceptions generated. However, this code was never reached.

In the CommunicationsException code:

private boolean streamingResultSetInPlay = false;

public CommunicationsException(ConnectionImpl conn, long lastPacketSentTimeMs,
long lastPacketReceivedTimeMs, Exception underlyingException) {

this.exceptionMessage = SQLError.createLinkFailureMessageBasedOnHeuristics(conn,
lastPacketSentTimeMs, lastPacketReceivedTimeMs, underlyingException,
this.streamingResultSetInPlay);

streamingResultSetInPlay was always false, which in the following code in SQLEr-
ror.createLinkFailureMessageBasedOnHeuristics() never being executed:

if (streamingResultSetInPlay) {
exceptionMessageBuf.append(
Messages.getString("CommunicationsException.ClientWasStreaming")); //$NON-NLS-1$

} else {
...

(Bug#44588)

• Statement.getGeneratedKeys() retained result set instances until the statement was closed. This caused memory
leaks for long-lived statements, or statements used in tight loops. (Bug#44056)

• LoadBalancingConnectionProxy.doPing() did not have blacklist awareness.

LoadBalancingConnectionProxy implemented doPing() to ping all underlying connections, but it threw any excep-
tions it encountered during this process.

With the global blacklist enabled, it catches these exceptions, adds the host to the global blacklist, and only throws an exception
if all hosts are down. (Bug#43421)

• When the MySQL Server was upgraded from 4.0 to 5.0, the Connector/J application then failed to connect to the server. This
was because authentication failed when the application ran from EBCDIC platforms such as z/OS. (Bug#43071)

525

http://bugs.mysql.com/44869
http://bugs.mysql.com/44868
http://bugs.mysql.com/44867
http://bugs.mysql.com/44865
http://bugs.mysql.com/44863
http://bugs.mysql.com/44862
http://bugs.mysql.com/44588
http://bugs.mysql.com/44056
http://bugs.mysql.com/43421
http://bugs.mysql.com/43071

• When connecting with traceProtocol=true, no trace data was generated for the server greeting or login request.
(Bug#43070)

• A ConcurrentModificationException was generated in LoadBalancingConnectionProxy:

java.util.ConcurrentModificationException
at java.util.HashMap$HashIterator.nextEntry(Unknown Source)
at java.util.HashMap$KeyIterator.next(Unknown Source)
at
com.mysql.jdbc.LoadBalancingConnectionProxy.getGlobalBlacklist(LoadBalancingConnectionProxy.java:520)
at com.mysql.jdbc.RandomBalanceStrategy.pickConnection(RandomBalanceStrategy.java:55)
at
com.mysql.jdbc.LoadBalancingConnectionProxy.pickNewConnection(LoadBalancingConnectionProxy.java:414)
at
com.mysql.jdbc.LoadBalancingConnectionProxy.invoke(LoadBalancingConnectionProxy.java:390)

(Bug#42055)

• SQL injection was possible when using a string containing U+00A5 in a client-side prepared statement, and the character set
being used was SJIS/Windows-31J. (Bug#41730)

• MySQL Connector/J 5.1.7 was slower than previous versions when the rewriteBatchedStatements option was set to
true.

Note

The performance regression in indexOfIgnoreCaseRespectMarker()has been fixed. It has also been made
possible for the driver to rewrite INSERT statements with ON DUPLICATE KEY UPDATE clauses in them, as long
as the UPDATE clause contains no reference to LAST_INSERT_ID(), as that would cause the driver to return bogus
values for getGeneratedKeys() invocations. This has resulted in improved performance over version 5.1.7.

(Bug#41532)

• PreparedStatement.addBatch() did not check for all parameters being set, which led to inconsistent behavior in ex-
ecuteBatch(), especially when rewriting batched statements into multi-value INSERTs. (Bug#41161)

D.1.2. Changes in MySQL Connector/J 5.1.7 (21 October 2008)
Functionality added or changed:

• When statements include ON DUPLICATE UPDATE, and rewriteBatchedStatements is set to true, batched state-
ments are not rewritten into the form INSERT INTO table VALUES (), (), (), instead the statements are executed
sequentially.

Bugs fixed:

• Statement.getGeneratedKeys() returned two keys when using ON DUPLICATE KEY UPDATE and the row was
updated, not inserted. (Bug#42309)

• When using the replication driver with autoReconnect=true, Connector/J checks in PreparedStatement.execute
(also called by CallableStatement.execute) to determine if the first character of the statement is an “S”, in an attempt
to block all statements that are not read-only-safe, for example non-SELECT statements. However, this also blocked CALLs to
stored procedures, even if the stored procedures were defined as SQL READ DATA or NO SQL. (Bug#40031)

• With large result sets ResultSet.findColumn became a performance bottleneck. (Bug#39962)

• Connector/J ignored the value of the MySQL Server variable auto_increment_increment. (Bug#39956)

• Connector/J failed to parse TIMESTAMP strings for nanos correctly. (Bug#39911)

• When the LoadBalancingConnectionProxy handles a SQLException with SQL state starting with “08”, it calls in-
validateCurrentConnection, which in turn removes that Connection from liveConnections and the con-
nectionsToHostsMap, but it did not add the host to the new global blacklist, if the global blacklist was enabled.

There was also the possibility of a NullPointerException when trying to update stats, where connectionsToHost-
sMap.get(this.currentConn) was called:

int hostIndex = ((Integer) this.hostsToListIndexMap.get(this.connectionsToHostsMap.get(this.currentConn))).intValue();

MySQL Connector/J Change History

526

http://bugs.mysql.com/43070
http://bugs.mysql.com/42055
http://bugs.mysql.com/41730
http://bugs.mysql.com/41532
http://bugs.mysql.com/41161
http://bugs.mysql.com/42309
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/call.html
http://bugs.mysql.com/40031
http://bugs.mysql.com/39962
http://dev.mysql.com/doc/refman/5.0/en/replication-options-master.html#sysvar_auto_increment_increment
http://bugs.mysql.com/39956
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/39911

This could happen if a client tried to issue a rollback after catching a SQLException caused by a connection failure.
(Bug#39784)

• When configuring the Java Replication Driver the last slave specified was never used. (Bug#39611)

• When an INSERT ON DUPLICATE KEY UPDATE was performed, and the key already existed, the affected-rows
value was returned as 1 instead of 0. (Bug#39352)

• When using the random load balancing strategy and starting with two servers that were both unavailable, an IndexOutOf-
BoundsException was generated when removing a server from the whiteList. (Bug#38782)

• Connector/J threw the following exception when using a read-only connection:

java.sql.SQLException: Connection is read-only. Queries leading to data
modification are not allowed.

(Bug#38747)

• Connector/J was unable to connect when using a non-latin1 password. (Bug#37570)

• Incorrect result is returned from isAfterLast() in streaming ResultSet when using setFetchS-
ize(Integer.MIN_VALUE). (Bug#35170)

• When getGeneratedKeys() was called on a statement that had not been created with RETURN_GENERATED_KEYS, no
exception was thrown, and batched executions then returned erroneous values. (Bug#34185)

• The loadBalance bestResponseTime blacklists did not have a global state. (Bug#33861)

D.1.3. Changes in MySQL Connector/J 5.1.6 (07 March 2008)
Functionality added or changed:

• Multiple result sets were not supported when using streaming mode to return data. Both normal statements and the resul sets
from stored procedures now return multiple results sets, with the exception of result sets using registered OUTPUT paramaters.
(Bug#33678)

• XAConnections and datasources have been updated to the JDBC-4.0 standard.

• The profiler event handling has been made extensible via the profilerEventHandler connection property.

• Add the verifyServerCertificate propery. If set to "false" the driver will not verify the server's certificate when
useSSL is set to "true"

When using this feature, the keystore parameters should be specified by the clientCertificateKeyStore* properties,
rather than system properties, as the JSSE doesn't it straightforward to have a non-verifying trust store and the "default" key
store.

Bugs fixed:

• DatabaseMetaData.getColumns() returns incorrect COLUMN_SIZE value for SET column. (Bug#36830)

• When trying to read Time values like “00:00:00” with ResultSet.getTime(int) an exception is thrown. (Bug#36051)

• JDBC connection URL parameters is ignored when using MysqlConnectionPoolDataSource. (Bug#35810)

• When useServerPrepStmts=true and slow query logging is enabled, the connector throws a NullPointerExcep-
tion when it encounters a slow query. (Bug#35666)

• When using the keyword “loadbalance” in the connection string and trying to perform load balancing between two databases,
the driver appears to hang. (Bug#35660)

• JDBC data type getter method was changed to accept only column name, whereas previously it accepted column label.
(Bug#35610)

• Prepared statements from pooled connections caused a NullPointerException when closed() under JDBC-4.0.

MySQL Connector/J Change History

527

http://bugs.mysql.com/39784
http://bugs.mysql.com/39611
http://bugs.mysql.com/39352
http://bugs.mysql.com/38782
http://bugs.mysql.com/38747
http://bugs.mysql.com/37570
http://bugs.mysql.com/35170
http://bugs.mysql.com/34185
http://bugs.mysql.com/33861
http://bugs.mysql.com/33678
http://bugs.mysql.com/36830
http://bugs.mysql.com/36051
http://bugs.mysql.com/35810
http://bugs.mysql.com/35666
http://bugs.mysql.com/35660
http://bugs.mysql.com/35610

Bug#35489)

• In calling a stored function returning a bigint, an exception is encountered beginning:

java.sql.SQLException: java.lang.NumberFormatException: For input string:

followed by the text of the stored function starting after the argument list. (Bug#35199)

• The JDBC driver uses a different method for evaluating column names in resultsetmetadata.getColumnName() and
when looking for a column in resultset.getObject(columnName). This causes Hibernate to fail in queries where the
two methods yield different results, for example in queries that use alias names:

SELECT column AS aliasName from table

(Bug#35150)

• MysqlConnectionPoolDataSource does not support ReplicationConnection. Notice that we implemented
com.mysql.jdbc.Connection for ReplicationConnection, however, only accessors from ConnectionProperties
are implemented (not the mutators), and they return values from the currently active connection. All other methods from
com.mysql.jdbc.Connection are implemented, and operate on the currently active connection, with the exception of
resetServerState() and changeUser(). (Bug#34937)

• ResultSet.getTimestamp() returns incorrect values for month/day of TIMESTAMPs when using server-side prepared
statements (not enabled by default). (Bug#34913)

• RowDataStatic does't always set the metadata in ResultSetRow, which can lead to failures when unpacking DATE,
TIME, DATETIME and TIMESTAMP types when using absolute, relative, and previous result set navigation methods.
(Bug#34762)

• When calling isValid() on an active connection, if the timeout is nonzero then the Connection is invalidated even if the
Connection is valid. (Bug#34703)

• It was not possible to truncate a BLOB using Blog.truncate() when using 0 as an argument. (Bug#34677)

• When using a cursor fetch for a statement, the internal prepared statement could cause a memory leak until the connection was
closed. The internal prepared statement is now deleted when the corresponding result set is closed. (Bug#34518)

• When retrieving the column type name of a geometry field, the driver would return UNKNOWN instead of GEOMETRY.
(Bug#34194)

• Statements with batched values do not return correct values for getGeneratedKeys() when rewriteBatchedState-
ments is set to true, and the statement has an ON DUPLICATE KEY UPDATE clause. (Bug#34093)

• The internal class ResultSetInternalMethods referenced the non-public class
com.mysql.jdbc.CachedResultSetMetaData. (Bug#33823)

• A NullPointerException could be raised when using client-side prepared statements and enabled the prepared statement
cache using the cachePrepStmts. (Bug#33734)

• Using server side cursors and cursor fetch, the table metadata information would return the data type name instead of the
column name. (Bug#33594)

• ResultSet.getTimestamp() would throw a NullPointerException instead of a SQLException when called on
an empty ResultSet. (Bug#33162)

• Load balancing connection using best response time would incorrectly "stick" to hosts that were down when the connection was
first created.

We solve this problem with a black list that is used during the picking of new hosts. If the black list ends up including all con-
figured hosts, the driver will retry for a configurable number of times (the retriesAllDown configuration property, with a
default of 120 times), sleeping 250ms between attempts to pick a new connection.

We've also went ahead and made the balancing strategy extensible. To create a new strategy, implement the interface
com.mysql.jdbc.BalanceStrategy (which also includes our standard "extension" interface), and tell the driver to use
it by passing in the class name via the loadBalanceStrategy configuration property. (Bug#32877)

• During a Daylight Savings Time (DST) switchover, there was no way to store two timestamp/datetime values , as the hours end
up being the same when sent as the literal that MySQL requires.

Note that to get this scenario to work with MySQL (since it doesn't support per-value timezones), you need to configure your
server (or session) to be in UTC, and tell the driver not to use the legacy date/time code by setting useLegacyDatetime-

MySQL Connector/J Change History

528

http://bugs.mysql.com/35489
http://bugs.mysql.com/35199
http://bugs.mysql.com/35150
http://bugs.mysql.com/34937
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/34913
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/time.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/34762
http://bugs.mysql.com/34703
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/34677
http://bugs.mysql.com/34518
http://bugs.mysql.com/34194
http://bugs.mysql.com/34093
http://bugs.mysql.com/33823
http://bugs.mysql.com/33734
http://bugs.mysql.com/33594
http://bugs.mysql.com/33162
http://bugs.mysql.com/32877

Code to "false". This will cause the driver to always convert to/from the server and client timezone consistently.

This bug fix also fixes Bug#15604, by adding entirely new date/time handling code that can be switched on by useLegacy-
DatetimeCode being set to "false" as a JDBC configuration property. For Connector/J 5.1.x, the default is "true", in trunk
and beyond it will be "false" (i.e. the old date/time handling code will be deprecated) (Bug#32577, Bug#15604)

• When unpacking rows directly, we don't hand off error message packets to the internal method which decodes them correctly,
so no exception is raised, and the driver than hangs trying to read rows that aren't there. This tends to happen when calling
stored procedures, as normal SELECTs won't have an error in this spot in the protocol unless an I/O error occurs. (Bug#32246)

• When using a connection from ConnectionPoolDataSource, some Connection.prepareStatement() methods
would return null instead of the prepared statement. (Bug#32101)

• Using CallableStatement.setNull() on a stored function would throw an ArrayIndexOutOfBounds exception
when setting the last parameter to null. (Bug#31823)

• MysqlValidConnectionChecker doesn't properly handle connections created using ReplicationConnection.
(Bug#31790)

• Retrieving the server version information for an active connection could return invalid information if the default character en-
coding on the host was not ASCII compatible. (Bug#31192)

• Further fixes have been made to this bug in the event that a node is non-responsive. Connector/J will now try a different random
node instead of waiting for the node to recover before continuing. (Bug#31053)

• ResultSet returned by Statement.getGeneratedKeys() is not closed automatically when statement that created it
is closed. (Bug#30508)

• DatabaseMetadata.getColumns() doesn't return the correct column names if the connection character isn't UTF-8. A
bug in MySQL server compounded the issue, but was fixed within the MySQL 5.0 release cycle. The fix includes changes to all
the sections of the code that access the server metadata. (Bug#20491)

• Fixed ResultSetMetadata.getColumnName() for result sets returned from Statement.getGeneratedKeys()
- it was returning null instead of "GENERATED_KEY" as in 5.0.x.

D.1.4. Changes in MySQL Connector/J 5.1.5 (09 October 2007)
The following features are new, compared to the 5.0 series of Connector/J

• Support for JDBC-4.0 NCHAR, NVARCHAR and NCLOB types.

• JDBC-4.0 support for setting per-connection client information (which can be viewed in the comments section of a query via
SHOW PROCESSLIST on a MySQL server, or can be extended to support custom persistence of the information via a public
interface).

• Support for JDBC-4.0 XML processing via JAXP interfaces to DOM, SAX and StAX.

• JDBC-4.0 standardized unwrapping to interfaces that include vendor extensions.

Functionality added or changed:

• Added autoSlowLog configuration property, overrides slowQueryThreshold* properties, driver determines slow quer-
ies by those that are slower than 5 * stddev of the mean query time (outside the 96% percentile).

Bugs fixed:

• When a connection is in read-only mode, queries that are wrapped in parentheses were incorrectly identified DML statements.
(Bug#28256)

D.1.5. Changes in MySQL Connector/J 5.1.4 (Not Released)
Only released internally.

MySQL Connector/J Change History

529

http://bugs.mysql.com/15604
http://bugs.mysql.com/32577
http://bugs.mysql.com/15604
http://bugs.mysql.com/32246
http://bugs.mysql.com/32101
http://bugs.mysql.com/31823
http://bugs.mysql.com/31790
http://bugs.mysql.com/31192
http://bugs.mysql.com/31053
http://bugs.mysql.com/30508
http://bugs.mysql.com/20491
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/show-processlist.html
http://bugs.mysql.com/28256

D.1.6. Changes in MySQL Connector/J 5.1.3 (10 September 2007)
The following features are new, compared to the 5.0 series of Connector/J

• Support for JDBC-4.0 NCHAR, NVARCHAR and NCLOB types.

• JDBC-4.0 support for setting per-connection client information (which can be viewed in the comments section of a query via
SHOW PROCESSLIST on a MySQL server, or can be extended to support custom persistence of the information via a public
interface).

• Support for JDBC-4.0 XML processing via JAXP interfaces to DOM, SAX and StAX.

• JDBC-4.0 standardized unwrapping to interfaces that include vendor extensions.

Functionality added or changed:

• Connector/J now connects using an initial character set of utf-8 solely for the purpose of authentication to allow user names
or database names in any character set to be used in the JDBC connection URL. (Bug#29853)

• Added two configuration parameters:

• blobsAreStrings — Should the driver always treat BLOBs as Strings. Added specifically to work around dubious
metadata returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs — Should the driver always treat data from functions returning BLOBs as Strings.
Added specifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• Setting rewriteBatchedStatements to true now causes CallableStatements with batched arguments to be re-written in
the form "CALL (...); CALL (...); ..." to send the batch in as few client-server round trips as possible.

• The driver now picks appropriate internal row representation (whole row in one buffer, or individual byte[]s for each column
value) depending on heuristics, including whether or not the row has BLOB or TEXT types and the overall row-size. The
threshold for row size that will cause the driver to use a buffer rather than individual byte[]s is configured by the configuration
property largeRowSizeThreshold, which has a default value of 2KB.

• The data (and how it is stored) for ResultSet rows are now behind an interface which allows us (in some cases) to allocate
less memory per row, in that for "streaming" result sets, we re-use the packet used to read rows, since only one row at a time is
ever active.

• Added experimental support for statement "interceptors" via the com.mysql.jdbc.StatementInterceptor interface,
examples are in com/mysql/jdbc/interceptors. Implement this interface to be placed "in between" query execution,
so that it can be influenced (currently experimental).

• The driver will automatically adjust the server session variable net_write_timeout when it determines its been asked for
a "streaming" result, and resets it to the previous value when the result set has been consumed. (The configuration property is
named netTimeoutForStreamingResults, with a unit of seconds, the value '0' means the driver will not try and adjust
this value).

• JDBC-4.0 ease-of-development features including auto-registration with the DriverManager via the service provider mech-
anism, standardized Connection validity checks and categorized SQLExceptions based on recoverability/retry-ability and
class of the underlying error.

• Statement.setQueryTimeout()s now affect the entire batch for batched statements, rather than the individual state-
ments that make up the batch.

• Errors encountered during Statement/PreparedStatement/CallableStatement.executeBatch() when re-
writeBatchStatements has been set to true now return BatchUpdateExceptions according to the setting of
continueBatchOnError.

If continueBatchOnError is set to true, the update counts for the "chunk" that were sent as one unit will all be set to
EXECUTE_FAILED, but the driver will attempt to process the remainder of the batch. You can determine which "chunk" failed
by looking at the update counts returned in the BatchUpdateException.

If continueBatchOnError is set to "false", the update counts returned will contain all updates up-to and including the
failed "chunk", with all counts for the failed "chunk" set to EXECUTE_FAILED.

Since MySQL doesn't return multiple error codes for multiple-statements, or for multi-value INSERT/REPLACE, it is the ap-
plication's responsibility to handle determining which item(s) in the "chunk" actually failed.

MySQL Connector/J Change History

530

http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/show-processlist.html
http://bugs.mysql.com/29853
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_net_write_timeout
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/replace.html

• New methods on com.mysql.jdbc.Statement: setLocalInfileInputStream() and getLocalInfileInput-
Stream():

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to the MySQL serv-
er for a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or URLInputStream that repres-
ents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement, and will automatic-
ally be closed by the driver, so it needs to be reset before each call to execute*() that would cause the MySQL server to
request data to fulfill the request for LOAD DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data in response to a
LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set via setLocalInfileInputStream().

• Setting useBlobToStoreUTF8OutsideBMP to true tells the driver to treat [MEDIUM/LONG]BLOB columns as
[LONG]VARCHAR columns holding text encoded in UTF-8 that has characters outside the BMP (4-byte encodings), which
MySQL server can't handle natively.

Set utf8OutsideBmpExcludedColumnNamePattern to a regex so that column names matching the given regex will
still be treated as BLOBs The regex must follow the patterns used for the java.util.regexpackage. The default is to ex-
clude no columns, and include all columns.

Set utf8OutsideBmpIncludedColumnNamePattern to specify exclusion rules to
utf8OutsideBmpExcludedColumnNamePattern". The regex must follow the patterns used for the java.util.regex pack-
age.

Bugs fixed:

• setObject(int, Object, int, int) delegate in PreparedStatmentWrapper delegates to wrong method.
(Bug#30892)

• NPE with null column values when padCharsWithSpace is set to true. (Bug#30851)

• Collation on VARBINARY column types would be misidentified. A fix has been added, but this fix only works for MySQL
server versions 5.0.25 and newer, since earlier versions didn't consistently return correct metadata for functions, and thus results
from subqueries and functions were indistinguishable from each other, leading to type-related bugs. (Bug#30664)

• An ArithmeticException or NullPointerException would be raised when the batch had zero members and re-
writeBatchedStatements=true when addBatch() was never called, or executeBatch() was called immedi-
ately after clearBatch(). (Bug#30550)

• Closing a load-balanced connection would cause a ClassCastException. (Bug#29852)

• Connection checker for JBoss didn't use same method parameters via reflection, causing connections to always seem "bad".
(Bug#29106)

• DatabaseMetaData.getTypeInfo() for the types DECIMAL and NUMERIC will return a precision of 254 for server
versions older than 5.0.3, 64 for versions 5.0.3-5.0.5 and 65 for versions newer than 5.0.5. (Bug#28972)

• CallableStatement.executeBatch() doesn't work when connection property noAccessToProcedureBodies
has been set to true.

The fix involves changing the behavior of noAccessToProcedureBodies,in that the driver will now report all paramters
as "IN" paramters but allow callers to call registerOutParameter() on them without throwing an exception. (Bug#28689)

• DatabaseMetaData.getColumns() doesn't contain SCOPE_* or IS_AUTOINCREMENT columns. (Bug#27915)

• Schema objects with identifiers other than the connection character aren't retrieved correctly in ResultSetMetadata.
(Bug#27867)

• Connection.getServerCharacterEncoding() doesn't work for servers with version >= 4.1. (Bug#27182)

• The automated SVN revisions in DBMD.getDriverVersion(). The SVN revision of the directory is now inserted into the
version information during the build. (Bug#21116)

MySQL Connector/J Change History

531

http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://bugs.mysql.com/30892
http://bugs.mysql.com/30851
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/30664
http://bugs.mysql.com/30550
http://bugs.mysql.com/29852
http://bugs.mysql.com/29106
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/28972
http://bugs.mysql.com/28689
http://bugs.mysql.com/27915
http://bugs.mysql.com/27867
http://bugs.mysql.com/27182
http://bugs.mysql.com/21116

• Specifying a "validation query" in your connection pool that starts with "/* ping */" _exactly_ will cause the driver to instead
send a ping to the server and return a fake result set (much lighter weight), and when using a ReplicationConnection or a Load-
BalancedConnection, will send the ping across all active connections.

D.1.7. Changes in MySQL Connector/J 5.1.2 (29 June 2007)
This is a new Beta development release, fixing recently discovered bugs.

Functionality added or changed:

• Setting the configuration property rewriteBatchedStatements to true will now cause the driver to rewrite batched
prepared statements with more than 3 parameter sets in a batch into multi-statements (separated by ";") if they are not plain
(that is, without SELECT or ON DUPLICATE KEY UPDATE clauses) INSERT or REPLACE statements.

D.1.8. Changes in MySQL Connector/J 5.1.1 (22 June 2007)
This is a new Alpha development release, adding new features and fixing recently discovered bugs.

Functionality added or changed:

• Incompatible Change: Pulled vendor-extension methods of Connection implementation out into an interface to support
java.sql.Wrapper functionality from ConnectionPoolDataSource. The vendor extensions are javadoc'd in the
com.mysql.jdbc.Connection interface.

For those looking further into the driver implementation, it is not an API that is used for plugability of implementations inside
our driver (which is why there are still references to ConnectionImpl throughout the code).

We've also added server and client prepareStatement() methods that cover all of the variants in the JDBC API.

Connection.serverPrepare(String) has been re-named to Connection.serverPrepareStatement() for
consistency with Connection.clientPrepareStatement().

• Row navigation now causes any streams/readers open on the result set to be closed, as in some cases we're reading directly
from a shared network packet and it will be overwritten by the "next" row.

• Made it possible to retrieve prepared statement parameter bindings (to be used in StatementInterceptors, primarily).

• Externalized the descriptions of connection properties.

• The data (and how it is stored) for ResultSet rows are now behind an interface which allows us (in some cases) to allocate
less memory per row, in that for "streaming" result sets, we re-use the packet used to read rows, since only one row at a time is
ever active.

• Similar to Connection, we pulled out vendor extensions to Statement into an interface named
com.mysql.Statement, and moved the Statement class into com.mysql.StatementImpl. The two methods
(javadoc'd in com.mysql.Statement are enableStreamingResults(), which already existed, and dis-
ableStreamingResults() which sets the statement instance back to the fetch size and result set type it had before en-
ableStreamingResults() was called.

• Driver now picks appropriate internal row representation (whole row in one buffer, or individual byte[]s for each column value)
depending on heuristics, including whether or not the row has BLOB or TEXT types and the overall row-size. The threshold for
row size that will cause the driver to use a buffer rather than individual byte[]s is configured by the configuration property
largeRowSizeThreshold, which has a default value of 2KB.

• Added experimental support for statement "interceptors" via the com.mysql.jdbc.StatementInterceptor interface,
examples are in com/mysql/jdbc/interceptors.

Implement this interface to be placed "in between" query execution, so that you can influence it. (currently experimental).

StatementInterceptors are "chainable" when configured by the user, the results returned by the "current" interceptor
will be passed on to the next on in the chain, from left-to-right order, as specified by the user in the JDBC configuration prop-
erty statementInterceptors.

• See the sources (fully javadoc'd) for com.mysql.jdbc.StatementInterceptor for more details until we iron out the
API and get it documented in the manual.

MySQL Connector/J Change History

532

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/replace.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html

• Setting rewriteBatchedStatements to true now causes CallableStatements with batched arguments to be re-
written in the form CALL (...); CALL (...); ... to send the batch in as few client-server round trips as possible.

D.1.9. Changes in MySQL Connector/J 5.1.0 (11 April 2007)
This is the first public alpha release of the current Connector/J 5.1 development branch, providing an insight to upcoming features.
Although some of these are still under development, this release includes the following new features and changes (in comparison to
the current Connector/J 5.0 production release):

Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled their
use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

Note

The disabling of server-side prepared statements does not affect the operation of the connector. However, if you use
the useTimezone=true connection option and use client-side prepared statements (instead of server-side prepared
statements) you should also set useSSPSCompatibleTimezoneShift=true.

Functionality added or changed:

• Refactored CommunicationsException into a JDBC-3.0 version, and a JDBC-4.0 version (which extends SQLRecov-
erableException, now that it exists).

Note

This change means that if you were catching com.mysql.jdbc.CommunicationsException in your applic-
ations instead of looking at the SQLState class of 08, and are moving to Java 6 (or newer), you need to change your
imports to that exception to be com.mysql.jdbc.exceptions.jdbc4.CommunicationsException, as
the old class will not be instantiated for communications link-related errors under Java 6.

• Added support for JDBC-4.0 categorized SQLExceptions.

• Added support for JDBC-4.0's NCLOB, and NCHAR/NVARCHAR types.

• com.mysql.jdbc.java6.javac — full path to your Java-6 javac executable

• Added support for JDBC-4.0's SQLXML interfaces.

• Re-worked Ant buildfile to build JDBC-4.0 classes separately, as well as support building under Eclipse (since Eclipse can't
mix/match JDKs).

To build, you must set JAVA_HOME to J2SDK-1.4.2 or Java-5, and set the following properties on your Ant command line:

• com.mysql.jdbc.java6.javac — full path to your Java-6 javac executable

• com.mysql.jdbc.java6.rtjar — full path to your Java-6 rt.jar file

• New feature — driver will automatically adjust session variable net_write_timeout when it determines it has been asked
for a "streaming" result, and resets it to the previous value when the result set has been consumed. (configuration property is
named netTimeoutForStreamingResults value and has a unit of seconds, the value 0 means the driver will not try and
adjust this value).

• Added support for JDBC-4.0's client information. The backend storage of information provided via Connec-
tion.setClientInfo() and retrieved by Connection.getClientInfo() is pluggable by any class that imple-
ments the com.mysql.jdbc.JDBC4ClientInfoProvider interface and has a no-args constructor.

The implementation used by the driver is configured using the clientInfoProvider configuration property (with a de-
fault of value of com.mysql.jdbc.JDBC4CommentClientInfoProvider, an implementation which lists the client
information as a comment prepended to every query sent to the server).

This functionality is only available when using Java-6 or newer.

MySQL Connector/J Change History

533

http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_net_write_timeout

• com.mysql.jdbc.java6.rtjar — full path to your Java-6 rt.jar file

• Added support for JDBC-4.0's Wrapper interface.

D.2. Changes in MySQL Connector/J 5.0.x

D.2.1. Changes in MySQL Connector/J 5.0.8 (09 October 2007)
Functionality added or changed:

• blobsAreStrings — Should the driver always treat BLOBs as Strings. Added specifically to work around dubious
metadata returned by the server for GROUP BY clauses. Defaults to false.

• Added two configuration parameters:

• blobsAreStrings — Should the driver always treat BLOBs as Strings. Added specifically to work around dubious
metadata returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs — Should the driver always treat data from functions returning BLOBs as Strings.
Added specifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs — Should the driver always treat data from functions returning BLOBs as Strings. Added
specifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• XAConnections now start in auto-commit mode (as per JDBC-4.0 specification clarification).

• Driver will now fall back to sane defaults for max_allowed_packet and net_buffer_length if the server reports
them incorrectly (and will log this situation at WARN level, since it is actually an error condition).

Bugs fixed:

• Connections established using URLs of the form jdbc:mysql:loadbalance:// weren't doing failover if they tried to
connect to a MySQL server that was down. The driver now attempts connections to the next "best" (depending on the load bal-
ance strategy in use) server, and continues to attempt connecting to the next "best" server every 250 milliseconds until one is
found that is up and running or 5 minutes has passed.

If the driver gives up, it will throw the last-received SQLException. (Bug#31053)

• setObject(int, Object, int, int) delegate in PreparedStatmentWrapper delegates to wrong method.
(Bug#30892)

• NPE with null column values when padCharsWithSpace is set to true. (Bug#30851)

• Collation on VARBINARY column types would be misidentified. A fix has been added, but this fix only works for MySQL
server versions 5.0.25 and newer, since earlier versions didn't consistently return correct metadata for functions, and thus results
from subqueries and functions were indistinguishable from each other, leading to type-related bugs. (Bug#30664)

• An ArithmeticException or NullPointerException would be raised when the batch had zero members and re-
writeBatchedStatements=true when addBatch() was never called, or executeBatch() was called immedi-
ately after clearBatch(). (Bug#30550)

• Closing a load-balanced connection would cause a ClassCastException. (Bug#29852)

• Connection checker for JBoss didn't use same method parameters via reflection, causing connections to always seem "bad".
(Bug#29106)

• DatabaseMetaData.getTypeInfo() for the types DECIMAL and NUMERIC will return a precision of 254 for server
versions older than 5.0.3, 64 for versions 5.0.3-5.0.5 and 65 for versions newer than 5.0.5. (Bug#28972)

• CallableStatement.executeBatch() doesn't work when connection property noAccessToProcedureBodies
has been set to true.

The fix involves changing the behavior of noAccessToProcedureBodies,in that the driver will now report all paramters
as "IN" paramters but allow callers to call registerOutParameter() on them without throwing an exception. (Bug#28689)

• When a connection is in read-only mode, queries that are wrapped in parentheses were incorrectly identified DML statements.

MySQL Connector/J Change History

534

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_net_buffer_length
http://bugs.mysql.com/31053
http://bugs.mysql.com/30892
http://bugs.mysql.com/30851
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/30664
http://bugs.mysql.com/30550
http://bugs.mysql.com/29852
http://bugs.mysql.com/29106
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/28972
http://bugs.mysql.com/28689

Bug#28256)

• UNSIGNED types not reported via DBMD.getTypeInfo(), and capitalization of type names is not consistent between DB-
MD.getColumns(), RSMD.getColumnTypeName() and DBMD.getTypeInfo().

This fix also ensures that the precision of UNSIGNED MEDIUMINT and UNSIGNED BIGINT is reported correctly via DB-
MD.getColumns(). (Bug#27916)

• DatabaseMetaData.getColumns() doesn't contain SCOPE_* or IS_AUTOINCREMENT columns. (Bug#27915)

• Schema objects with identifiers other than the connection character aren't retrieved correctly in ResultSetMetadata.
(Bug#27867)

• Cached metadata with PreparedStatement.execute() throws NullPointerException. (Bug#27412)

• Connection.getServerCharacterEncoding() doesn't work for servers with version >= 4.1. (Bug#27182)

• The automated SVN revisions in DBMD.getDriverVersion(). The SVN revision of the directory is now inserted into the
version information during the build. (Bug#21116)

• Specifying a "validation query" in your connection pool that starts with "/* ping */" _exactly_ will cause the driver to instead
send a ping to the server and return a fake result set (much lighter weight), and when using a ReplicationConnection or a Load-
BalancedConnection, will send the ping across all active connections.

D.2.2. Changes in MySQL Connector/J 5.0.7 (20 July 2007)
Functionality added or changed:

• The driver will now automatically set useServerPrepStmts to true when useCursorFetch has been set to true,
since the feature requires server-side prepared statements in order to function.

• tcpKeepAlive - Should the driver set SO_KEEPALIVE (default true)?

• Give more information in EOFExceptions thrown out of MysqlIO (how many bytes the driver expected to read, how many it
actually read, say that communications with the server were unexpectedly lost).

• Driver detects when it is running in a ColdFusion MX server (tested with version 7), and uses the configuration bundle cold-
Fusion, which sets useDynamicCharsetInfo to false (see previous entry), and sets useLocalSessionState and
autoReconnect to true.

• tcpNoDelay - Should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm, default true)?

• Added configuration property slowQueryThresholdNanos - if useNanosForElapsedTime is set to true, and this
property is set to a nonzero value the driver will use this threshold (in nanosecond units) to determine if a query was slow, in-
stead of using millisecond units.

• tcpRcvBuf - Should the driver set SO_RCV_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• Setting useDynamicCharsetInfo to false now causes driver to use static lookups for collations as well (makes Result-
SetMetadata.isCaseSensitive() much more efficient, which leads to performance increase for ColdFusion, which calls this meth-
od for every column on every table it sees, it appears).

• Added configuration properties to allow tuning of TCP/IP socket parameters:

• tcpNoDelay - Should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm, default true)?

• tcpKeepAlive - Should the driver set SO_KEEPALIVE (default true)?

• tcpRcvBuf - Should the driver set SO_RCV_BUF to the given value? The default value of '0', means use the platform de-
fault value for this property.

• tcpSndBuf - Should the driver set SO_SND_BUF to the given value? The default value of '0', means use the platform de-
fault value for this property.

• tcpTrafficClass - Should the driver set traffic class or type-of-service fields? See the documentation for
java.net.Socket.setTrafficClass() for more information.

• Setting the configuration parameter useCursorFetch to true for MySQL-5.0+ enables the use of cursors that allow Con-

MySQL Connector/J Change History

535

http://bugs.mysql.com/28256
http://bugs.mysql.com/27916
http://bugs.mysql.com/27915
http://bugs.mysql.com/27867
http://bugs.mysql.com/27412
http://bugs.mysql.com/27182
http://bugs.mysql.com/21116

nector/J to save memory by fetching result set rows in chunks (where the chunk size is set by calling setFetchSize() on a State-
ment or ResultSet) by using fully-materialized cursors on the server.

• tcpSndBuf - Should the driver set SO_SND_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• tcpTrafficClass - Should the driver set traffic class or type-of-service fields? See the documentation for
java.net.Socket.setTrafficClass() for more information.

• Added new debugging functionality - Setting configuration property includeInnodbStatusInDeadlockExceptions
to true will cause the driver to append the output of SHOW ENGINE INNODB STATUS to deadlock-related exceptions,
which will enumerate the current locks held inside InnoDB.

• Added configuration property useNanosForElapsedTime - for profiling/debugging functionality that measures elapsed
time, should the driver try to use nanoseconds resolution if available (requires JDK >= 1.5)?

Note

If useNanosForElapsedTime is set to true, and this property is set to "0" (or left default), then elapsed times
will still be measured in nanoseconds (if possible), but the slow query threshold will be converted from milliseconds
to nanoseconds, and thus have an upper bound of approximately 2000 milliseconds (as that threshold is represented as
an integer, not a long).

Bugs fixed:

• Don't send any file data in response to LOAD DATA LOCAL INFILE if the feature is disabled at the client side. This is to pre-
vent a malicious server or man-in-the-middle from asking the client for data that the client is not expecting. Thanks to Jan
Kneschke for discovering the exploit and Andrey "Poohie" Hristov, Konstantin Osipov and Sergei Golubchik for discussions
about implications and possible fixes. (Bug#29605)

• Parser in client-side prepared statements runs to end of statement, rather than end-of-line for '#' comments. Also added support
for '--' single-line comments. (Bug#28956)

• Parser in client-side prepared statements eats character following '/' if it is not a multi-line comment. (Bug#28851)

• PreparedStatement.getMetaData() for statements containing leading one-line comments is not returned correctly.

As part of this fix, we also overhauled detection of DML for executeQuery() and SELECTs for executeUpdate() in
plain and prepared statements to be aware of the same types of comments. (Bug#28469)

D.2.3. Changes in MySQL Connector/J 5.0.6 (15 May 2007)
Functionality added or changed:

• Added an experimental load-balanced connection designed for use with SQL nodes in a MySQL Cluster/NDB environment
(This is not for master-slave replication. For that, we suggest you look at ReplicationConnection or lbpool).

If the JDBC URL starts with jdbc:mysql:loadbalance://host-1,host-2,...host-n, the driver will create an
implementation of java.sql.Connection that load balances requests across a series of MySQL JDBC connections to the
given hosts, where the balancing takes place after transaction commit.

Therefore, for this to work (at all), you must use transactions, even if only reading data.

Physical connections to the given hosts will not be created until needed.

The driver will invalidate connections that it detects have had communication errors when processing a request. A new connec-
tion to the problematic host will be attempted the next time it is selected by the load balancing algorithm.

There are two choices for load balancing algorithms, which may be specified by the loadBalanceStrategy JDBC URL
configuration property:

• random — the driver will pick a random host for each request. This tends to work better than round-robin, as the random-
ness will somewhat account for spreading loads where requests vary in response time, while round-robin can sometimes
lead to overloaded nodes if there are variations in response times across the workload.

• bestResponseTime — the driver will route the request to the host that had the best response time for the previous trans-
action.

MySQL Connector/J Change History

536

http://dev.mysql.com/doc/refman/5.0/en/show-engine.html
http://bugs.mysql.com/29605
http://bugs.mysql.com/28956
http://bugs.mysql.com/28851
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://bugs.mysql.com/28469

• bestResponseTime — the driver will route the request to the host that had the best response time for the previous transac-
tion.

• Added configuration property padCharsWithSpace (defaults to false). If set to true, and a result set column has the
CHAR type and the value does not fill the amount of characters specified in the DDL for the column, the driver will pad the re-
maining characters with space (for ANSI compliance).

• When useLocalSessionState is set to true and connected to a MySQL-5.0 or later server, the JDBC driver will now
determine whether an actual commit or rollback statement needs to be sent to the database when Connec-
tion.commit() or Connection.rollback() is called.

This is especially helpful for high-load situations with connection pools that always call Connection.rollback() on con-
nection check-in/check-out because it avoids a round-trip to the server.

• Added configuration property useDynamicCharsetInfo. If set to false (the default), the driver will use a per-
connection cache of character set information queried from the server when necessary, or when set to true, use a built-in static
mapping that is more efficient, but isn't aware of custom character sets or character sets implemented after the release of the JD-
BC driver.

Note

This only affects the padCharsWithSpace configuration property and the ResultSet-
MetaData.getColumnDisplayWidth() method.

• New configuration property, enableQueryTimeouts (default true).

When enabled, query timeouts set via Statement.setQueryTimeout() use a shared java.util.Timer instance for
scheduling. Even if the timeout doesn't expire before the query is processed, there will be memory used by the TimerTask for
the given timeout which won't be reclaimed until the time the timeout would have expired if it hadn't been cancelled by the
driver. High-load environments might want to consider disabling this functionality. (this configuration property is part of the
maxPerformance configuration bundle).

• Give better error message when "streaming" result sets, and the connection gets clobbered because of exceeding
net_write_timeout on the server.

• random — the driver will pick a random host for each request. This tends to work better than round-robin, as the randomness
will somewhat account for spreading loads where requests vary in response time, while round-robin can sometimes lead to
overloaded nodes if there are variations in response times across the workload.

• com.mysql.jdbc.[NonRegistering]Driver now understands URLs of the format jd-
bc:mysql:replication:// and jdbc:mysql:loadbalance:// which will create a ReplicationConnection
(exactly like when using [NonRegistering]ReplicationDriver) and an experimental load-balanced connection de-
signed for use with SQL nodes in a MySQL Cluster/NDB environment, respectively.

In an effort to simplify things, we're working on deprecating multiple drivers, and instead specifying different core behavior
based upon JDBC URL prefixes, so watch for [NonRegistering]ReplicationDriver to eventually disappear, to be
replaced with com.mysql.jdbc[NonRegistering]Driver with the new URL prefix.

• Fixed issue where a failed-over connection would let an application call setReadOnly(false), when that call should be
ignored until the connection is reconnected to a writable master unless failoverReadOnly had been set to false.

• Driver will now use INSERT INTO ... VALUES (DEFAULT)form of statement for updatable result sets for Result-
Set.insertRow(), rather than pre-populating the insert row with values from
DatabaseMetaData.getColumns()(which results in a SHOW FULL COLUMNS on the server for every result set). If an
application requires access to the default values before insertRow() has been called, the JDBC URL should be configured
with populateInsertRowWithDefaultValues set to true.

This fix specifically targets performance issues with ColdFusion and the fact that it seems to ask for updatable result sets no
matter what the application does with them.

• More intelligent initial packet sizes for the "shared" packets are used (512 bytes, rather than 16K), and initial packets used dur-
ing handshake are now sized appropriately as to not require reallocation.

Bugs fixed:

• More useful error messages are generated when the driver thinks a result set is not updatable. (Thanks to Ashley Martens for
the patch). (Bug#28085)

• Connection.getTransactionIsolation() uses "SHOW VARIABLES LIKE" which is very inefficient on MySQL-

MySQL Connector/J Change History

537

http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_net_write_timeout
http://dev.mysql.com/doc/refman/5.0/en/show-columns.html
http://bugs.mysql.com/28085

5.0+ servers. (Bug#27655)

• Fixed issue where calling getGeneratedKeys() on a prepared statement after calling execute() didn't always return
the generated keys (executeUpdate() worked fine however). (Bug#27655)

• CALL /* ... */ some_proc() doesn't work. As a side effect of this fix, you can now use /* */ and # comments
when preparing statements using client-side prepared statement emulation.

If the comments happen to contain parameter markers (?), they will be treated as belonging to the comment (that is, not recog-
nized) rather than being a parameter of the statement.

Note

The statement when sent to the server will contain the comments as-is, they're not stripped during the process of pre-
paring the PreparedStatement or CallableStatement.

(Bug#27400)

• ResultSet.get*() with a column index < 1 returns misleading error message. (Bug#27317)

• Using ResultSet.get*() with a column index less than 1 returns a misleading error message. (Bug#27317)

• Comments in DDL of stored procedures/functions confuse procedure parser, and thus metadata about them can not be created,
leading to inability to retrieve said metadata, or execute procedures that have certain comments in them. (Bug#26959)

• Fast date/time parsing doesn't take into account 00:00:00 as a legal value. (Bug#26789)

• PreparedStatement is not closed in BlobFromLocator.getBytes(). (Bug#26592)

• When the configuration property useCursorFetch was set to true, sometimes server would return new, more exact
metadata during the execution of the server-side prepared statement that enables this functionality, which the driver ignored
(using the original metadata returned during prepare()), causing corrupt reading of data due to type mismatch when the ac-
tual rows were returned. (Bug#26173)

• CallableStatements with OUT/INOUT parameters that are "binary" (BLOB, BIT, (VAR)BINARY, JAVA_OBJECT)
have extra 7 bytes. (Bug#25715)

• Whitespace surrounding storage/size specifiers in stored procedure parameters declaration causes NumberFormatExcep-
tion to be thrown when calling stored procedure on JDK-1.5 or newer, as the Number classes in JDK-1.5+ are whitespace in-
tolerant. (Bug#25624)

• Client options not sent correctly when using SSL, leading to stored procedures not being able to return results. Thanks to Don
Cohen for the bug report, testcase and patch. (Bug#25545)

• Statement.setMaxRows() is not effective on result sets materialized from cursors. (Bug#25517)

• BIT(> 1) is returned as java.lang.String from ResultSet.getObject() rather than byte[]. (Bug#25328)

D.2.4. Changes in MySQL Connector/J 5.0.5 (02 March 2007)
Functionality added or changed:

• Usage Advisor will now issue warnings for result sets with large numbers of rows. You can configure the trigger value by using
the resultSetSizeThreshold parameter, which has a default value of 100.

• The rewriteBatchedStatements feature can now be used with server-side prepared statements.

• Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled
their use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

• Improved speed of datetime parsing for ResultSets that come from plain or non-server-side prepared statements. You can
enable old implementation with useFastDateParsing=false as a configuration parameter.

MySQL Connector/J Change History

538

http://bugs.mysql.com/27655
http://bugs.mysql.com/27655
http://bugs.mysql.com/27400
http://bugs.mysql.com/27317
http://bugs.mysql.com/27317
http://bugs.mysql.com/26959
http://bugs.mysql.com/26789
http://bugs.mysql.com/26592
http://bugs.mysql.com/26173
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/25715
http://bugs.mysql.com/25624
http://bugs.mysql.com/25545
http://bugs.mysql.com/25517
http://bugs.mysql.com/25328

• Usage Advisor now detects empty results sets and does not report on columns not referenced in those empty sets.

• Fixed logging of XA commands sent to server, it is now configurable via logXaCommands property (defaults to false).

• Added configuration property localSocketAddress, which is the host name or IP address given to explicitly configure the
interface that the driver will bind the client side of the TCP/IP connection to when connecting.

• We've added a new configuration option treatUtilDateAsTimestamp, which is false by default, as (1) We already
had specific behavior to treat java.util.Date as a java.sql.Timestamp because it is useful to many folks, and (2) that behavior
will very likely be required for drivers JDBC-post-4.0.

Bugs fixed:

• Connection property socketFactory wasn't exposed via correctly named mutator/accessor, causing data source implement-
ations that use JavaBean naming conventions to set properties to fail to set the property (and in the case of SJAS, fail silently
when trying to set this parameter). (Bug#26326)

• A query execution which timed out did not always throw a MySQLTimeoutException. (Bug#25836)

• Storing a java.util.Date object in a BLOB column would not be serialized correctly during setObject. (Bug#25787)

• Timer instance used for Statement.setQueryTimeout() created per-connection, rather than per-VM, causing memory
leak. (Bug#25514)

• EscapeProcessor gets confused by multiple backslashes. We now push the responsibility of syntax errors back on to the
server for most escape sequences. (Bug#25399)

• INOUT parameters in CallableStatements get doubly-escaped. (Bug#25379)

• When using the rewriteBatchedStatements connection option with PreparedState.executeBatch() an in-
ternal memory leak would occur. (Bug#25073)

• Fixed issue where field-level for metadata from DatabaseMetaData when using INFORMATION_SCHEMA didn't have ref-
erences to current connections, sometimes leading to Null Pointer Exceptions (NPEs) when introspecting them via Result-
SetMetaData. (Bug#25073)

• StringUtils.indexOfIgnoreCaseRespectQuotes() isn't case-insensitive on the first character of the target. This
bug also affected rewriteBatchedStatements functionality when prepared statements did not use uppercase for the
VALUES clause. (Bug#25047)

• Client-side prepared statement parser gets confused by in-line comments /*...*/ and therefore cannot rewrite batch state-
ments or reliably detect the type of statements when they are used. (Bug#25025)

• Results sets from UPDATE statements that are part of multi-statement queries would cause an SQLException error, "Result
is from UPDATE". (Bug#25009)

• Specifying US-ASCII as the character set in a connection to a MySQL 4.1 or newer server does not map correctly.
(Bug#24840)

• Using DatabaseMetaData.getSQLKeywords() does not return a all of the of the reserved keywords for the current
MySQL version. Current implementation returns the list of reserved words for MySQL 5.1, and does not distinguish between
versions. (Bug#24794)

• Calling Statement.cancel() could result in a Null Pointer Exception (NPE). (Bug#24721)

• Using setFetchSize() breaks prepared SHOW and other commands. (Bug#24360)

• Calendars and timezones are now lazily instantiated when required. (Bug#24351)

• Using DATETIME columns would result in time shifts when useServerPrepStmts was true. The reason was due to differ-
ent behavior when using client-side compared to server-side prepared statements and the useJDBCCompliantTimezone-
Shift option. This is now fixed if moving from server-side prepared statements to client-side prepared statements by setting
useSSPSCompatibleTimezoneShift to true, as the driver can't tell if this is a new deployment that never used server-
side prepared statements, or if it is an existing deployment that is switching to client-side prepared statements from server-side
prepared statements. (Bug#24344)

• Connector/J now returns a better error message when server doesn't return enough information to determine stored procedure/
function parameter types. (Bug#24065)

MySQL Connector/J Change History

539

http://bugs.mysql.com/26326
http://bugs.mysql.com/25836
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/25787
http://bugs.mysql.com/25514
http://bugs.mysql.com/25399
http://bugs.mysql.com/25379
http://bugs.mysql.com/25073
http://bugs.mysql.com/25073
http://bugs.mysql.com/25047
http://bugs.mysql.com/25025
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://bugs.mysql.com/25009
http://bugs.mysql.com/24840
http://bugs.mysql.com/24794
http://bugs.mysql.com/24721
http://dev.mysql.com/doc/refman/5.0/en/show.html
http://bugs.mysql.com/24360
http://bugs.mysql.com/24351
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/24344
http://bugs.mysql.com/24065

• A connection error would occur when connecting to a MySQL server with certain character sets. Some collations/character sets
reported as "unknown" (specifically cias variants of existing character sets), and inability to override the detected server char-
acter set. (Bug#23645)

• Inconsistency between getSchemas and INFORMATION_SCHEMA. (Bug#23304)

• DatabaseMetaData.getSchemas() doesn't return a TABLE_CATALOG column. (Bug#23303)

• When using a JDBC connection URL that is malformed, the NonRegisteringDriver.getPropertyInfo method will
throw a Null Pointer Exception (NPE). (Bug#22628)

• Some exceptions thrown out of StandardSocketFactory were needlessly wrapped, obscuring their true cause, especially
when using socket timeouts. (Bug#21480)

• When using a server-side prepared statement the driver would send timestamps to the server using nanoseconds instead of mil-
liseconds. (Bug#21438)

• When using server-side prepared statements and timestamp columns, value would be incorrectly populated (with nanoseconds,
not microseconds). (Bug#21438)

• ParameterMetaData throws NullPointerException when prepared SQL has a syntax error. Added generateS-
impleParameterMetadata configuration property, which when set to true will generate metadata reflecting VARCHAR
for every parameter (the default is false, which will cause an exception to be thrown if no parameter metadata for the state-
ment is actually available). (Bug#21267)

• Fixed an issue where XADataSources couldn't be bound into JNDI, as the DataSourceFactory didn't know how to cre-
ate instances of them.

Other changes:

• Avoid static synchronized code in JVM class libraries for dealing with default timezones.

• Performance enhancement of initial character set configuration, driver will only send commands required to configure connec-
tion character set session variables if the current values on the server do not match what is required.

• Re-worked stored procedure parameter parser to be more robust. Driver no longer requires BEGIN in stored procedure defini-
tion, but does have requirement that if a stored function begins with a label directly after the "returns" clause, that the label is
not a quoted identifier.

• Throw exceptions encountered during timeout to thread calling Statement.execute*(), rather than RuntimeExcep-
tion.

• Changed cached result set metadata (when using cacheResultSetMetadata=true) to be cached per-connection rather
than per-statement as previously implemented.

• Reverted back to internal character conversion routines for single-byte character sets, as the ones internal to the JVM are using
much more CPU time than our internal implementation.

• When extracting foreign key information from SHOW CREATE TABLE in DatabaseMetaData, ignore exceptions relating
to tables being missing (which could happen for cross-reference or imported-key requests, as the list of tables is generated first,
then iterated).

• Fixed some Null Pointer Exceptions (NPEs) when cached metadata was used with UpdatableResultSets.

• Take localSocketAddress property into account when creating instances of CommunicationsException when the
underyling exception is a java.net.BindException, so that a friendlier error message is given with a little internal dia-
gnostics.

• Fixed cases where ServerPreparedStatements weren't using cached metadata when cacheResultSet-
Metadata=true was used.

• Use a java.util.TreeMap to map column names to ordinal indexes for ResultSet.findColumn() instead of a
HashMap. This allows us to have case-insensitive lookups (required by the JDBC specification) without resorting to the many
transient object instances needed to support this requirement with a normal HashMap with either case-adjusted keys, or case-
insensitive keys. (In the worst case scenario for lookups of a 1000 column result set, TreeMaps are about half as fast wall-clock
time as a HashMap, however in normal applications their use gives many orders of magnitude reduction in transient object in-
stance creation which pays off later for CPU usage in garbage collection).

• When using cached metadata, skip field-level metadata packets coming from the server, rather than reading them and discard-

MySQL Connector/J Change History

540

http://bugs.mysql.com/23645
http://bugs.mysql.com/23304
http://bugs.mysql.com/23303
http://bugs.mysql.com/22628
http://bugs.mysql.com/21480
http://bugs.mysql.com/21438
http://bugs.mysql.com/21438
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://bugs.mysql.com/21267
http://dev.mysql.com/doc/refman/5.0/en/show-create-table.html

ing them without creating com.mysql.jdbc.Field instances.

D.2.5. Changes in MySQL Connector/J 5.0.4 (20 October 2006)
Bugs fixed:

• DBMD.getColumns() does not return expected COLUMN_SIZE for the SET type, now returns length of largest possible set
disregarding whitespace or the "," delimitters to be consistent with the ODBC driver. (Bug#22613)

• Added new _ci collations to CharsetMapping - utf8_unicode_ci not working. (Bug#22456)

• Driver was using milliseconds for Statement.setQueryTimeout() when specification says argument is to be in seconds.
(Bug#22359)

• Workaround for server crash when calling stored procedures via a server-side prepared statement (driver now detects pre-
pare(stored procedure) and substitutes client-side prepared statement). (Bug#22297)

• Driver issues truncation on write exception when it shouldn't (due to sending big decimal incorrectly to server with server-side
prepared statement). (Bug#22290)

• Newlines causing whitespace to span confuse procedure parser when getting parameter metadata for stored procedures.
(Bug#22024)

• When using information_schema for metadata, COLUMN_SIZE for getColumns() is not clamped to range of java.lang.Integer
as is the case when not using information_schema, thus leading to a truncation exception that isn't present when not using in-
formation_schema. (Bug#21544)

• Column names don't match metadata in cases where server doesn't return original column names (column functions) thus break-
ing compatibility with applications that expect 1-1 mappings between findColumn() and rsmd.getColumnName(), usually mani-
fests itself as "Can't find column ('')" exceptions. (Bug#21379)

• Driver now sends numeric 1 or 0 for client-prepared statement setBoolean() calls instead of '1' or '0'.

• Fixed configuration property jdbcCompliantTruncation was not being used for reads of result set values.

• DatabaseMetaData correctly reports true for supportsCatalog*() methods.

• Driver now supports {call sp} (without "()" if procedure has no arguments).

D.2.6. Changes in MySQL Connector/J 5.0.3 (26 July 2006 beta)
Functionality added or changed:

• Added configuration option noAccessToProcedureBodies which will cause the driver to create basic parameter
metadata for CallableStatements when the user does not have access to procedure bodies via SHOW CREATE PRO-
CEDURE or selecting from mysql.proc instead of throwing an exception. The default value for this option is false

Bugs fixed:

• Fixed Statement.cancel() causes NullPointerException if underlying connection has been closed due to server
failure. (Bug#20650)

• If the connection to the server has been closed due to a server failure, then the cleanup process will call State-
ment.cancel(), triggering a NullPointerException, even though there is no active connection. (Bug#20650)

D.2.7. Changes in MySQL Connector/J 5.0.2 (11 July 2006)
Bugs fixed:

• MysqlXaConnection.recover(int flags) now allows combinations of XAResource.TMSTARTRSCAN and
TMENDRSCAN. To simulate the “scanning” nature of the interface, we return all prepared XIDs for TMSTARTRSCAN, and no
new XIDs for calls with TMNOFLAGS, or TMENDRSCAN when not in combination with TMSTARTRSCAN. This change was

MySQL Connector/J Change History

541

http://bugs.mysql.com/22613
http://bugs.mysql.com/22456
http://bugs.mysql.com/22359
http://bugs.mysql.com/22297
http://bugs.mysql.com/22290
http://bugs.mysql.com/22024
http://bugs.mysql.com/21544
http://bugs.mysql.com/21379
http://dev.mysql.com/doc/refman/5.0/en/show-create-procedure.html
http://dev.mysql.com/doc/refman/5.0/en/show-create-procedure.html
http://bugs.mysql.com/20650
http://bugs.mysql.com/20650

made for API compliance, as well as integration with IBM WebSphere's transaction manager. (Bug#20242)

• Fixed MysqlValidConnectionChecker for JBoss doesn't work with MySQLXADataSources. (Bug#20242)

• Added connection/datasource property pinGlobalTxToPhysicalConnection (defaults to false). When set to true,
when using XAConnections, the driver ensures that operations on a given XID are always routed to the same physical con-
nection. This allows the XAConnection to support XA START ... JOIN after XA END has been called, and is also a
workaround for transaction managers that don't maintain thread affinity for a global transaction (most either always maintain
thread affinity, or have it as a configuration option). (Bug#20242)

• Better caching of character set converters (per-connection) to remove a bottleneck for multibyte character sets. (Bug#20242)

• Fixed ConnectionProperties (and thus some subclasses) are not serializable, even though some J2EE containers expect
them to be. (Bug#19169)

• Fixed driver fails on non-ASCII platforms. The driver was assuming that the platform character set would be a superset of
MySQL's latin1 when doing the handshake for authentication, and when reading error messages. We now use Cp1252 for all
strings sent to the server during the handshake phase, and a hard-coded mapping of the language systtem variable to the
character set that is used for error messages. (Bug#18086)

• Fixed can't use XAConnection for local transactions when no global transaction is in progress. (Bug#17401)

D.2.8. Changes in MySQL Connector/J 5.0.1 (Not Released)
Not released due to a packaging error

D.2.9. Changes in MySQL Connector/J 5.0.0 (22 December 2005)
Bugs fixed:

• Added support for Connector/MXJ integration via url subprotocol jdbc:mysql:mxj://.... (Bug#14729)

• Idle timeouts cause XAConnections to whine about rolling themselves back. (Bug#14729)

• When fix for Bug#14562 was merged from 3.1.12, added functionality for CallableStatement's parameter metadata to re-
turn correct information for .getParameterClassName(). (Bug#14729)

• Added service-provider entry to META-INF/services/java.sql.Driver for JDBC-4.0 support. (Bug#14729)

• Fuller synchronization of Connection to avoid deadlocks when using multithreaded frameworks that multithread a single
connection (usually not recommended, but the JDBC spec allows it anyways), part of fix to Bug#14972). (Bug#14729)

• Moved all SQLException constructor usage to a factory in SQLError (ground-work for JDBC-4.0 SQLState-based ex-
ception classes). (Bug#14729)

• Removed Java5-specific calls to BigDecimal constructor (when result set value is '', (int)0 was being used as an argu-
ment indirectly via method return value. This signature doesn't exist prior to Java5.) (Bug#14729)

• Implementation of Statement.cancel() and Statement.setQueryTimeout(). Both require MySQL-5.0.0 or
newer server, require a separate connection to issue the KILL QUERY statement, and in the case of setQueryTimeout()
creates an additional thread to handle the timeout functionality.

Note: Failures to cancel the statement for setQueryTimeout() may manifest themselves as RuntimeExceptions
rather than failing silently, as there is currently no way to unblock the thread that is executing the query being cancelled due to
timeout expiration and have it throw the exception instead. (Bug#14729)

• Return "[VAR]BINARY" for RSMD.getColumnTypeName() when that is actually the type, and it can be distinguished
(MySQL-4.1 and newer). (Bug#14729)

• Attempt detection of the MySQL type BINARY (it is an alias, so this isn't always reliable), and use the
java.sql.Types.BINARY type mapping for it.

• Added unit tests for XADatasource, as well as friendlier exceptions for XA failures compared to the "stock" XAExcep-
tion (which has no messages).

• If the connection useTimezone is set to true, then also respect time zone conversions in escape-processed string literals
(for example, "{ts ...}" and "{t ...}").

MySQL Connector/J Change History

542

http://bugs.mysql.com/20242
http://bugs.mysql.com/20242
http://dev.mysql.com/doc/refman/5.0/en/xa-statements.html
http://bugs.mysql.com/20242
http://bugs.mysql.com/20242
http://bugs.mysql.com/19169
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_language
http://bugs.mysql.com/18086
http://bugs.mysql.com/17401
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://bugs.mysql.com/14562
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://bugs.mysql.com/14972
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://dev.mysql.com/doc/refman/5.0/en/kill.html
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html

• Don't allow .setAutoCommit(true), or .commit() or .rollback() on an XA-managed connection as per the JD-
BC specification.

• XADataSource implemented (ported from 3.2 branch which won't be released as a product). Use
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource as your datasource class name in your application server
to utilize XA transactions in MySQL-5.0.10 and newer.

• Moved -bin-g.jar file into separate debug subdirectory to avoid confusion.

• Return original column name for RSMD.getColumnName() if the column was aliased, alias name for
.getColumnLabel() (if aliased), and original table name for .getTableName(). Note this only works for MySQL-4.1
and newer, as older servers don't make this information available to clients.

• Setting useJDBCCompliantTimezoneShift=true (it is not the default) causes the driver to use GMT for all
TIMESTAMP/DATETIME time zones, and the current VM time zone for any other type that refers to time zones. This feature
can not be used when useTimezone=true to convert between server and client time zones.

• PreparedStatement.setString() didn't work correctly when sql_mode on server contained
NO_BACKSLASH_ESCAPES and no characters that needed escaping were present in the string.

• Add one level of indirection of internal representation of CallableStatement parameter metadata to avoid class not found
issues on JDK-1.3 for ParameterMetadata interface (which doesn't exist prior to JDBC-3.0).

D.3. Changes in MySQL Connector/J 3.1.x

D.3.1. Changes in MySQL Connector/J 3.1.15 (Not yet released)
Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled their
use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

Bugs fixed:

• Specifying US-ASCII as the character set in a connection to a MySQL 4.1 or newer server does not map correctly.
(Bug#24840)

D.3.2. Changes in MySQL Connector/J 3.1.14 (10-19-2006)
Bugs fixed:

• Check and store value for continueBatchOnError property in constructor of Statements, rather than when executing batches, so
that Connections closed out from underneath statements don't cause NullPointerExceptions when it is required to check this
property. (Bug#22290)

• Fixed Bug#18258 - DatabaseMetaData.getTables(), columns() with bad catalog parameter threw exception rather than return
empty result set (as required by spec). (Bug#22290)

• Driver now sends numeric 1 or 0 for client-prepared statement setBoolean() calls instead of '1' or '0'. (Bug#22290)

• Fixed bug where driver would not advance to next host if roundRobinLoadBalance=true and the last host in the list is down.
(Bug#22290)

• Driver issues truncation on write exception when it shouldn't (due to sending big decimal incorrectly to server with server-side
prepared statement). (Bug#22290)

• Fixed bug when calling stored functions, where parameters weren't numbered correctly (first parameter is now the return value,
subsequent parameters if specified start at index "2"). (Bug#22290)

• Removed logger autodetection altogether, must now specify logger explicitly if you want to use a logger other than one that
logs to STDERR. (Bug#21207)

MySQL Connector/J Change History

543

http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html#sqlmode_no_backslash_escapes
http://bugs.mysql.com/24840
http://bugs.mysql.com/22290
http://bugs.mysql.com/18258
http://bugs.mysql.com/22290
http://bugs.mysql.com/22290
http://bugs.mysql.com/22290
http://bugs.mysql.com/22290
http://bugs.mysql.com/22290
http://bugs.mysql.com/21207

• DDriver throws NPE when tracing prepared statements that have been closed (in asSQL()). (Bug#21207)

• ResultSet.getSomeInteger() doesn't work for BIT(>1). (Bug#21062)

• Escape of quotes in client-side prepared statements parsing not respected. Patch covers more than bug report, including
NO_BACKSLASH_ESCAPES being set, and stacked quote characters forms of escaping (that is, '' or ""). (Bug#20888)

• Fixed can't pool server-side prepared statements, exception raised when re-using them. (Bug#20687)

• Fixed Updatable result set that contains a BIT column fails when server-side prepared statements are used. (Bug#20485)

• Fixed updatable result set throws ClassCastException when there is row data and moveToInsertRow() is called. (Bug#20479)

• Fixed ResultSet.getShort() for UNSIGNED TINYINT returns incorrect values when using server-side prepared statements.
(Bug#20306)

• ReplicationDriver does not always round-robin load balance depending on URL used for slaves list. (Bug#19993)

• Fixed calling toString() on ResultSetMetaData for driver-generated (that is, from DatabaseMetaData method calls, or from get-
GeneratedKeys()) result sets would raise a NullPointerException. (Bug#19993)

• Connection fails to localhost when using timeout and IPv6 is configured. (Bug#19726)

• ResultSet.getFloatFromString() can't retrieve values near Float.MIN/MAX_VALUE. (Bug#18880)

• Fixed memory leak with profileSQL=true. (Bug#16987)

• Fixed NullPointerException in MysqlDataSourceFactory due to Reference containing RefAddrs with null content. (Bug#16791)

D.3.3. Changes in MySQL Connector/J 3.1.13 (26 May 2006)
Bugs fixed:

• Fixed PreparedStatement.setObject(int, Object, int) doesn't respect scale of BigDecimals.
(Bug#19615)

• Fixed ResultSet.wasNull() returns incorrect value when extracting native string from server-side prepared statement
generated result set. (Bug#19282)

• Fixed invalid classname returned for ResultSetMetaData.getColumnClassName() for BIGINT type.
(Bug#19282)

• Fixed case where driver wasn't reading server status correctly when fetching server-side prepared statement rows, which in
some cases could cause warning counts to be off, or multiple result sets to not be read off the wire. (Bug#19282)

• Fixed data truncation and getWarnings() only returns last warning in set. (Bug#18740)

• Fixed aliased column names where length of name > 251 are corrupted. (Bug#18554)

• Improved performance of retrieving BigDecimal, Time, Timestamp and Date values from server-side prepared state-
ments by creating fewer short-lived instances of Strings when the native type is not an exact match for the requested type.
(Bug#18496)

• Added performance feature, re-writing of batched executes for Statement.executeBatch() (for all DML statements)
and PreparedStatement.executeBatch() (for INSERTs with VALUE clauses only). Enable by using "rewrite-
BatchedStatements=true" in your JDBC URL. (Bug#18041)

• Fixed issue where server-side prepared statements don't cause truncation exceptions to be thrown when truncation happens.
(Bug#18041)

• Fixed CallableStatement.registerOutParameter() not working when some parameters pre-populated. Still
waiting for feedback from JDBC experts group to determine what correct parameter count from getMetaData() should be,
however. (Bug#17898)

• Fixed calling clearParameters() on a closed prepared statement causes NPE. (Bug#17587)

• Map "latin1" on MySQL server to CP1252 for MySQL > 4.1.0. (Bug#17587)

• Added additional accessor and mutator methods on ConnectionProperties so that DataSource users can use same naming as reg-

MySQL Connector/J Change History

544

http://bugs.mysql.com/21207
http://bugs.mysql.com/21062
http://bugs.mysql.com/20888
http://bugs.mysql.com/20687
http://bugs.mysql.com/20485
http://bugs.mysql.com/20479
http://bugs.mysql.com/20306
http://bugs.mysql.com/19993
http://bugs.mysql.com/19993
http://bugs.mysql.com/19726
http://bugs.mysql.com/18880
http://bugs.mysql.com/16987
http://bugs.mysql.com/16791
http://bugs.mysql.com/19615
http://bugs.mysql.com/19282
http://bugs.mysql.com/19282
http://bugs.mysql.com/19282
http://bugs.mysql.com/18740
http://bugs.mysql.com/18554
http://bugs.mysql.com/18496
http://bugs.mysql.com/18041
http://bugs.mysql.com/18041
http://bugs.mysql.com/17898
http://bugs.mysql.com/17587
http://bugs.mysql.com/17587

ular URL properties. (Bug#17587)

• Fixed ResultSet.wasNull() not always reset correctly for booleans when done via conversion for server-side prepared
statements. (Bug#17450)

• Fixed Statement.getGeneratedKeys() throws NullPointerException when no query has been processed.
(Bug#17099)

• Fixed updatable result set doesn't return AUTO_INCREMENT values for insertRow() when multiple column primary keys
are used. (the driver was checking for the existence of single-column primary keys and an autoincrement value > 0 instead of a
straightforward isAutoIncrement() check). (Bug#16841)

• DBMD.getColumns() returns wrong type for BIT. (Bug#15854)

• lib-nodist directory missing from package breaks out-of-box build. (Bug#15676)

• Fixed issue with ReplicationConnection incorrectly copying state, doesn't transfer connection context correctly when
transitioning between the same read-only states. (Bug#15570)

• No "dos" character set in MySQL > 4.1.0. (Bug#15544)

• INOUT parameter does not store IN value. (Bug#15464)

• PreparedStatement.setObject() serializes BigInteger as object, rather than sending as numeric value (and is
thus not complementary to .getObject() on an UNSIGNED LONG type). (Bug#15383)

• Fixed issue where driver was unable to initialize character set mapping tables. Removed reliance on .properties files to
hold this information, as it turns out to be too problematic to code around class loader hierarchies that change depending on
how an application is deployed. Moved information back into the CharsetMapping class. (Bug#14938)

• Exception thrown for new decimal type when using updatable result sets. (Bug#14609)

• Driver now aware of fix for BIT type metadata that went into MySQL-5.0.21 for server not reporting length consistently .
(Bug#13601)

• Added support for Apache Commons logging, use "com.mysql.jdbc.log.CommonsLogger" as the value for the "logger" config-
uration property. (Bug#13469)

• Fixed driver trying to call methods that don't exist on older and newer versions of Log4j. The fix is not trying to auto-detect
presence of log4j, too many different incompatible versions out there in the wild to do this reliably.

If you relied on autodetection before, you will need to add "logger=com.mysql.jdbc.log.Log4JLogger" to your JDBC URL to
enable Log4J usage, or alternatively use the new "CommonsLogger" class to take care of this. (Bug#13469)

• LogFactory now prepends "com.mysql.jdbc.log" to log class name if it can't be found as-specified. This allows you to use
"short names" for the built-in log factories, for example "logger=CommonsLogger" instead of "log-
ger=com.mysql.jdbc.log.CommonsLogger". (Bug#13469)

• ResultSet.getShort() for UNSIGNED TINYINT returned wrong values. (Bug#11874)

D.3.4. Changes in MySQL Connector/J 3.1.12 (30 November 2005)
Bugs fixed:

• Process escape tokens in Connection.prepareStatement(...). You can disable this behavior by setting the JDBC
URL configuration property processEscapeCodesForPrepStmts to false. (Bug#15141)

• Usage advisor complains about unreferenced columns, even though they've been referenced. (Bug#15065)

• Driver incorrectly closes streams passed as arguments to PreparedStatements. Reverts to legacy behavior by setting the
JDBC configuration property autoClosePStmtStreams to true (also included in the 3-0-Compat configuration
“bundle”). (Bug#15024)

• Deadlock while closing server-side prepared statements from multiple threads sharing one connection. (Bug#14972)

• Unable to initialize character set mapping tables (due to J2EE classloader differences). (Bug#14938)

• Escape processor replaces quote character in quoted string with string delimiter. (Bug#14909)

MySQL Connector/J Change History

545

http://bugs.mysql.com/17587
http://bugs.mysql.com/17450
http://bugs.mysql.com/17099
http://bugs.mysql.com/16841
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/15854
http://bugs.mysql.com/15676
http://bugs.mysql.com/15570
http://bugs.mysql.com/15544
http://bugs.mysql.com/15464
http://bugs.mysql.com/15383
http://bugs.mysql.com/14938
http://bugs.mysql.com/14609
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/13601
http://bugs.mysql.com/13469
http://bugs.mysql.com/13469
http://bugs.mysql.com/13469
http://bugs.mysql.com/11874
http://bugs.mysql.com/15141
http://bugs.mysql.com/15065
http://bugs.mysql.com/15024
http://bugs.mysql.com/14972
http://bugs.mysql.com/14938
http://bugs.mysql.com/14909

• DatabaseMetaData.getColumns() doesn't return TABLE_NAME correctly. (Bug#14815)

• storesMixedCaseIdentifiers() returns false (Bug#14562)

• storesLowerCaseIdentifiers() returns true (Bug#14562)

• storesMixedCaseQuotedIdentifiers() returns false (Bug#14562)

• storesMixedCaseQuotedIdentifiers() returns true (Bug#14562)

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug#14562)

• storesUpperCaseIdentifiers() returns false (Bug#14562)

• storesUpperCaseQuotedIdentifiers() returns true (Bug#14562)

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

• storesMixedCaseIdentifiers() returns false

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug#14562)

• storesLowerCaseQuotedIdentifiers() returns true (Bug#14562)

• Fixed DatabaseMetaData.stores*Identifiers():

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

• storesMixedCaseIdentifiers() returns false

MySQL Connector/J Change History

546

http://bugs.mysql.com/14815
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug#14562)

• storesMixedCaseIdentifiers() returns true (Bug#14562)

• storesLowerCaseQuotedIdentifiers() returns false (Bug#14562)

• Java type conversion may be incorrect for MEDIUMINT. (Bug#14562)

• storesLowerCaseIdentifiers() returns false (Bug#14562)

• Added configuration property useGmtMillisForDatetimes which when set to true causes
ResultSet.getDate(), .getTimestamp() to return correct millis-since GMT when .getTime() is called on the re-
turn value (currently default is false for legacy behavior). (Bug#14562)

• Extraneous sleep on autoReconnect. (Bug#13775)

• Reconnect during middle of executeBatch() should not occur if autoReconnect is enabled. (Bug#13255)

• maxQuerySizeToLog is not respected. Added logging of bound values for execute() phase of server-side prepared state-
ments when profileSQL=true as well. (Bug#13048)

• OpenOffice expects DBMD.supportsIntegrityEnhancementFacility() to return true if foreign keys are suppor-
ted by the datasource, even though this method also covers support for check constraints, which MySQL doesn't have. Setting
the configuration property overrideSupportsIntegrityEnhancementFacility to true causes the driver to re-
turn true for this method. (Bug#12975)

• Added com.mysql.jdbc.testsuite.url.default system property to set default JDBC url for testsuite (to speed up
bug resolution when I'm working in Eclipse). (Bug#12975)

• logSlowQueries should give better info. (Bug#12230)

• Don't increase timeout for failover/reconnect. (Bug#6577)

• Fixed client-side prepared statement bug with embedded ? characters inside quoted identifiers (it was recognized as a place-
holder, when it was not).

• Don't allow executeBatch() for CallableStatements with registered OUT/INOUT parameters (JDBC compliance).

• Fall back to platform-encoding for URLDecoder.decode() when parsing driver URL properties if the platform doesn't
have a two-argument version of this method.

D.3.5. Changes in MySQL Connector/J 3.1.11 (07 October 2005)
Bugs fixed:

• The configuration property sessionVariables now allows you to specify variables that start with the “@” sign.
(Bug#13453)

• URL configuration parameters don't allow “&” or “=” in their values. The JDBC driver now parses configuration parameters as
if they are encoded using the application/x-www-form-urlencoded format as specified by java.net.URLDecoder (ht-
tp://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html).

If the “%” character is present in a configuration property, it must now be represented as %25, which is the encoded form of “%”
when using application/x-www-form-urlencoded encoding. (Bug#13453)

• Workaround for Bug#13374: ResultSet.getStatement() on closed result set returns NULL (as per JDBC 4.0 spec, but
not backward-compatible). Set the connection property retainStatementAfterResultSetClose to true to be able
to retrieve a ResultSet's statement after the ResultSet has been closed via .getStatement() (the default is false,
to be JDBC-compliant and to reduce the chance that code using JDBC leaks Statement instances). (Bug#13277)

• ResultSetMetaData from Statement.getGeneratedKeys() caused a NullPointerException to be thrown

MySQL Connector/J Change History

547

http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/13775
http://bugs.mysql.com/13255
http://bugs.mysql.com/13048
http://bugs.mysql.com/12975
http://bugs.mysql.com/12975
http://bugs.mysql.com/12230
http://bugs.mysql.com/6577
http://bugs.mysql.com/13453
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html
http://bugs.mysql.com/13453
http://bugs.mysql.com/13374
http://bugs.mysql.com/13277

whenever a method that required a connection reference was called. (Bug#13277)

• Backport of VAR[BINARY|CHAR] [BINARY] types detection from 5.0 branch. (Bug#13277)

• Fixed NullPointerException when converting catalog parameter in many DatabaseMetaDataMethods to
byte[]s (for the result set) when the parameter is null. (null isn't technically allowed by the JDBC specification, but
we've historically allowed it). (Bug#13277)

• Backport of Field class, ResultSetMetaData.getColumnClassName(), and ResultSet.getObject(int)
changes from 5.0 branch to fix behavior surrounding VARCHAR BINARY/VARBINARY and related types. (Bug#13277)

• Read response in MysqlIO.sendFileToServer(), even if the local file can't be opened, otherwise next query issued will
fail, because it is reading the response to the empty LOAD DATA INFILE packet sent to the server. (Bug#13277)

• When gatherPerfMetrics is enabled for servers older than 4.1.0, a NullPointerException is thrown from the con-
structor of ResultSet if the query doesn't use any tables. (Bug#13043)

• java.sql.Types.OTHER returned for BINARY and VARBINARY columns when using Database-
MetaData.getColumns(). (Bug#12970)

• ServerPreparedStatement.getBinding() now checks if the statement is closed before attempting to reference the
list of parameter bindings, to avoid throwing a NullPointerException. (Bug#12970)

• Tokenizer for = in URL properties was causing sessionVariables=.... to be parameterized incorrectly. (Bug#12753)

• cp1251 incorrectly mapped to win1251 for servers newer than 4.0.x. (Bug#12752)

• getExportedKeys() (Bug#12541)

• Specifying a catalog works as stated in the API docs. (Bug#12541)

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will be searched), unless you've set
nullCatalogMeansCurrent=true in your JDBC URL properties. (Bug#12541)

• getIndexInfo() (Bug#12541)

• getProcedures() (and thus indirectly getProcedureColumns()) (Bug#12541)

• getImportedKeys() (Bug#12541)

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it is there for legacy users.
(Bug#12541)

• getCrossReference() (Bug#12541)

• Added Connection.isMasterConnection() for clients to be able to determine if a multi-host master/slave connection
is connected to the first host in the list. (Bug#12541)

• getColumns() (Bug#12541)

• Handling of catalog argument in DatabaseMetaData.getIndexInfo(), which also means changes to the following
methods in DatabaseMetaData:

• getBestRowIdentifier()

• getColumns()

• getCrossReference()

• getExportedKeys()

• getImportedKeys()

• getIndexInfo()

• getPrimaryKeys()

• getProcedures() (and thus indirectly getProcedureColumns())

• getTables()

The catalog argument in all of these methods now behaves in the following way:

MySQL Connector/J Change History

548

http://bugs.mysql.com/13277
http://bugs.mysql.com/13277
http://bugs.mysql.com/13277
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/13277
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://bugs.mysql.com/13277
http://bugs.mysql.com/13043
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/12970
http://bugs.mysql.com/12970
http://bugs.mysql.com/12753
http://bugs.mysql.com/12752
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will be searched), unless you've
set nullCatalogMeansCurrent=true in your JDBC URL properties.

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it is there for legacy users.

• Specifying a catalog works as stated in the API docs.

• Made Connection.clientPrepare() available from “wrapped” connections in the jdbc2.optional package
(connections built by ConnectionPoolDataSource instances).

(Bug#12541)

• getBestRowIdentifier() (Bug#12541)

• Made Connection.clientPrepare() available from “wrapped” connections in the jdbc2.optional package
(connections built by ConnectionPoolDataSource instances). (Bug#12541)

• getTables() (Bug#12541)

• getPrimaryKeys() (Bug#12541)

• Connection.prepareCall() is database name case-sensitive (on Windows systems). (Bug#12417)

• explainSlowQueries hangs with server-side prepared statements. (Bug#12229)

• Properties shared between master and slave with replication connection. (Bug#12218)

• Geometry types not handled with server-side prepared statements. (Bug#12104)

• maxPerformance.properties mis-spells “elideSetAutoCommits”. (Bug#11976)

• ReplicationConnection won't switch to slave, throws “Catalog can't be null” exception. (Bug#11879)

• Pstmt.setObject(...., Types.BOOLEAN) throws exception. (Bug#11798)

• Escape tokenizer doesn't respect stacked single quotes for escapes. (Bug#11797)

• GEOMETRY type not recognized when using server-side prepared statements. (Bug#11797)

• Foreign key information that is quoted is parsed incorrectly when DatabaseMetaData methods use that information.
(Bug#11781)

• The sendBlobChunkSize property is now clamped to max_allowed_packet with consideration of stream buffer size
and packet headers to avoid PacketTooBigExceptions when max_allowed_packet is similar in size to the default
sendBlobChunkSize which is 1M. (Bug#11781)

• CallableStatement.clearParameters() now clears resources associated with INOUT/OUTPUT parameters as well
as INPUT parameters. (Bug#11781)

• Fixed regression caused by fix for Bug#11552 that caused driver to return incorrect values for unsigned integers when those in-
tegers where within the range of the positive signed type. (Bug#11663)

• Moved source code to Subversion repository. (Bug#11663)

• Incorrect generation of testcase scripts for server-side prepared statements. (Bug#11663)

• Fixed statements generated for testcases missing ; for “plain” statements. (Bug#11629)

• Spurious ! on console when character encoding is utf8. (Bug#11629)

• StringUtils.getBytes() doesn't work when using multi-byte character encodings and a length in characters is spe-
cified. (Bug#11614)

• DBMD.storesLower/Mixed/UpperIdentifiers() reports incorrect values for servers deployed on Windows.
(Bug#11575)

• Reworked Field class, *Buffer, and MysqlIO to be aware of field lengths > Integer.MAX_VALUE. (Bug#11498)

• Escape processor didn't honor strings demarcated with double quotes. (Bug#11498)

• Updated DBMD.supportsCorrelatedQueries() to return true for versions > 4.1, supportsGroupByUnre-

MySQL Connector/J Change History

549

http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12417
http://bugs.mysql.com/12229
http://bugs.mysql.com/12218
http://bugs.mysql.com/12104
http://bugs.mysql.com/11976
http://bugs.mysql.com/11879
http://bugs.mysql.com/11798
http://bugs.mysql.com/11797
http://bugs.mysql.com/11797
http://bugs.mysql.com/11781
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet
http://bugs.mysql.com/11781
http://bugs.mysql.com/11781
http://bugs.mysql.com/11552
http://bugs.mysql.com/11663
http://bugs.mysql.com/11663
http://bugs.mysql.com/11663
http://bugs.mysql.com/11629
http://bugs.mysql.com/11629
http://bugs.mysql.com/11614
http://bugs.mysql.com/11575
http://bugs.mysql.com/11498
http://bugs.mysql.com/11498

lated() to return true and getResultSetHoldability() to return HOLD_CURSORS_OVER_COMMIT.
(Bug#11498)

• Lifted restriction of changing streaming parameters with server-side prepared statements. As long as all streaming parameters
were set before execution, .clearParameters() does not have to be called. (due to limitation of client/server protocol,
prepared statements can not reset individual stream data on the server side). (Bug#11498)

• ResultSet.moveToCurrentRow() fails to work when preceded by a call to ResultSet.moveToInsertRow().
(Bug#11190)

• VARBINARY data corrupted when using server-side prepared statements and .setBytes(). (Bug#11115)

• Statement.getWarnings() fails with NPE if statement has been closed. (Bug#10630)

• Only get char[] from SQL in PreparedStatement.ParseInfo() when needed. (Bug#10630)

D.3.6. Changes in MySQL Connector/J 3.1.10 (23 June 2005)
Bugs fixed:

• Initial implemention of ParameterMetadata for PreparedStatement.getParameterMetadata(). Only works
fully for CallableStatements, as current server-side prepared statements return every parameter as a VARCHAR type.

• Fixed connecting without a database specified raised an exception in MysqlIO.changeDatabaseTo().

D.3.7. Changes in MySQL Connector/J 3.1.9 (22 June 2005)
Bugs fixed:

• Production package doesn't include JBoss integration classes. (Bug#11411)

• Removed nonsensical “costly type conversion” warnings when using usage advisor. (Bug#11411)

• Fixed PreparedStatement.setClob() not accepting null as a parameter. (Bug#11360)

• Connector/J dumping query into SQLException twice. (Bug#11360)

• autoReconnect ping causes exception on connection startup. (Bug#11259)

• Connection.setCatalog() is now aware of the useLocalSessionState configuration property, which when set to
true will prevent the driver from sending USE ... to the server if the requested catalog is the same as the current catalog.
(Bug#11115)

• 3-0-Compat — Compatibility with Connector/J 3.0.x functionality (Bug#11115)

• maxPerformance — maximum performance without being reckless (Bug#11115)

• solarisMaxPerformance — maximum performance for Solaris, avoids syscalls where it can (Bug#11115)

• Added maintainTimeStats configuration property (defaults to true), which tells the driver whether or not to keep track
of the last query time and the last successful packet sent to the server's time. If set to false, removes two syscalls per query.
(Bug#11115)

• VARBINARY data corrupted when using server-side prepared statements and ResultSet.getBytes(). (Bug#11115)

• Added the following configuration bundles, use one or many via the useConfigs configuration property:

• maxPerformance — maximum performance without being reckless

• solarisMaxPerformance — maximum performance for Solaris, avoids syscalls where it can

• 3-0-Compat — Compatibility with Connector/J 3.0.x functionality

(Bug#11115)

• Try to handle OutOfMemoryErrors more gracefully. Although not much can be done, they will in most cases close the con-
nection they happened on so that further operations don't run into a connection in some unknown state. When an OOM has

MySQL Connector/J Change History

550

http://bugs.mysql.com/11498
http://bugs.mysql.com/11498
http://bugs.mysql.com/11190
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/11115
http://bugs.mysql.com/10630
http://bugs.mysql.com/10630
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://bugs.mysql.com/11411
http://bugs.mysql.com/11411
http://bugs.mysql.com/11360
http://bugs.mysql.com/11360
http://bugs.mysql.com/11259
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115

happened, any further operations on the connection will fail with a “Connection closed” exception that will also list the OOM
exception as the reason for the implicit connection close event. (Bug#10850)

• Setting cachePrepStmts=true now causes the Connection to also cache the check the driver performs to determine if
a prepared statement can be server-side or not, as well as caches server-side prepared statements for the lifetime of a connec-
tion. As before, the prepStmtCacheSize parameter controls the size of these caches. (Bug#10850)

• Don't send COM_RESET_STMT for each execution of a server-side prepared statement if it isn't required. (Bug#10850)

• 0-length streams not sent to server when using server-side prepared statements. (Bug#10850)

• Driver detects if you're running MySQL-5.0.7 or later, and does not scan for LIMIT ?[,?] in statements being prepared, as
the server supports those types of queries now. (Bug#10850)

• Reorganized directory layout. Sources now are in src folder. Don't pollute parent directory when building, now output goes to
./build, distribution goes to ./dist. (Bug#10496)

• Added support/bug hunting feature that generates .sql test scripts to STDERR when autoGenerateTestcaseScript is
set to true. (Bug#10496)

• SQLException is thrown when using property characterSetResults with cp932 or eucjpms. (Bug#10496)

• The datatype returned for TINYINT(1) columns when tinyInt1isBit=true (the default) can be switched between
Types.BOOLEAN and Types.BIT using the new configuration property transformedBitIsBoolean, which defaults
to false. If set to false (the default), DatabaseMetaData.getColumns() and ResultSet-
MetaData.getColumnType() will return Types.BOOLEAN for TINYINT(1) columns. If true, Types.BOOLEAN
will be returned instead. Regardless of this configuration property, if tinyInt1isBit is enabled, columns with the type
TINYINT(1) will be returned as java.lang.Boolean instances from ResultSet.getObject(...), and Result-
SetMetaData.getColumnClassName() will return java.lang.Boolean. (Bug#10485)

• SQLException thrown when retrieving YEAR(2) with ResultSet.getString(). The driver will now always treat
YEAR types as java.sql.Dates and return the correct values for getString(). Alternatively, the yearIsDateType
connection property can be set to false and the values will be treated as SHORTs. (Bug#10485)

• Driver doesn't support {?=CALL(...)} for calling stored functions. This involved adding support for function retrieval to
DatabaseMetaData.getProcedures() and getProcedureColumns() as well. (Bug#10310)

• Unsigned SMALLINT treated as signed for ResultSet.getInt(), fixed all cases for UNSIGNED integer values and serv-
er-side prepared statements, as well as ResultSet.getObject() for UNSIGNED TINYINT. (Bug#10156)

• Made ServerPreparedStatement.asSql() work correctly so auto-explain functionality would work with server-side
prepared statements. (Bug#10155)

• Double quotes not recognized when parsing client-side prepared statements. (Bug#10155)

• Made JDBC2-compliant wrappers public in order to allow access to vendor extensions. (Bug#10155)

• DatabaseMetaData.supportsMultipleOpenResults() now returns true. The driver has supported this for some
time, DBMD just missed that fact. (Bug#10155)

• Cleaned up logging of profiler events, moved code to dump a profiler event as a string to
com.mysql.jdbc.log.LogUtils so that third parties can use it. (Bug#10155)

• Made enableStreamingResults() visible on com.mysql.jdbc.jdbc2.optional.StatementWrapper.
(Bug#10155)

• Actually write manifest file to correct place so it ends up in the binary jar file. (Bug#10144)

• Added createDatabaseIfNotExist property (default is false), which will cause the driver to ask the server to create
the database specified in the URL if it doesn't exist. You must have the appropriate privileges for database creation for this to
work. (Bug#10144)

• Memory leak in ServerPreparedStatement if serverPrepare() fails. (Bug#10144)

• com.mysql.jdbc.PreparedStatement.ParseInfo does unnecessary call to toCharArray(). (Bug#9064)

• Driver now correctly uses CP932 if available on the server for Windows-31J, CP932 and MS932 java encoding names, other-
wise it resorts to SJIS, which is only a close approximation. Currently only MySQL-5.0.3 and newer (and MySQL-4.1.12 or
.13, depending on when the character set gets backported) can reliably support any variant of CP932.

• Overhaul of character set configuration, everything now lives in a properties file.

MySQL Connector/J Change History

551

http://bugs.mysql.com/10850
http://bugs.mysql.com/10850
http://bugs.mysql.com/10850
http://bugs.mysql.com/10850
http://bugs.mysql.com/10850
http://bugs.mysql.com/10496
http://bugs.mysql.com/10496
http://bugs.mysql.com/10496
http://bugs.mysql.com/10485
http://dev.mysql.com/doc/refman/5.0/en/year.html
http://bugs.mysql.com/10485
http://bugs.mysql.com/10310
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/10156
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10144
http://bugs.mysql.com/10144
http://bugs.mysql.com/10144
http://bugs.mysql.com/9064

D.3.8. Changes in MySQL Connector/J 3.1.8 (14 April 2005)
Bugs fixed:

• Should accept null for catalog (meaning use current) in DBMD methods, even though it is not JDBC-compliant for legacy's
sake. Disable by setting connection property nullCatalogMeansCurrent to false (which will be the default value in
C/J 3.2.x). (Bug#9917)

• Fixed driver not returning true for -1 when ResultSet.getBoolean() was called on result sets returned from server-
side prepared statements. (Bug#9778)

• Added a Manifest.MF file with implementation information to the .jar file. (Bug#9778)

• More tests in Field.isOpaqueBinary() to distinguish opaque binary (that is, fields with type CHAR(n) and CHARAC-
TER SET BINARY) from output of various scalar and aggregate functions that return strings. (Bug#9778)

• DBMD.getTables() shouldn't return tables if views are asked for, even if the database version doesn't support views.
(Bug#9778)

• Should accept null for name patterns in DBMD (meaning “%”), even though it isn't JDBC compliant, for legacy's sake. Dis-
able by setting connection property nullNamePatternMatchesAll to false (which will be the default value in C/J
3.2.x). (Bug#9769)

• The performance metrics feature now gathers information about number of tables referenced in a SELECT. (Bug#9704)

• The logging system is now automatically configured. If the value has been set by the user, via the URL property logger or
the system property com.mysql.jdbc.logger, then use that, otherwise, autodetect it using the following steps:

1. Log4j, if it is available,

2. Then JDK1.4 logging,

3. Then fallback to our STDERR logging.

(Bug#9704)

• Statement.getMoreResults() could throw NPE when existing result set was .close()d. (Bug#9704)

• Stored procedures with DECIMAL parameters with storage specifications that contained “,” in them would fail. (Bug#9682)

• PreparedStatement.setObject(int, Object, int type, int scale) now uses scale value for Big-
Decimal instances. (Bug#9682)

• Added support for the c3p0 connection pool's (http://c3p0.sf.net/) validation/connection checker interface which uses the light-
weight COM_PING call to the server if available. To use it, configure your c3p0 connection pool's connectionTester-
ClassName property to use com.mysql.jdbc.integration.c3p0.MysqlConnectionTester. (Bug#9320)

• PreparedStatement.getMetaData() inserts blank row in database under certain conditions when not using server-
side prepared statements. (Bug#9320)

• Better detection of LIMIT inside/outside of quoted strings so that the driver can more correctly determine whether a prepared
statement can be prepared on the server or not. (Bug#9320)

• Connection.canHandleAsPreparedStatement() now makes “best effort” to distinguish LIMIT clauses with
placeholders in them from ones without in order to have fewer false positives when generating work-arounds for statements the
server cannot currently handle as server-side prepared statements. (Bug#9320)

• Fixed build.xml to not compile log4j logging if log4j not available. (Bug#9320)

• Added finalizers to ResultSet and Statement implementations to be JDBC spec-compliant, which requires that if not ex-
plicitly closed, these resources should be closed upon garbage collection. (Bug#9319)

• Stored procedures with same name in different databases confuse the driver when it tries to determine parameter counts/types.
(Bug#9319)

• A continuation of Bug#8868, where functions used in queries that should return non-string types when resolved by temporary
tables suddenly become opaque binary strings (work-around for server limitation). Also fixed fields with type of CHAR(n)
CHARACTER SET BINARY to return correct/matching classes for RSMD.getColumnClassName() and Result-
Set.getObject(). (Bug#9236)

• Cannot use UTF-8 for characterSetResults configuration property. (Bug#9206)

MySQL Connector/J Change History

552

http://bugs.mysql.com/9917
http://bugs.mysql.com/9778
http://bugs.mysql.com/9778
http://bugs.mysql.com/9778
http://bugs.mysql.com/9778
http://bugs.mysql.com/9769
http://bugs.mysql.com/9704
http://bugs.mysql.com/9704
http://bugs.mysql.com/9704
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/9682
http://bugs.mysql.com/9682
http://c3p0.sf.net/
http://bugs.mysql.com/9320
http://bugs.mysql.com/9320
http://bugs.mysql.com/9320
http://bugs.mysql.com/9320
http://bugs.mysql.com/9320
http://bugs.mysql.com/9319
http://bugs.mysql.com/9319
http://bugs.mysql.com/8868
http://bugs.mysql.com/9236
http://bugs.mysql.com/9206

• PreparedStatement.addBatch() doesn't work with server-side prepared statements and streaming BINARY data.
(Bug#9040)

• ServerPreparedStatements now correctly “stream” BLOB/CLOB data to the server. You can configure the threshold
chunk size using the JDBC URL property blobSendChunkSize (the default is 1MB). (Bug#8868)

• DATE_FORMAT() queries returned as BLOBs from getObject(). (Bug#8868)

• Server-side session variables can be preset at connection time by passing them as a comma-delimited list for the connection
property sessionVariables. (Bug#8868)

• BlobFromLocator now uses correct identifier quoting when generating prepared statements. (Bug#8868)

• Fixed regression in ping() for users using autoReconnect=true. (Bug#8868)

• Check for empty strings ('') when converting CHAR/VARCHAR column data to numbers, throw exception if emptyString-
sConvertToZero configuration property is set to false (for backward-compatibility with 3.0, it is now set to true by de-
fault, but will most likely default to false in 3.2). (Bug#8803)

• DATA_TYPE column from DBMD.getBestRowIdentifier() causes ArrayIndexOutOfBoundsException when
accessed (and in fact, didn't return any value). (Bug#8803)

• DBMD.supportsMixedCase*Identifiers() returns wrong value on servers running on case-sensitive file systems.
(Bug#8800)

• DBMD.supportsResultSetConcurrency() not returning true for forward-only/read-only result sets (we obviously
support this). (Bug#8792)

• Fixed ResultSet.getTime() on a NULL value for server-side prepared statements throws NPE.

• Made Connection.ping() a public method.

• Added support for new precision-math DECIMAL type in MySQL 5.0.3 and up.

• Fixed DatabaseMetaData.getTables() returning views when they were not asked for as one of the requested table
types.

D.3.9. Changes in MySQL Connector/J 3.1.7 (18 February 2005)
Bugs fixed:

• PreparedStatements not creating streaming result sets. (Bug#8487)

• Don't pass NULL to String.valueOf() in ResultSet.getNativeConvertToString(), as it stringifies it (that is,
returns null), which is not correct for the method in question. (Bug#8487)

• Fixed NPE in ResultSet.realClose() when using usage advisor and result set was already closed. (Bug#8428)

• ResultSet.getString() doesn't maintain format stored on server, bug fix only enabled when noDatetimeString-
Sync property is set to true (the default is false). (Bug#8428)

• Added support for BIT type in MySQL-5.0.3. The driver will treat BIT(1-8) as the JDBC standard BIT type (which maps to
java.lang.Boolean), as the server does not currently send enough information to determine the size of a bitfield when < 9
bits are declared. BIT(>9) will be treated as VARBINARY, and will return byte[] when getObject() is called.
(Bug#8424)

• Added useLocalSessionState configuration property, when set to true the JDBC driver trusts that the application is
well-behaved and only sets autocommit and transaction isolation levels using the methods provided on
java.sql.Connection, and therefore can manipulate these values in many cases without incurring round-trips to the data-
base server. (Bug#8424)

• Added enableStreamingResults() to Statement for connection pool implementations that check State-
ment.setFetchSize() for specification-compliant values. Call Statement.setFetchSize(>=0) to disable the
streaming results for that statement. (Bug#8424)

• ResultSet.getBigDecimal() throws exception when rounding would need to occur to set scale. The driver now
chooses a rounding mode of “half up” if non-rounding BigDecimal.setScale() fails. (Bug#8424)

• Fixed synchronization issue with ServerPreparedStatement.serverPrepare() that could cause deadlocks/crashes

MySQL Connector/J Change History

553

http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/9040
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/8868
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_date-format
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/8868
http://bugs.mysql.com/8868
http://bugs.mysql.com/8868
http://bugs.mysql.com/8868
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://bugs.mysql.com/8803
http://bugs.mysql.com/8803
http://bugs.mysql.com/8800
http://bugs.mysql.com/8792
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/8487
http://bugs.mysql.com/8487
http://bugs.mysql.com/8428
http://bugs.mysql.com/8428
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/8424
http://bugs.mysql.com/8424
http://bugs.mysql.com/8424
http://bugs.mysql.com/8424

if connection was shared between threads. (Bug#8096)

• Emulated locators corrupt binary data when using server-side prepared statements. (Bug#8096)

• Infinite recursion when “falling back” to master in failover configuration. (Bug#7952)

• Disable multi-statements (if enabled) for MySQL-4.1 versions prior to version 4.1.10 if the query cache is enabled, as the server
returns wrong results in this configuration. (Bug#7952)

• Removed dontUnpackBinaryResults functionality, the driver now always stores results from server-side prepared state-
ments as is from the server and unpacks them on demand. (Bug#7952)

• Fixed duplicated code in configureClientCharset() that prevented useOldUTF8Behavior=true from working
properly. (Bug#7952)

• Added holdResultsOpenOverStatementClose property (default is false), that keeps result sets open over state-
ment.close() or new execution on same statement (suggested by Kevin Burton). (Bug#7715)

• Detect new sql_mode variable in string form (it used to be integer) and adjust quoting method for strings appropriately.
(Bug#7715)

• Timestamps converted incorrectly to strings with server-side prepared statements and updatable result sets. (Bug#7715)

• Timestamp key column data needed _binary stripped for UpdatableResultSet.refreshRow(). (Bug#7686)

• Choose correct “direction” to apply time adjustments when both client and server are in GMT time zone when using Result-
Set.get(..., cal) and PreparedStatement.set(...., cal). (Bug#4718)

• Remove _binary introducer from parameters used as in/out parameters in CallableStatement. (Bug#4718)

• Always return byte[]s for output parameters registered as *BINARY. (Bug#4718)

• By default, the driver now scans SQL you are preparing via all variants of Connection.prepareStatement() to de-
termine if it is a supported type of statement to prepare on the server side, and if it is not supported by the server, it instead pre-
pares it as a client-side emulated prepared statement. You can disable this by passing emulateUnsupportedPst-
mts=false in your JDBC URL. (Bug#4718)

• Added dontTrackOpenResources option (default is false, to be JDBC compliant), which helps with memory use for
non-well-behaved apps (that is, applications that don't close Statement objects when they should). (Bug#4718)

• Send correct value for “boolean” true to server for PreparedStatement.setObject(n, "true", Types.BIT).
(Bug#4718)

• Fixed bug with Connection not caching statements from prepareStatement() when the statement wasn't a server-side
prepared statement. (Bug#4718)

D.3.10. Changes in MySQL Connector/J 3.1.6 (23 December 2004)
Bugs fixed:

• DBMD.getProcedures() doesn't respect catalog parameter. (Bug#7026)

• Fixed hang on SocketInputStream.read() with Statement.setMaxRows() and multiple result sets when driver
has to truncate result set directly, rather than tacking a LIMIT n on the end of it.

D.3.11. Changes in MySQL Connector/J 3.1.5 (02 December 2004)
Bugs fixed:

• Use 1MB packet for sending file for LOAD DATA LOCAL INFILE if that is < max_allowed_packet on server.
(Bug#6537)

• SUM() on DECIMAL with server-side prepared statement ignores scale if zero-padding is needed (this ends up being due to
conversion to DOUBLE by server, which when converted to a string to parse into BigDecimal, loses all “padding” zeros).
(Bug#6537)

MySQL Connector/J Change History

554

http://bugs.mysql.com/8096
http://bugs.mysql.com/8096
http://bugs.mysql.com/7952
http://bugs.mysql.com/7952
http://bugs.mysql.com/7952
http://bugs.mysql.com/7952
http://bugs.mysql.com/7715
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_sql_mode
http://bugs.mysql.com/7715
http://bugs.mysql.com/7715
http://bugs.mysql.com/7686
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/7026
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet
http://bugs.mysql.com/6537
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/6537

• Use DatabaseMetaData.getIdentifierQuoteString() when building DBMD queries. (Bug#6537)

• Use our own implementation of buffered input streams to get around blocking behavior of
java.io.BufferedInputStream. Disable this with useReadAheadInput=false. (Bug#6399)

• Make auto-deserialization of java.lang.Objects stored in BLOB columns configurable via autoDeserialize prop-
erty (defaults to false). (Bug#6399)

• ResultSetMetaData.getColumnDisplaySize() returns incorrect values for multi-byte charsets. (Bug#6399)

• Re-work Field.isOpaqueBinary() to detect CHAR(n) CHARACTER SET BINARY to support fixed-length binary
fields for ResultSet.getObject(). (Bug#6399)

• Failing to connect to the server when one of the addresses for the given host name is IPV6 (which the server does not yet bind
on). The driver now loops through all IP addresses for a given host, and stops on the first one that accepts() a sock-
et.connect(). (Bug#6348)

• Removed unwanted new Throwable() in ResultSet constructor due to bad merge (caused a new object instance that was
never used for every result set created). Found while profiling for Bug#6359. (Bug#6225)

• ServerSidePreparedStatement allocating short-lived objects unnecessarily. (Bug#6225)

• Use null-safe-equals for key comparisons in updatable result sets. (Bug#6225)

• Fixed too-early creation of StringBuffer in EscapeProcessor.escapeSQL(), also return String when escaping
not needed (to avoid unnecessary object allocations). Found while profiling for Bug#6359. (Bug#6225)

• UNSIGNED BIGINT unpacked incorrectly from server-side prepared statement result sets. (Bug#5729)

• Added experimental configuration property dontUnpackBinaryResults, which delays unpacking binary result set values
until they're asked for, and only creates object instances for non-numerical values (it is set to false by default). For some
usecase/jvm combinations, this is friendlier on the garbage collector. (Bug#5706)

• Don't throw exceptions for Connection.releaseSavepoint(). (Bug#5706)

• Inefficient detection of pre-existing string instances in ResultSet.getNativeString(). (Bug#5706)

• Use a per-session Calendar instance by default when decoding dates from ServerPreparedStatements (set to old,
less performant behavior by setting property dynamicCalendars=true). (Bug#5706)

• Fixed batched updates with server prepared statements weren't looking if the types had changed for a given batched set of para-
meters compared to the previous set, causing the server to return the error “Wrong arguments to mysql_stmt_execute()”.
(Bug#5235)

• Handle case when string representation of timestamp contains trailing “.” with no numbers following it. (Bug#5235)

• Server-side prepared statements did not honor zeroDateTimeBehavior property, and would cause class-cast exceptions
when using ResultSet.getObject(), as the all-zero string was always returned. (Bug#5235)

• Fix comparisons made between string constants and dynamic strings that are converted with either toUpperCase() or to-
LowerCase() to use Locale.ENGLISH, as some locales “override” case rules for English. Also use Strin-
gUtils.indexOfIgnoreCase() instead of .toUpperCase().indexOf(), avoids creating a very short-lived transi-
ent String instance.

D.3.12. Changes in MySQL Connector/J 3.1.4 (04 September 2004)
Bugs fixed:

• Fixed ServerPreparedStatement to read prepared statement metadata off the wire, even though it is currently a place-
holder instead of using MysqlIO.clearInputStream() which didn't work at various times because data wasn't available
to read from the server yet. This fixes sporadic errors users were having with ServerPreparedStatements throwing
ArrayIndexOutOfBoundExceptions. (Bug#5032)

• Added three ways to deal with all-zero datetimes when reading them from a ResultSet: exception (the default), which
throws an SQLException with an SQLState of S1009; convertToNull, which returns NULL instead of the date; and
round, which rounds the date to the nearest closest value which is '0001-01-01'. (Bug#5032)

• The driver is more strict about truncation of numerics on ResultSet.get*(), and will throw an SQLException when
truncation is detected. You can disable this by setting jdbcCompliantTruncation to false (it is enabled by default, as

MySQL Connector/J Change History

555

http://bugs.mysql.com/6537
http://bugs.mysql.com/6399
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/6399
http://bugs.mysql.com/6399
http://bugs.mysql.com/6399
http://bugs.mysql.com/6348
http://bugs.mysql.com/6359
http://bugs.mysql.com/6225
http://bugs.mysql.com/6225
http://bugs.mysql.com/6225
http://bugs.mysql.com/6359
http://bugs.mysql.com/6225
http://bugs.mysql.com/5729
http://bugs.mysql.com/5706
http://bugs.mysql.com/5706
http://bugs.mysql.com/5706
http://bugs.mysql.com/5706
http://bugs.mysql.com/5235
http://bugs.mysql.com/5235
http://bugs.mysql.com/5235
http://bugs.mysql.com/5032
http://bugs.mysql.com/5032

this functionality is required for JDBC compliance). (Bug#5032)

• You can now use URLs in LOAD DATA LOCAL INFILE statements, and the driver will use Java's built-in handlers for re-
treiving the data and sending it to the server. This feature is not enabled by default, you must set the allowUrlInLocalIn-
file connection property to true. (Bug#5032)

• ResultSet.getObject() doesn't return type Boolean for pseudo-bit types from prepared statements on 4.1.x (shortcut
for avoiding extra type conversion when using binary-encoded result sets obscured test in getObject() for “pseudo” bit
type). (Bug#5032)

• Use com.mysql.jdbc.Message's classloader when loading resource bundle, should fix sporadic issues when the caller's
classloader can't locate the resource bundle. (Bug#5032)

• ServerPreparedStatements dealing with return of DECIMAL type don't work. (Bug#5012)

• Track packet sequence numbers if enablePacketDebug=true, and throw an exception if packets received out-of-order.
(Bug#4689)

• ResultSet.wasNull() does not work for primatives if a previous null was returned. (Bug#4689)

• Optimized integer number parsing, enable “old” slower integer parsing using JDK classes via useFastIntPars-
ing=false property. (Bug#4642)

• Added useOnlyServerErrorMessages property, which causes message text in exceptions generated by the server to
only contain the text sent by the server (as opposed to the SQLState's “standard” description, followed by the server's error
message). This property is set to true by default. (Bug#4642)

• ServerPreparedStatement.execute*() sometimes threw ArrayIndexOutOfBoundsException when un-
packing field metadata. (Bug#4642)

• Connector/J 3.1.3 beta does not handle integers correctly (caused by changes to support unsigned reads in Buf-
fer.readInt() -> Buffer.readShort()). (Bug#4510)

• Added support in DatabaseMetaData.getTables() and getTableTypes() for views, which are now available in
MySQL server 5.0.x. (Bug#4510)

• ResultSet.getObject() returns wrong type for strings when using prepared statements. (Bug#4482)

• Calling MysqlPooledConnection.close() twice (even though an application error), caused NPE. Fixed. (Bug#4482)

D.3.13. Changes in MySQL Connector/J 3.1.3 (07 July 2004)
Bugs fixed:

• Support new time zone variables in MySQL-4.1.3 when useTimezone=true. (Bug#4311)

• Error in retrieval of mediumint column with prepared statements and binary protocol. (Bug#4311)

• Support for unsigned numerics as return types from prepared statements. This also causes a change in Result-
Set.getObject() for the bigint unsigned type, which used to return BigDecimal instances, it now returns in-
stances of java.lang.BigInteger. (Bug#4311)

• Externalized more messages (on-going effort). (Bug#4119)

• Null bitmask sent for server-side prepared statements was incorrect. (Bug#4119)

• Added constants for MySQL error numbers (publicly accessible, see com.mysql.jdbc.MysqlErrorNumbers), and the
ability to generate the mappings of vendor error codes to SQLStates that the driver uses (for documentation purposes).
(Bug#4119)

• Added packet debuging code (see the enablePacketDebug property documentation). (Bug#4119)

• Use SQL Standard SQL states by default, unless useSqlStateCodes property is set to false. (Bug#4119)

• Mangle output parameter names for CallableStatements so they will not clash with user variable names.

• Added support for INOUT parameters in CallableStatements.

MySQL Connector/J Change History

556

http://bugs.mysql.com/5032
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://bugs.mysql.com/5032
http://bugs.mysql.com/5032
http://bugs.mysql.com/5032
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/5012
http://bugs.mysql.com/4689
http://bugs.mysql.com/4689
http://bugs.mysql.com/4642
http://bugs.mysql.com/4642
http://bugs.mysql.com/4642
http://bugs.mysql.com/4510
http://bugs.mysql.com/4510
http://bugs.mysql.com/4482
http://bugs.mysql.com/4482
http://bugs.mysql.com/4311
http://bugs.mysql.com/4311
http://bugs.mysql.com/4311
http://bugs.mysql.com/4119
http://bugs.mysql.com/4119
http://bugs.mysql.com/4119
http://bugs.mysql.com/4119
http://bugs.mysql.com/4119

D.3.14. Changes in MySQL Connector/J 3.1.2 (09 June 2004)
Bugs fixed:

• Don't enable server-side prepared statements for server version 5.0.0 or 5.0.1, as they aren't compatible with the '4.1.2+' style
that the driver uses (the driver expects information to come back that isn't there, so it hangs). (Bug#3804)

• getWarnings() returns SQLWarning instead of DataTruncation. (Bug#3804)

• getProcedureColumns() doesn't work with wildcards for procedure name. (Bug#3540)

• getProcedures() does not return any procedures in result set. (Bug#3539)

• Fixed DatabaseMetaData.getProcedures() when run on MySQL-5.0.0 (output of SHOW PROCEDURE STATUS
changed between 5.0.0 and 5.0.1. (Bug#3520)

• Added connectionCollation property to cause driver to issue set collation_connection=... query on con-
nection init if default collation for given charset is not appropriate. (Bug#3520)

• DBMD.getSQLStateType() returns incorrect value. (Bug#3520)

• Correctly map output parameters to position given in prepareCall() versus. order implied during registerOutPara-
meter(). (Bug#3146)

• Cleaned up detection of server properties. (Bug#3146)

• Correctly detect initial character set for servers >= 4.1.0. (Bug#3146)

• Support placeholder for parameter metadata for server >= 4.1.2. (Bug#3146)

• Added gatherPerformanceMetrics property, along with properties to control when/where this info gets logged (see
docs for more info).

• Fixed case when no parameters could cause a NullPointerException in CallableState-
ment.setOutputParameters().

• Enabled callable statement caching via cacheCallableStmts property.

• Fixed sending of split packets for large queries, enabled nio ability to send large packets as well.

• Added .toString() functionality to ServerPreparedStatement, which should help if you're trying to debug a query
that is a prepared statement (it shows SQL as the server would process).

• Added logSlowQueries property, along with slowQueriesThresholdMillis property to control when a query
should be considered “slow.”

• Removed wrapping of exceptions in MysqlIO.changeUser().

• Fixed stored procedure parameter parsing info when size was specified for a parameter (for example, char(), varchar()).

• ServerPreparedStatements weren't actually de-allocating server-side resources when .close() was called.

• Fixed case when no output parameters specified for a stored procedure caused a bogus query to be issued to retrieve out para-
meters, leading to a syntax error from the server.

D.3.15. Changes in MySQL Connector/J 3.1.1 (14 February 2004 alpha)
Bugs fixed:

• Use DocBook version of docs for shipped versions of drivers. (Bug#2671)

• NULL fields were not being encoded correctly in all cases in server-side prepared statements. (Bug#2671)

• Fixed rare buffer underflow when writing numbers into buffers for sending prepared statement execution requests. (Bug#2671)

• Fixed ConnectionProperties that weren't properly exposed via accessors, cleaned up ConnectionProperties
code. (Bug#2623)

• Class-cast exception when using scrolling result sets and server-side prepared statements. (Bug#2623)

MySQL Connector/J Change History

557

http://bugs.mysql.com/3804
http://bugs.mysql.com/3804
http://bugs.mysql.com/3540
http://bugs.mysql.com/3539
http://dev.mysql.com/doc/refman/5.0/en/show-procedure-status.html
http://bugs.mysql.com/3520
http://bugs.mysql.com/3520
http://bugs.mysql.com/3520
http://bugs.mysql.com/3146
http://bugs.mysql.com/3146
http://bugs.mysql.com/3146
http://bugs.mysql.com/3146
http://bugs.mysql.com/2671
http://bugs.mysql.com/2671
http://bugs.mysql.com/2671
http://bugs.mysql.com/2623
http://bugs.mysql.com/2623

• Merged unbuffered input code from 3.0. (Bug#2623)

• Enabled streaming of result sets from server-side prepared statements. (Bug#2606)

• Server-side prepared statements were not returning datatype YEAR correctly. (Bug#2606)

• Fixed charset conversion issue in getTables(). (Bug#2502)

• Implemented multiple result sets returned from a statement or stored procedure. (Bug#2502)

• Implemented Connection.prepareCall(), and DatabaseMetaData. getProcedures() and getProcedure-
Columns(). (Bug#2359)

• Merged prepared statement caching, and .getMetaData() support from 3.0 branch. (Bug#2359)

• Fixed off-by-1900 error in some cases for years in TimeUtil.fastDate/TimeCreate() when unpacking results from
server-side prepared statements. (Bug#2359)

• Reset long binary parameters in ServerPreparedStatement when clearParameters() is called, by sending
COM_RESET_STMT to the server. (Bug#2359)

• NULL values for numeric types in binary encoded result sets causing NullPointerExceptions. (Bug#2359)

• Display where/why a connection was implicitly closed (to aid debugging). (Bug#1673)

• DatabaseMetaData.getColumns() is not returning correct column ordinal info for non-'%' column name patterns.
(Bug#1673)

• Fixed NullPointerException in ServerPreparedStatement.setTimestamp(), as well as year and month
descrepencies in ServerPreparedStatement.setTimestamp(), setDate(). (Bug#1673)

• Added ability to have multiple database/JVM targets for compliance and regression/unit tests in build.xml. (Bug#1673)

• Fixed sending of queries larger than 16M. (Bug#1673)

• Merged fix of datatype mapping from MySQL type FLOAT to java.sql.Types.REAL from 3.0 branch. (Bug#1673)

• Fixed NPE and year/month bad conversions when accessing some datetime functionality in ServerPreparedStatements
and their resultant result sets. (Bug#1673)

• Added named and indexed input/output parameter support to CallableStatement. MySQL-5.0.x or newer. (Bug#1673)

• CommunicationsException implemented, that tries to determine why communications was lost with a server, and dis-
plays possible reasons when .getMessage() is called. (Bug#1673)

• Detect collation of column for RSMD.isCaseSensitive(). (Bug#1673)

• Optimized Buffer.readLenByteArray() to return shared empty byte array when length is 0.

• Fix support for table aliases when checking for all primary keys in UpdatableResultSet.

• Unpack “unknown” data types from server prepared statements as Strings.

• Implemented Statement.getWarnings() for MySQL-4.1 and newer (using SHOW WARNINGS).

• Ensure that warnings are cleared before executing queries on prepared statements, as-per JDBC spec (now that we support
warnings).

• Correctly initialize datasource properties from JNDI Refs, including explicitly specified URLs.

• Implemented long data (Blobs, Clobs, InputStreams, Readers) for server prepared statements.

• Deal with 0-length tokens in EscapeProcessor (caused by callable statement escape syntax).

• DatabaseMetaData now reports supportsStoredProcedures() for MySQL versions >= 5.0.0

• Support for mysql_change_user(). See the changeUser() method in com.mysql.jdbc.Connection.

• Removed useFastDates connection property.

• Support for NIO. Use useNIO=true on platforms that support NIO.

MySQL Connector/J Change History

558

http://bugs.mysql.com/2623
http://bugs.mysql.com/2606
http://dev.mysql.com/doc/refman/5.0/en/year.html
http://bugs.mysql.com/2606
http://bugs.mysql.com/2502
http://bugs.mysql.com/2502
http://bugs.mysql.com/2359
http://bugs.mysql.com/2359
http://bugs.mysql.com/2359
http://bugs.mysql.com/2359
http://bugs.mysql.com/2359
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://dev.mysql.com/doc/refman/5.0/en/show-warnings.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-change-user.html

• Check for closed connection on delete/update/insert row operations in UpdatableResultSet.

• Support for transaction savepoints (MySQL >= 4.0.14 or 4.1.1).

• Support “old” profileSql capitalization in ConnectionProperties. This property is deprecated, you should use
profileSQL if possible.

• Fixed character encoding issues when converting bytes to ASCII when MySQL doesn't provide the character set, and the JVM
is set to a multi-byte encoding (usually affecting retrieval of numeric values).

• Centralized setting of result set type and concurrency.

• Fixed bug with UpdatableResultSets not using client-side prepared statements.

• Default result set type changed to TYPE_FORWARD_ONLY (JDBC compliance).

• Fixed IllegalAccessError to Calendar.getTimeInMillis() in DateTimeValue (for JDK < 1.4).

• Allow contents of PreparedStatement.setBlob() to be retained between calls to .execute*().

• Fixed stack overflow in Connection.prepareCall() (bad merge).

• Refactored how connection properties are set and exposed as DriverPropertyInfo as well as Connection and Data-
Source properties.

• Reduced number of methods called in average query to be more efficient.

• Prepared Statements will be re-prepared on auto-reconnect. Any errors encountered are postponed until first attempt to re-
execute the re-prepared statement.

D.3.16. Changes in MySQL Connector/J 3.1.0 (18 February 2003 alpha)
Bugs fixed:

• Added useServerPrepStmts property (default false). The driver will use server-side prepared statements when the
server version supports them (4.1 and newer) when this property is set to true. It is currently set to false by default until all
bind/fetch functionality has been implemented. Currently only DML prepared statements are implemented for 4.1 server-side
prepared statements.

• Added requireSSL property.

• Track open Statements, close all when Connection.close() is called (JDBC compliance).

D.4. Changes in MySQL Connector/J 3.0.x

D.4.1. Changes in MySQL Connector/J 3.0.17 (23 June 2005)
Bugs fixed:

• Workaround for server Bug#9098: Default values of CURRENT_* for DATE, TIME, DATETIME, and TIMESTAMP columns
can't be distinguished from string values, so UpdatableResultSet.moveToInsertRow() generates bad SQL for
inserting default values. (Bug#8812)

• NON_UNIQUE column from DBMD.getIndexInfo() returned inverted value. (Bug#8812)

• EUCKR charset is sent as SET NAMES euc_kr which MySQL-4.1 and newer doesn't understand. (Bug#8629)

• Added support for the EUC_JP_Solaris character encoding, which maps to a MySQL encoding of eucjpms (backported
from 3.1 branch). This only works on servers that support eucjpms, namely 5.0.3 or later. (Bug#8629)

• Use hex escapes for PreparedStatement.setBytes() for double-byte charsets including “aliases” Windows-31J,
CP934, MS932. (Bug#8629)

• DatabaseMetaData.supportsSelectForUpdate() returns correct value based on server version. (Bug#8629)

• Which requires hex escaping of binary data when using multi-byte charsets with prepared statements. (Bug#8064)

MySQL Connector/J Change History

559

http://bugs.mysql.com/9098
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/time.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/8812
http://bugs.mysql.com/8812
http://bugs.mysql.com/8629
http://bugs.mysql.com/8629
http://bugs.mysql.com/8629
http://bugs.mysql.com/8629
http://bugs.mysql.com/8064

• Fixed duplicated code in configureClientCharset() that prevented useOldUTF8Behavior=true from working
properly. (Bug#7952)

• Backported SQLState codes mapping from Connector/J 3.1, enable with useSqlStateCodes=true as a connection prop-
erty, it defaults to false in this release, so that we don't break legacy applications (it defaults to true starting with Connect-
or/J 3.1). (Bug#7686)

• Timestamp key column data needed _binary stripped for UpdatableResultSet.refreshRow(). (Bug#7686)

• MS932, SHIFT_JIS, and Windows_31J not recognized as aliases for sjis. (Bug#7607)

• Handle streaming result sets with more than 2 billion rows properly by fixing wraparound of row number counter. (Bug#7601)

• PreparedStatement.fixDecimalExponent() adding extra +, making number unparseable by MySQL server.
(Bug#7601)

• Escape sequence {fn convert(..., type)} now supports ODBC-style types that are prepended by SQL_. (Bug#7601)

• Statements created from a pooled connection were returning physical connection instead of logical connection when getCon-
nection() was called. (Bug#7316)

• Support new protocol type MYSQL_TYPE_VARCHAR. (Bug#7081)

• Added useOldUTF8Behavior' configuration property, which causes JDBC driver to act like it did with MySQL-4.0.x and
earlier when the character encoding is utf-8 when connected to MySQL-4.1 or newer. (Bug#7081)

• DatabaseMetaData.getIndexInfo() ignored unique parameter. (Bug#7081)

• PreparedStatement.fixDecimalExponent() adding extra +, making number unparseable by MySQL server.
(Bug#7061)

• PreparedStatements don't encode Big5 (and other multi-byte) character sets correctly in static SQL strings. (Bug#7033)

• Connections starting up failed-over (due to down master) never retry master. (Bug#6966)

• Adding CP943 to aliases for sjis. (Bug#6549, Bug#7607)

• Timestamp/Time conversion goes in the wrong “direction” when useTimeZone=true and server time zone differs from
client time zone. (Bug#5874)

D.4.2. Changes in MySQL Connector/J 3.0.16 (15 November 2004)
Bugs fixed:

• Made TINYINT(1) -> BIT/Boolean conversion configurable via tinyInt1isBit property (default true to be JDBC
compliant out of the box). (Bug#5664)

• Off-by-one bug in Buffer.readString(string). (Bug#5664)

• ResultSet.updateByte() when on insert row throws ArrayOutOfBoundsException. (Bug#5664)

• Fixed regression where useUnbufferedInput was defaulting to false. (Bug#5664)

• ResultSet.getTimestamp() on a column with TIME in it fails. (Bug#5664)

• Fixed DatabaseMetaData.getTypes() returning incorrect (this is, non-negative) scale for the NUMERIC type.
(Bug#5664)

• Only set character_set_results during connection establishment if server version >= 4.1.1. (Bug#5664)

• Fixed ResultSetMetaData.isReadOnly() to detect non-writable columns when connected to MySQL-4.1 or newer,
based on existence of “original” table and column names.

• Re-issue character set configuration commands when re-using pooled connections and/or Connection.changeUser()
when connected to MySQL-4.1 or newer.

D.4.3. Changes in MySQL Connector/J 3.0.15 (04 September 2004)

MySQL Connector/J Change History

560

http://bugs.mysql.com/7952
http://bugs.mysql.com/7686
http://bugs.mysql.com/7686
http://bugs.mysql.com/7607
http://bugs.mysql.com/7601
http://bugs.mysql.com/7601
http://bugs.mysql.com/7601
http://bugs.mysql.com/7316
http://bugs.mysql.com/7081
http://bugs.mysql.com/7081
http://bugs.mysql.com/7081
http://bugs.mysql.com/7061
http://bugs.mysql.com/7033
http://bugs.mysql.com/6966
http://bugs.mysql.com/6549
http://bugs.mysql.com/7607
http://bugs.mysql.com/5874
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://dev.mysql.com/doc/refman/5.0/en/time.html
http://bugs.mysql.com/5664
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/5664
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://bugs.mysql.com/5664

Bugs fixed:

• ResultSet.getMetaData() should not return incorrectly initialized metadata if the result set has been closed, but should
instead throw an SQLException. Also fixed for getRow() and getWarnings() and traversal methods by calling
checkClosed() before operating on instance-level fields that are nullified during .close(). (Bug#5069)

• Use _binary introducer for PreparedStatement.setBytes() and set*Stream() when connected to MySQL-
4.1.x or newer to avoid misinterpretation during character conversion. (Bug#5069)

• Parse new time zone variables from 4.1.x servers. (Bug#5069)

• ResultSet should release Field[] instance in .close(). (Bug#5022)

• RSMD.getPrecision() returning 0 for non-numeric types (should return max length in chars for nonbinary types, max
length in bytes for binary types). This fix also fixes mapping of RSMD.getColumnType() and
RSMD.getColumnTypeName() for the BLOB types based on the length sent from the server (the server doesn't distinguish
between TINYBLOB, BLOB, MEDIUMBLOB or LONGBLOB at the network protocol level). (Bug#4880)

• “Production” is now “GA” (General Availability) in naming scheme of distributions. (Bug#4860, Bug#4138)

• DBMD.getColumns() returns incorrect JDBC type for unsigned columns. This affects type mappings for all numeric types
in the RSMD.getColumnType() and RSMD.getColumnTypeNames() methods as well, to ensure that “like” types from
DBMD.getColumns() match up with what RSMD.getColumnType() and getColumnTypeNames() return.
(Bug#4860, Bug#4138)

• Calling .close() twice on a PooledConnection causes NPE. (Bug#4808)

• DOUBLE mapped twice in DBMD.getTypeInfo(). (Bug#4742)

• Added FLOSS license exemption. (Bug#4742)

• Removed redundant calls to checkRowPos() in ResultSet. (Bug#4334)

• Failover for autoReconnect not using port numbers for any hosts, and not retrying all hosts.

Warning

This required a change to the SocketFactory connect() method signature, which is now public Socket
connect(String host, int portNumber, Properties props); therefore, any third-party socket
factories will have to be changed to support this signature.

(Bug#4334)

• Logical connections created by MysqlConnectionPoolDataSource will now issue a rollback() when they are
closed and sent back to the pool. If your application server/connection pool already does this for you, you can set the roll-
backOnPooledClose property to false to avoid the overhead of an extra rollback(). (Bug#4334)

• StringUtils.escapeEasternUnicodeByteStream was still broken for GBK. (Bug#4010)

D.4.4. Changes in MySQL Connector/J 3.0.14 (28 May 2004)
Bugs fixed:

• Fixed URL parsing error.

D.4.5. Changes in MySQL Connector/J 3.0.13 (27 May 2004)
Bugs fixed:

• No Database Selected when using MysqlConnectionPoolDataSource. (Bug#3920)

• PreparedStatement.getGeneratedKeys() method returns only 1 result for batched insertions. (Bug#3873)

• Using a MySQLDatasource without server name fails. (Bug#3848)

MySQL Connector/J Change History

561

http://bugs.mysql.com/5069
http://bugs.mysql.com/5069
http://bugs.mysql.com/5069
http://bugs.mysql.com/5022
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/4880
http://bugs.mysql.com/4860
http://bugs.mysql.com/4138
http://bugs.mysql.com/4860
http://bugs.mysql.com/4138
http://bugs.mysql.com/4808
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/4742
http://bugs.mysql.com/4742
http://bugs.mysql.com/4334
http://bugs.mysql.com/4334
http://bugs.mysql.com/4334
http://bugs.mysql.com/4010
http://bugs.mysql.com/3920
http://bugs.mysql.com/3873
http://bugs.mysql.com/3848

D.4.6. Changes in MySQL Connector/J 3.0.12 (18 May 2004)
Bugs fixed:

• Inconsistent reporting of data type. The server still doesn't return all types for *BLOBs *TEXT correctly, so the driver won't re-
turn those correctly. (Bug#3570)

• UpdatableResultSet not picking up default values for moveToInsertRow(). (Bug#3557)

• Not specifying database in URL caused MalformedURL exception. (Bug#3554)

• Auto-convert MySQL encoding names to Java encoding names if used for characterEncoding property. (Bug#3554)

• Use junit.textui.TestRunner for all unit tests (to allow them to be run from the command line outside of Ant or Ec-
lipse). (Bug#3554)

• Added encoding names that are recognized on some JVMs to fix case where they were reverse-mapped to MySQL encoding
names incorrectly. (Bug#3554)

• Made StringRegressionTest 4.1-unicode aware. (Bug#3520)

• Fixed regression in PreparedStatement.setString() and eastern character encodings. (Bug#3520)

• DBMD.getSQLStateType() returns incorrect value. (Bug#3520)

• Renamed StringUtils.escapeSJISByteStream() to more appropriate escapeEasternUnicode-
ByteStream(). (Bug#3511)

• StringUtils.escapeSJISByteStream() not covering all eastern double-byte charsets correctly. (Bug#3511)

• Return creating statement for ResultSets created by getGeneratedKeys(). (Bug#2957)

• Use SET character_set_results during initialization to allow any charset to be returned to the driver for result sets.
(Bug#2670)

• Don't truncate BLOB or CLOB values when using setBytes() and/or setBinary/CharacterStream(). . (Bug#2670)

• Dynamically configure character set mappings for field-level character sets on MySQL-4.1.0 and newer using SHOW COLLA-
TION when connecting. (Bug#2670)

• Map binary character set to US-ASCII to support DATETIME charset recognition for servers >= 4.1.2. (Bug#2670)

• Use charsetnr returned during connect to encode queries before issuing SET NAMES on MySQL >= 4.1.0. (Bug#2670)

• Add helper methods to ResultSetMetaData (getColumnCharacterEncoding() and getColumnCharacter-
Set()) to allow end-users to see what charset the driver thinks it should be using for the column. (Bug#2670)

• Only set character_set_results for MySQL >= 4.1.0. (Bug#2670)

• Allow url parameter for MysqlDataSource and MysqlConnectionPool DataSource so that passing of other prop-
erties is possible from inside appservers.

• Don't escape SJIS/GBK/BIG5 when using MySQL-4.1 or newer.

• Backport documentation tooling from 3.1 branch.

• Added failOverReadOnly property, to allow end-user to configure state of connection (read-only/writable) when failed
over.

• Allow java.util.Date to be sent in as parameter to PreparedStatement.setObject(), converting it to a
Timestamp to maintain full precision. . (Bug#103)

• Add unsigned attribute to DatabaseMetaData.getColumns() output in the TYPE_NAME column.

• Map duplicate key and foreign key errors to SQLState of 23000.

• Backported “change user” and “reset server state” functionality from 3.1 branch, to allow clients of MysqlConnection-
PoolDataSource to reset server state on getConnection() on a pooled connection.

D.4.7. Changes in MySQL Connector/J 3.0.11 (19 February 2004)

MySQL Connector/J Change History

562

http://bugs.mysql.com/3570
http://bugs.mysql.com/3557
http://bugs.mysql.com/3554
http://bugs.mysql.com/3554
http://bugs.mysql.com/3554
http://bugs.mysql.com/3554
http://bugs.mysql.com/3520
http://bugs.mysql.com/3520
http://bugs.mysql.com/3520
http://bugs.mysql.com/3511
http://bugs.mysql.com/3511
http://bugs.mysql.com/2957
http://bugs.mysql.com/2670
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/2670
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://bugs.mysql.com/2670
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://bugs.mysql.com/2670
http://bugs.mysql.com/2670
http://bugs.mysql.com/2670
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://bugs.mysql.com/2670
http://bugs.mysql.com/103

Bugs fixed:

• Return java.lang.Double for FLOAT type from ResultSetMetaData.getColumnClassName(). (Bug#2855)

• Return [B instead of java.lang.Object for BINARY, VARBINARY and LONGVARBINARY types from ResultSet-
MetaData.getColumnClassName() (JDBC compliance). (Bug#2855)

• Issue connection events on all instances created from a ConnectionPoolDataSource. (Bug#2855)

• Return java.lang.Integer for TINYINT and SMALLINT types from ResultSet-
MetaData.getColumnClassName(). (Bug#2852)

• Added useUnbufferedInput parameter, and now use it by default (due to JVM issue ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4401235.html) (Bug#2578)

• Fixed failover always going to last host in list. (Bug#2578)

• Detect on/off or 1, 2, 3 form of lower_case_table_names value on server. (Bug#2578)

• AutoReconnect time was growing faster than exponentially. (Bug#2447)

• Trigger a SET NAMES utf8 when encoding is forced to utf8 or utf-8 via the characterEncoding property. Previ-
ously, only the Java-style encoding name of utf-8 would trigger this.

D.4.8. Changes in MySQL Connector/J 3.0.10 (13 January 2004)
Bugs fixed:

• Enable caching of the parsing stage of prepared statements via the cachePrepStmts, prepStmtCacheSize, and prep-
StmtCacheSqlLimit properties (disabled by default). (Bug#2006)

• Fixed security exception when used in Applets (applets can't read the system property file.encoding which is needed for
LOAD DATA LOCAL INFILE). (Bug#2006)

• Speed up parsing of PreparedStatements, try to use one-pass whenever possible. (Bug#2006)

• Fixed exception Unknown character set 'danish' on connect with JDK-1.4.0 (Bug#2006)

• Fixed mappings in SQLError to report deadlocks with SQLStates of 41000. (Bug#2006)

• Removed static synchronization bottleneck from instance factory method of SingleByteCharsetConverter.
(Bug#2006)

• Removed static synchronization bottleneck from PreparedStatement.setTimestamp(). (Bug#2006)

• ResultSet.findColumn() should use first matching column name when there are duplicate column names in SELECT
query (JDBC-compliance). (Bug#2006)

• maxRows property would affect internal statements, so check it for all statement creation internal to the driver, and set to 0
when it is not. (Bug#2006)

• Use constants for SQLStates. (Bug#2006)

• Map charset ko18_ru to ko18r when connected to MySQL-4.1.0 or newer. (Bug#2006)

• Ensure that Buffer.writeString() saves room for the \0. (Bug#2006)

• ArrayIndexOutOfBounds when parameter number == number of parameters + 1. (Bug#1958)

• Connection property maxRows not honored. (Bug#1933)

• Statements being created too many times in DBMD.extractForeignKeyFromCreateTable(). (Bug#1925)

• Support escape sequence {fn convert ... }. (Bug#1914)

• Implement ResultSet.updateClob(). (Bug#1913)

• Autoreconnect code didn't set catalog upon reconnect if it had been changed. (Bug#1913)

MySQL Connector/J Change History

563

http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/2855
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://bugs.mysql.com/2855
http://bugs.mysql.com/2855
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/2852
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://bugs.mysql.com/2578
http://bugs.mysql.com/2578
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_lower_case_table_names
http://bugs.mysql.com/2578
http://bugs.mysql.com/2447
http://bugs.mysql.com/2006
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/1958
http://bugs.mysql.com/1933
http://bugs.mysql.com/1925
http://bugs.mysql.com/1914
http://bugs.mysql.com/1913
http://bugs.mysql.com/1913

• ResultSet.getObject() on TINYINT and SMALLINT columns should return Java type Integer. (Bug#1913)

• Added more descriptive error message Server Configuration Denies Access to DataSource, as well as re-
trieval of message from server. (Bug#1913)

• ResultSetMetaData.isCaseSensitive() returned wrong value for CHAR/VARCHAR columns. (Bug#1913)

• Added alwaysClearStream connection property, which causes the driver to always empty any remaining data on the input
stream before each query. (Bug#1913)

• DatabaseMetaData.getSystemFunction() returning bad function VResultsSion. (Bug#1775)

• Foreign Keys column sequence is not consistent in Database-
MetaData.getImported/Exported/CrossReference(). (Bug#1731)

• Fix for ArrayIndexOutOfBounds exception when using Statement.setMaxRows(). (Bug#1695)

• Subsequent call to ResultSet.updateFoo() causes NPE if result set is not updatable. (Bug#1630)

• Fix for 4.1.1-style authentication with no password. (Bug#1630)

• Cross-database updatable result sets are not checked for updatability correctly. (Bug#1592)

• DatabaseMetaData.getColumns() should return Types.LONGVARCHAR for MySQL LONGTEXT type. (Bug#1592)

• Fixed regression of Statement.getGeneratedKeys() and REPLACE statements. (Bug#1576)

• Barge blobs and split packets not being read correctly. (Bug#1576)

• Backported fix for aliased tables and UpdatableResultSets in checkUpdatability() method from 3.1 branch.
(Bug#1534)

• “Friendlier” exception message for PacketTooLargeException. (Bug#1534)

• Don't count quoted IDs when inside a 'string' in PreparedStatement parsing. (Bug#1511)

D.4.9. Changes in MySQL Connector/J 3.0.9 (07 October 2003)
Bugs fixed:

• ResultSet.get/setString mashing char 127. (Bug#1247)

• Added property to “clobber” streaming results, by setting the clobberStreamingResults property to true (the default
is false). This will cause a “streaming” ResultSet to be automatically closed, and any oustanding data still streaming from
the server to be discarded if another query is executed before all the data has been read from the server. (Bug#1247)

• Added com.mysql.jdbc.util.BaseBugReport to help creation of testcases for bug reports. (Bug#1247)

• Backported authentication changes for 4.1.1 and newer from 3.1 branch. (Bug#1247)

• Made databaseName, portNumber, and serverName optional parameters for MysqlDataSourceFactory.
(Bug#1246)

• Optimized CLOB.setChracterStream(). (Bug#1131)

• Fixed CLOB.truncate(). (Bug#1130)

• Fixed deadlock issue with Statement.setMaxRows(). (Bug#1099)

• DatabaseMetaData.getColumns() getting confused about the keyword “set” in character columns. (Bug#1099)

• Clip +/- INF (to smallest and largest representative values for the type in MySQL) and NaN (to 0) for setDouble/set-
Float(), and issue a warning on the statement when the server does not support +/- INF or NaN. (Bug#884)

• Don't fire connection closed events when closing pooled connections, or on PooledConnection.getConnection()
with already open connections. (Bug#884)

• Double-escaping of '\' when charset is SJIS or GBK and '\' appears in non-escaped input. (Bug#879)

MySQL Connector/J Change History

564

http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://bugs.mysql.com/1913
http://bugs.mysql.com/1913
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://bugs.mysql.com/1913
http://bugs.mysql.com/1913
http://bugs.mysql.com/1775
http://bugs.mysql.com/1731
http://bugs.mysql.com/1695
http://bugs.mysql.com/1630
http://bugs.mysql.com/1630
http://bugs.mysql.com/1592
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://bugs.mysql.com/1592
http://dev.mysql.com/doc/refman/5.0/en/replace.html
http://bugs.mysql.com/1576
http://bugs.mysql.com/1576
http://bugs.mysql.com/1534
http://bugs.mysql.com/1534
http://bugs.mysql.com/1511
http://bugs.mysql.com/1247
http://bugs.mysql.com/1247
http://bugs.mysql.com/1247
http://bugs.mysql.com/1247
http://bugs.mysql.com/1246
http://bugs.mysql.com/1131
http://bugs.mysql.com/1130
http://bugs.mysql.com/1099
http://bugs.mysql.com/1099
http://bugs.mysql.com/884
http://bugs.mysql.com/884
http://bugs.mysql.com/879

• When emptying input stream of unused rows for “streaming” result sets, have the current thread yield() every 100 rows in
order to not monopolize CPU time. (Bug#879)

• Issue exception on ResultSet.getXXX() on empty result set (wasn't caught in some cases). (Bug#848)

• Don't hide messages from exceptions thrown in I/O layers. (Bug#848)

• Fixed regression in large split-packet handling. (Bug#848)

• Better diagnostic error messages in exceptions for “streaming” result sets. (Bug#848)

• Don't change timestamp TZ twice if useTimezone==true. (Bug#774)

• Don't wrap SQLExceptions in RowDataDynamic. (Bug#688)

• Don't try and reset isolation level on reconnect if MySQL doesn't support them. (Bug#688)

• The insertRow in an UpdatableResultSet is now loaded with the default column values when moveToInser-
tRow() is called. (Bug#688)

• DatabaseMetaData.getColumns() wasn't returning NULL for default values that are specified as NULL. (Bug#688)

• Change default statement type/concurrency to TYPE_FORWARD_ONLY and CONCUR_READ_ONLY (spec compliance).
(Bug#688)

• Fix UpdatableResultSet to return values for getXXX() when on insert row. (Bug#675)

• Support InnoDB contraint names when extracting foreign key information in DatabaseMetaData (implementing ideas
from Parwinder Sekhon). (Bug#664, Bug#517)

• Backported 4.1 protocol changes from 3.1 branch (server-side SQL states, new field information, larger client capability flags,
connect-with-database, and so forth). (Bug#664, Bug#517)

• refreshRow didn't work when primary key values contained values that needed to be escaped (they ended up being doubly
escaped). (Bug#661)

• Fixed ResultSet.previous() behavior to move current position to before result set when on first row of result set.
(Bug#496)

• Fixed Statement and PreparedStatement issuing bogus queries when setMaxRows() had been used and a LIMIT
clause was present in the query. (Bug#496)

• Faster date handling code in ResultSet and PreparedStatement (no longer uses Date methods that synchronize on
static calendars).

• Fixed test for end of buffer in Buffer.readString().

D.4.10. Changes in MySQL Connector/J 3.0.8 (23 May 2003)
Bugs fixed:

• Fixed SJIS encoding bug, thanks to Naoto Sato. (Bug#378)

• Fix problem detecting server character set in some cases. (Bug#378)

• Allow multiple calls to Statement.close(). (Bug#378)

• Return correct number of generated keys when using REPLACE statements. (Bug#378)

• Unicode character 0xFFFF in a string would cause the driver to throw an ArrayOutOfBoundsException. . (Bug#378)

• Fix row data decoding error when using very large packets. (Bug#378)

• Optimized row data decoding. (Bug#378)

• Issue exception when operating on an already closed prepared statement. (Bug#378)

• Optimized usage of EscapeProcessor. (Bug#378)

MySQL Connector/J Change History

565

http://bugs.mysql.com/879
http://bugs.mysql.com/848
http://bugs.mysql.com/848
http://bugs.mysql.com/848
http://bugs.mysql.com/848
http://bugs.mysql.com/774
http://bugs.mysql.com/688
http://bugs.mysql.com/688
http://bugs.mysql.com/688
http://bugs.mysql.com/688
http://bugs.mysql.com/688
http://bugs.mysql.com/675
http://bugs.mysql.com/664
http://bugs.mysql.com/517
http://bugs.mysql.com/664
http://bugs.mysql.com/517
http://bugs.mysql.com/661
http://bugs.mysql.com/496
http://bugs.mysql.com/496
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://dev.mysql.com/doc/refman/5.0/en/replace.html
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378

• Use JVM charset with file names and LOAD DATA [LOCAL] INFILE.

• Fix infinite loop with Connection.cleanup().

• Changed Ant target compile-core to compile-driver, and made testsuite compilation a separate target.

• Fixed result set not getting set for Statement.executeUpdate(), which affected getGeneratedKeys() and
getUpdateCount() in some cases.

• Return list of generated keys when using multi-value INSERTS with Statement.getGeneratedKeys().

• Allow bogus URLs in Driver.getPropertyInfo().

D.4.11. Changes in MySQL Connector/J 3.0.7 (08 April 2003)
Bugs fixed:

• Fixed charset issues with database metadata (charset was not getting set correctly).

• You can now toggle profiling on/off using Connection.setProfileSql(boolean).

• 4.1 Column Metadata fixes.

• Fixed MysqlPooledConnection.close() calling wrong event type.

• Fixed StringIndexOutOfBoundsException in PreparedStatement.setClob().

• IOExceptions during a transaction now cause the Connection to be closed.

• Remove synchronization from Driver.connect() and Driver.acceptsUrl().

• Fixed missing conversion for YEAR type in ResultSetMetaData.getColumnTypeName().

• Updatable ResultSets can now be created for aliased tables/columns when connected to MySQL-4.1 or newer.

• Fixed LOAD DATA LOCAL INFILE bug when file > max_allowed_packet.

• Don't pick up indexes that start with pri as primary keys for DBMD.getPrimaryKeys().

• Ensure that packet size from alignPacketSize() does not exceed max_allowed_packet (JVM bug)

• Don't reset Connection.isReadOnly() when autoReconnecting.

• Fixed escaping of 0x5c ('\') character for GBK and Big5 charsets.

• Fixed ResultSet.getTimestamp() when underlying field is of type DATE.

• Throw SQLExceptions when trying to do operations on a forcefully closed Connection (that is, when a communication
link failure occurs).

D.4.12. Changes in MySQL Connector/J 3.0.6 (18 February 2003)
Bugs fixed:

• Backported 4.1 charset field info changes from Connector/J 3.1.

• Fixed Statement.setMaxRows() to stop sending LIMIT type queries when not needed (performance).

• Fixed DBMD.getTypeInfo() and DBMD.getColumns() returning different value for precision in TEXT and BLOB
types.

• Fixed SQLExceptions getting swallowed on initial connect.

• Fixed ResultSetMetaData to return "" when catalog not known. Fixes NullPointerExceptions with Sun's
CachedRowSet.

• Allow ignoring of warning for “non transactional tables” during rollback (compliance/usability) by setting ig-

MySQL Connector/J Change History

566

http://dev.mysql.com/doc/refman/5.0/en/year.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html

noreNonTxTables property to true.

• Clean up Statement query/method mismatch tests (that is, INSERT not allowed with .executeQuery()).

• Fixed ResultSetMetaData.isWritable() to return correct value.

• More checks added in ResultSet traversal method to catch when in closed state.

• Implemented Blob.setBytes(). You still need to pass the resultant Blob back into an updatable ResultSet or Pre-
paredStatement to persist the changes, because MySQL does not support “locators”.

• Add “window” of different NULL sorting behavior to DBMD.nullsAreSortedAtStart (4.0.2 to 4.0.10, true; otherwise,
no).

D.4.13. Changes in MySQL Connector/J 3.0.5 (22 January 2003)
Bugs fixed:

• Fixed ResultSet.isBeforeFirst() for empty result sets.

• Added missing LONGTEXT type to DBMD.getColumns().

• Implemented an empty TypeMap for Connection.getTypeMap() so that some third-party apps work with MySQL
(IBM WebSphere 5.0 Connection pool).

• Added update options for foreign key metadata.

• Fixed Buffer.fastSkipLenString() causing ArrayIndexOutOfBounds exceptions with some queries when un-
packing fields.

• Quote table names in DatabaseMetaData.getColumns(), getPrimaryKeys(), getIndexInfo(), getBe-
stRowIdentifier().

• Retrieve TX_ISOLATION from database for Connection.getTransactionIsolation() when the MySQL version
supports it, instead of an instance variable.

• Greatly reduce memory required for setBinaryStream() in PreparedStatements.

D.4.14. Changes in MySQL Connector/J 3.0.4 (06 January 2003)
Bugs fixed:

• Streamlined character conversion and byte[] handling in PreparedStatements for setByte().

• Fixed PreparedStatement.executeBatch() parameter overwriting.

• Added quoted identifiers to database names for Connection.setCatalog.

• Added support for 4.0.8-style large packets.

• Reduce memory footprint of PreparedStatements by sharing outbound packet with MysqlIO.

• Added strictUpdates property to allow control of amount of checking for “correctness” of updatable result sets. Set this to
false if you want faster updatable result sets and you know that you create them from SELECT statements on tables with
primary keys and that you have selected all primary keys in your query.

• Added support for quoted identifiers in PreparedStatement parser.

D.4.15. Changes in MySQL Connector/J 3.0.3 (17 December 2002)
Bugs fixed:

• Allow user to alter behavior of Statement/ PreparedStatement.executeBatch() via continueBatchOnErr-
or property (defaults to true).

MySQL Connector/J Change History

567

http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/select.html

• More robust escape tokenizer: Recognize -- comments, and allow nested escape sequences (see test-
suite.EscapeProcessingTest).

• Fixed Buffer.isLastDataPacket() for 4.1 and newer servers.

• NamedPipeSocketFactory now works (only intended for Windows), see README for instructions.

• Changed charsToByte in SingleByteCharConverter to be non-static.

• Use non-aliased table/column names and database names to fully qualify tables and columns in UpdatableResultSet
(requires MySQL-4.1 or newer).

• LOAD DATA LOCAL INFILE ... now works, if your server is configured to allow it. Can be turned off with the allow-
LoadLocalInfile property (see the README).

• Implemented Connection.nativeSQL().

• Fixed ResultSetMetaData.getColumnTypeName() returning BLOB for TEXT and TEXT for BLOB types.

• Fixed charset handling in Fields.java.

• Because of above, implemented ResultSetMetaData.isAutoIncrement() to use Field.isAutoIncrement().

• Substitute '?' for unknown character conversions in single-byte character sets instead of '\0'.

• Added CLIENT_LONG_FLAG to be able to get more column flags (isAutoIncrement() being the most important).

• Honor lower_case_table_names when enabled in the server when doing table name comparisons in Database-
MetaData methods.

• DBMD.getImported/ExportedKeys() now handles multiple foreign keys per table.

• More robust implementation of updatable result sets. Checks that all primary keys of the table have been selected.

• Some MySQL-4.1 protocol support (extended field info from selects).

• Check for connection closed in more Connection methods (createStatement, prepareStatement, setTrans-
actionIsolation, setAutoCommit).

• Fixed ResultSetMetaData.getPrecision() returning incorrect values for some floating-point types.

• Changed SingleByteCharConverter to use lazy initialization of each converter.

D.4.16. Changes in MySQL Connector/J 3.0.2 (08 November 2002)
Bugs fixed:

• Implemented Clob.setString().

• Added com.mysql.jdbc.MiniAdmin class, which allows you to send shutdown command to MySQL server. This is in-
tended to be used when “embedding” Java and MySQL server together in an end-user application.

• Added SSL support. See README for information on how to use it.

• All DBMD result set columns describing schemas now return NULL to be more compliant with the behavior of other JDBC
drivers for other database systems (MySQL does not support schemas).

• Use SHOW CREATE TABLE when possible for determining foreign key information for DatabaseMetaData. Also allows
cascade options for DELETE information to be returned.

• Implemented Clob.setCharacterStream().

• Failover and autoReconnect work only when the connection is in an autoCommit(false) state, in order to stay trans-
action-safe.

• Fixed DBMD.supportsResultSetConcurrency() so that it returns true for Result-
Set.TYPE_SCROLL_INSENSITIVE and ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE.

• Implemented Clob.setAsciiStream().

MySQL Connector/J Change History

568

http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_lower_case_table_names
http://dev.mysql.com/doc/refman/5.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.0/en/delete.html

• Removed duplicate code from UpdatableResultSet (it can be inherited from ResultSet, the extra code for each meth-
od to handle updatability I thought might someday be necessary has not been needed).

• Fixed UnsupportedEncodingException thrown when “forcing” a character encoding via properties.

• Fixed incorrect conversion in ResultSet.getLong().

• Implemented ResultSet.updateBlob().

• Removed some not-needed temporary object creation by smarter use of Strings in EscapeProcessor, Connection
and DatabaseMetaData classes.

• Escape 0x5c character in strings for the SJIS charset.

• PreparedStatement now honors stream lengths in setBinary/Ascii/Character Stream() unless you set the connection prop-
erty useStreamLengthsInPrepStmts to false.

• Fixed issue with updatable result sets and PreparedStatements not working.

• Fixed start position off-by-1 error in Clob.getSubString().

• Added connectTimeout parameter that allows users of JDK-1.4 and newer to specify a maximum time to wait to establish a
connection.

• Fixed various non-ASCII character encoding issues.

• Fixed ResultSet.isLast() for empty result sets (should return false).

• Added driver property useHostsInPrivileges. Defaults to true. Affects whether or not @hostname will be used in
DBMD.getColumn/TablePrivileges.

• Fixed ResultSet.setFetchDirection(FETCH_UNKNOWN).

• Added queriesBeforeRetryMaster property that specifies how many queries to issue when failed over before attempt-
ing to reconnect to the master (defaults to 50).

• Fixed issue when calling Statement.setFetchSize() when using arbitrary values.

• Properly restore connection properties when autoReconnecting or failing-over, including autoCommit state, and isolation
level.

• Implemented Clob.truncate().

D.4.17. Changes in MySQL Connector/J 3.0.1 (21 September 2002)
Bugs fixed:

• Charsets now automatically detected. Optimized code for single-byte character set conversion.

• Fixed ResultSetMetaData.isSigned() for TINYINT and BIGINT.

• Fixed RowDataStatic.getAt() off-by-one bug.

• Fixed ResultSet.getRow() off-by-one bug.

• Massive code clean-up to follow Java coding conventions (the time had come).

• Implemented ResultSet.getCharacterStream().

• Added limited Clob functionality (ResultSet.getClob(), PreparedStatemtent.setClob(), Prepared-
Statement.setObject(Clob).

• Connection.isClosed() no longer “pings” the server.

• Connection.close() issues rollback() when getAutoCommit() is false.

• Added socketTimeout parameter to URL.

• Added LOCAL TEMPORARY to table types in DatabaseMetaData.getTableTypes().

MySQL Connector/J Change History

569

http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html

• Added paranoid parameter, which sanitizes error messages by removing “sensitive” information from them (such as host
names, ports, or user names), as well as clearing “sensitive” data structures when possible.

D.4.18. Changes in MySQL Connector/J 3.0.0 (31 July 2002)
Bugs fixed:

• General source-code cleanup.

• The driver now only works with JDK-1.2 or newer.

• Fix and sort primary key names in DBMetaData (SF bugs 582086 and 582086).

• ResultSet.getTimestamp() now works for DATE types (SF bug 559134).

• Float types now reported as java.sql.Types.FLOAT (SF bug 579573).

• Support for streaming (row-by-row) result sets (see README) Thanks to Doron.

• Testsuite now uses Junit (which you can get from http://www.junit.org.

• JDBC Compliance: Passes all tests besides stored procedure tests.

• ResultSet.getDate/Time/Timestamp now recognizes all forms of invalid values that have been set to all zeros by
MySQL (SF bug 586058).

• Added multi-host failover support (see README).

• Repackaging: New driver name is com.mysql.jdbc.Driver, old name still works, though (the driver is now provided by
MySQL-AB).

• Support for large packets (new addition to MySQL-4.0 protocol), see README for more information.

• Better checking for closed connections in Statement and PreparedStatement.

• Performance improvements in string handling and field metadata creation (lazily instantiated) contributed by Alex Twisleton-
Wykeham-Fiennes.

• JDBC-3.0 functionality including Statement/PreparedStatement.getGeneratedKeys() and Result-
Set.getURL().

• Overall speed improvements via controlling transient object creation in MysqlIO class when reading packets.

• !!! LICENSE CHANGE !!! The driver is now GPL. If you need non-GPL licenses, please contact me <mark@mysql.com>.

• Performance enchancements: Driver is now 50–100% faster in most situations, and creates fewer temporary objects.

D.5. Changes in MySQL Connector/J 2.0.x

D.5.1. Changes in MySQL Connector/J 2.0.14 (16 May 2002)
Bugs fixed:

• ResultSet.getDouble() now uses code built into JDK to be more precise (but slower).

• Fixed typo for relaxAutoCommit parameter.

• LogicalHandle.isClosed() calls through to physical connection.

• Added SQL profiling (to STDERR). Set profileSql=true in your JDBC URL. See README for more information.

• PreparedStatement now releases resources on .close(). (SF bug 553268)

• More code cleanup.

• Quoted identifiers not used if server version does not support them. Also, if server started with --ansi or -

MySQL Connector/J Change History

570

http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://www.junit.org
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_ansi

-sql-mode=ANSI_QUOTES, “"” will be used as an identifier quote character, otherwise “'” will be used.

D.5.2. Changes in MySQL Connector/J 2.0.13 (24 April 2002)
Bugs fixed:

• Fixed unicode chars being read incorrectly. (SF bug 541088)

• Faster blob escaping for PrepStmt.

• Added setURL() to MySQLXADataSource. (SF bug 546019)

• Added set/getPortNumber() to DataSource(s). (SF bug 548167)

• PreparedStatement.toString() fixed. (SF bug 534026)

• More code cleanup.

• Rudimentary version of Statement.getGeneratedKeys() from JDBC-3.0 now implemented (you need to be using
JDK-1.4 for this to work, I believe).

• DBMetaData.getIndexInfo() - bad PAGES fixed. (SF BUG 542201)

• ResultSetMetaData.getColumnClassName() now implemented.

D.5.3. Changes in MySQL Connector/J 2.0.12 (07 April 2002)
Bugs fixed:

• Fixed testsuite.Traversal afterLast() bug, thanks to Igor Lastric.

• Added new types to getTypeInfo(), fixed existing types thanks to Al Davis and Kid Kalanon.

• Fixed time zone off-by-1-hour bug in PreparedStatement (538286, 528785).

• Added identifier quoting to all DatabaseMetaData methods that need them (should fix 518108).

• Added support for BIT types (51870) to PreparedStatement.

• ResultSet.insertRow() should now detect auto_increment fields in most cases and use that value in the new row. This
detection will not work in multi-valued keys, however, due to the fact that the MySQL protocol does not return this informa-
tion.

• Relaxed synchronization in all classes, should fix 520615 and 520393.

• DataSources - fixed setUrl bug (511614, 525565), wrong datasource class name (532816, 528767).

• Added support for YEAR type (533556).

• Fixes for ResultSet updatability in PreparedStatement.

• ResultSet: Fixed updatability (values being set to null if not updated).

• Added getTable/ColumnPrivileges() to DBMD (fixes 484502).

• Added getIdleFor() method to Connection and MysqlLogicalHandle.

• ResultSet.refreshRow() implemented.

• Fixed getRow() bug (527165) in ResultSet.

• General code cleanup.

D.5.4. Changes in MySQL Connector/J 2.0.11 (27 January 2002)

MySQL Connector/J Change History

571

http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_sql-mode
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/year.html

Bugs fixed:

• Full synchronization of Statement.java.

• Fixed missing DELETE_RULE value in DBMD.getImported/ExportedKeys() and getCrossReference().

• More changes to fix Unexpected end of input stream errors when reading BLOB values. This should be the last fix.

D.5.5. Changes in MySQL Connector/J 2.0.10 (24 January 2002)
Bugs fixed:

• Fixed null-pointer-exceptions when using MysqlConnectionPoolDataSource with Websphere 4 (bug 505839).

• Fixed spurious Unexpected end of input stream errors in MysqlIO (bug 507456).

D.5.6. Changes in MySQL Connector/J 2.0.9 (13 January 2002)
Bugs fixed:

• Fixed extra memory allocation in MysqlIO.readPacket() (bug 488663).

• Added detection of network connection being closed when reading packets (thanks to Todd Lizambri).

• Fixed casting bug in PreparedStatement (bug 488663).

• DataSource implementations moved to org.gjt.mm.mysql.jdbc2.optional package, and (initial) implementa-
tions of PooledConnectionDataSource and XADataSource are in place (thanks to Todd Wolff for the implementa-
tion and testing of PooledConnectionDataSource with IBM WebSphere 4).

• Fixed quoting error with escape processor (bug 486265).

• Removed concatenation support from driver (the || operator), as older versions of VisualAge seem to be the only thing that
use it, and it conflicts with the logical || operator. You will need to start mysqld with the --ansi flag to use the || operat-
or as concatenation (bug 491680).

• Ant build was corrupting included jar files, fixed (bug 487669).

• Report batch update support through DatabaseMetaData (bug 495101).

• Implementation of DatabaseMetaData.getExported/ImportedKeys() and getCrossReference().

• Fixed off-by-one-hour error in PreparedStatement.setTimestamp() (bug 491577).

• Full synchronization on methods modifying instance and class-shared references, driver should be entirely thread-safe now
(please let me know if you have problems).

D.5.7. Changes in MySQL Connector/J 2.0.8 (25 November 2001)
Bugs fixed:

• XADataSource/ConnectionPoolDataSource code (experimental)

• DatabaseMetaData.getPrimaryKeys() and getBestRowIdentifier() are now more robust in identifying
primary keys (matches regardless of case or abbreviation/full spelling of Primary Key in Key_type column).

• Batch updates now supported (thanks to some inspiration from Daniel Rall).

• PreparedStatement.setAnyNumericType() now handles positive exponents correctly (adds + so MySQL can un-
derstand it).

D.5.8. Changes in MySQL Connector/J 2.0.7 (24 October 2001)

MySQL Connector/J Change History

572

http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_ansi

Bugs fixed:

• Character sets read from database if useUnicode=true and characterEncoding is not set. (thanks to Dmitry
Vereshchagin)

• Initial transaction isolation level read from database (if available). (thanks to Dmitry Vereshchagin)

• Fixed PreparedStatement generating SQL that would end up with syntax errors for some queries.

• PreparedStatement.setCharacterStream() now implemented

• Captialize type names when captializeTypeNames=true is passed in URL or properties (for WebObjects. (thanks to
Anjo Krank)

• ResultSet.getBlob() now returns null if column value was null.

• Fixed ResultSetMetaData.getPrecision() returning one less than actual on newer versions of MySQL.

• Fixed dangling socket problem when in high availability (autoReconnect=true) mode, and finalizer for Connection
will close any dangling sockets on GC.

• Fixed time zone issue in PreparedStatement.setTimestamp(). (thanks to Erik Olofsson)

• PreparedStatement.setDouble() now uses full-precision doubles (reverting a fix made earlier to truncate them).

• Fixed DatabaseMetaData.supportsTransactions(), and supportsTransactionIsolationLevel() and
getTypeInfo() SQL_DATETIME_SUB and SQL_DATA_TYPE fields not being readable.

• Updatable result sets now correctly handle NULL values in fields.

• PreparedStatement.setBoolean() will use 1/0 for values if your MySQL version is 3.21.23 or higher.

• Fixed ResultSet.isAfterLast() always returning false.

D.5.9. Changes in MySQL Connector/J 2.0.6 (16 June 2001)
Bugs fixed:

• Fixed PreparedStatement parameter checking.

• Fixed case-sensitive column names in ResultSet.java.

D.5.10. Changes in MySQL Connector/J 2.0.5 (13 June 2001)
Bugs fixed:

• ResultSet.insertRow() works now, even if not all columns are set (they will be set to NULL).

• Added Byte to PreparedStatement.setObject().

• Fixed data parsing of TIMESTAMP values with 2-digit years.

• Added ISOLATION level support to Connection.setIsolationLevel()

• DataBaseMetaData.getCrossReference() no longer ArrayIndexOOB.

• ResultSet.getBoolean() now recognizes -1 as true.

• ResultSet has +/-Inf/inf support.

• getObject() on ResultSet correctly does TINYINT->Byte and SMALLINT->Short.

• Fixed ResultSetMetaData.getColumnTypeName for TEXT/BLOB.

• Fixed ArrayIndexOutOfBounds when sending large BLOB queries. (Max size packet was not being set)

MySQL Connector/J Change History

573

http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html

• Fixed NPE on PreparedStatement.executeUpdate() when all columns have not been set.

• Fixed ResultSet.getBlob() ArrayIndex out-of-bounds.

D.5.11. Changes in MySQL Connector/J 2.0.3 (03 December 2000)
Bugs fixed:

• Fixed composite key problem with updatable result sets.

• Faster ASCII string operations.

• Fixed off-by-one error in java.sql.Blob implementation code.

• Fixed incorrect detection of MAX_ALLOWED_PACKET, so sending large blobs should work now.

• Added detection of -/+INF for doubles.

• Added ultraDevHack URL parameter, set to true to allow (broken) Macromedia UltraDev to use the driver.

• Implemented getBigDecimal() without scale component for JDBC2.

D.5.12. Changes in MySQL Connector/J 2.0.1 (06 April 2000)
Bugs fixed:

• Columns that are of type TEXT now return as Strings when you use getObject().

• Cleaned up exception handling when driver connects.

• Fixed RSMD.isWritable() returning wrong value. Thanks to Moritz Maass.

• DatabaseMetaData.getPrimaryKeys() now works correctly with respect to key_seq. Thanks to Brian Slesinsky.

• Fixed many JDBC-2.0 traversal, positioning bugs, especially with respect to empty result sets. Thanks to Ron Smits, Nick
Brook, Cessar Garcia and Carlos Martinez.

• No escape processing is done on PreparedStatements anymore per JDBC spec.

• Fixed some issues with updatability support in ResultSet when using multiple primary keys.

D.5.13. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)

• Fixed Bad Handshake problem.

D.5.14. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)

• Fixes to ResultSet for insertRow() - Thanks to Cesar Garcia

• Fix to Driver to recognize JDBC-2.0 by loading a JDBC-2.0 class, instead of relying on JDK version numbers. Thanks to John
Baker.

• Fixed ResultSet to return correct row numbers

• Statement.getUpdateCount() now returns rows matched, instead of rows actually updated, which is more SQL-92 like.

10-29-99

• Statement/PreparedStatement.getMoreResults() bug fixed. Thanks to Noel J. Bergman.

MySQL Connector/J Change History

574

http://dev.mysql.com/doc/refman/5.0/en/blob.html

• Added Short as a type to PreparedStatement.setObject(). Thanks to Jeff Crowder

• Driver now automagically configures maximum/preferred packet sizes by querying server.

• Autoreconnect code uses fast ping command if server supports it.

• Fixed various bugs with respect to packet sizing when reading from the server and when alloc'ing to write to the server.

D.5.15. Changes in MySQL Connector/J 2.0.0pre (17 August 1999)

• Now compiles under JDK-1.2. The driver supports both JDK-1.1 and JDK-1.2 at the same time through a core set of classes.
The driver will load the appropriate interface classes at runtime by figuring out which JVM version you are using.

• Fixes for result sets with all nulls in the first row. (Pointed out by Tim Endres)

• Fixes to column numbers in SQLExceptions in ResultSet (Thanks to Blas Rodriguez Somoza)

• The database no longer needs to specified to connect. (Thanks to Christian Motschke)

D.6. Changes in MySQL Connector/J 1.2b (04 July 1999)

• Better Documentation (in progress), in doc/mm.doc/book1.html

• DBMD now allows null for a column name pattern (not in spec), which it changes to '%'.

• DBMD now has correct types/lengths for getXXX().

• ResultSet.getDate(), getTime(), and getTimestamp() fixes. (contributed by Alan Wilken)

• EscapeProcessor now handles \{ \} and { or } inside quotes correctly. (thanks to Alik for some ideas on how to fix it)

• Fixes to properties handling in Connection. (contributed by Juho Tikkala)

• ResultSet.getObject() now returns null for NULL columns in the table, rather than bombing out. (thanks to Ben Grosman)

• ResultSet.getObject() now returns Strings for types from MySQL that it doesn't know about. (Suggested by Chris Perdue)

• Removed DataInput/Output streams, not needed, 1/2 number of method calls per IO operation.

• Use default character encoding if one is not specified. This is a work-around for broken JVMs, because according to spec,
EVERY JVM must support "ISO8859_1", but they do not.

• Fixed Connection to use the platform character encoding instead of "ISO8859_1" if one isn't explicitly set. This fixes problems
people were having loading the character- converter classes that didn't always exist (JVM bug). (thanks to Fritz Elfert for point-
ing out this problem)

• Changed MysqlIO to re-use packets where possible to reduce memory usage.

• Fixed escape-processor bugs pertaining to {} inside quotes.

D.7. Changes in MySQL Connector/J 1.2.x and lower

D.7.1. Changes in MySQL Connector/J 1.2a (14 April 1999)

• Fixed character-set support for non-Javasoft JVMs (thanks to many people for pointing it out)

• Fixed ResultSet.getBoolean() to recognize 'y' & 'n' as well as '1' & '0' as boolean flags. (thanks to Tim Pizey)

• Fixed ResultSet.getTimestamp() to give better performance. (thanks to Richard Swift)

• Fixed getByte() for numeric types. (thanks to Ray Bellis)

• Fixed DatabaseMetaData.getTypeInfo() for DATE type. (thanks to Paul Johnston)

MySQL Connector/J Change History

575

• Fixed EscapeProcessor for "fn" calls. (thanks to Piyush Shah at locomotive.org)

• Fixed EscapeProcessor to not do extraneous work if there are no escape codes. (thanks to Ryan Gustafson)

• Fixed Driver to parse URLs of the form "jdbc:mysql://host:port" (thanks to Richard Lobb)

D.7.2. Changes in MySQL Connector/J 1.1i (24 March 1999)

• Fixed Timestamps for PreparedStatements

• Fixed null pointer exceptions in RSMD and RS

• Re-compiled with jikes for valid class files (thanks ms!)

D.7.3. Changes in MySQL Connector/J 1.1h (08 March 1999)

• Fixed escape processor to deal with unmatched { and } (thanks to Craig Coles)

• Fixed escape processor to create more portable (between DATETIME and TIMESTAMP types) representations so that it will
work with BETWEEN clauses. (thanks to Craig Longman)

• MysqlIO.quit() now closes the socket connection. Before, after many failed connections some OS's would run out of file
descriptors. (thanks to Michael Brinkman)

• Fixed NullPointerException in Driver.getPropertyInfo. (thanks to Dave Potts)

• Fixes to MysqlDefs to allow all *text fields to be retrieved as Strings. (thanks to Chris at Leverage)

• Fixed setDouble in PreparedStatement for large numbers to avoid sending scientific notation to the database. (thanks to J.S.
Ferguson)

• Fixed getScale() and getPrecision() in RSMD. (contrib'd by James Klicman)

• Fixed getObject() when field was DECIMAL or NUMERIC (thanks to Bert Hobbs)

• DBMD.getTables() bombed when passed a null table-name pattern. Fixed. (thanks to Richard Lobb)

• Added check for "client not authorized" errors during connect. (thanks to Hannes Wallnoefer)

D.7.4. Changes in MySQL Connector/J 1.1g (19 February 1999)

• Result set rows are now byte arrays. Blobs and Unicode work bidriectonally now. The useUnicode and encoding options are
implemented now.

• Fixes to PreparedStatement to send binary set by setXXXStream to be sent untouched to the MySQL server.

• Fixes to getDriverPropertyInfo().

D.7.5. Changes in MySQL Connector/J 1.1f (31 December 1998)

• Changed all ResultSet fields to Strings, this should allow Unicode to work, but your JVM must be able to convert between the
character sets. This should also make reading data from the server be a bit quicker, because there is now no conversion from
StringBuffer to String.

• Changed PreparedStatement.streamToString() to be more efficient (code from Uwe Schaefer).

• URL parsing is more robust (throws SQL exceptions on errors rather than NullPointerExceptions)

• PreparedStatement now can convert Strings to Time/Date values via setObject() (code from Robert Currey).

• IO no longer hangs in Buffer.readInt(), that bug was introduced in 1.1d when changing to all byte-arrays for result sets.
(Pointed out by Samo Login)

MySQL Connector/J Change History

576

D.7.6. Changes in MySQL Connector/J 1.1b (03 November 1998)

• Fixes to DatabaseMetaData to allow both IBM VA and J-Builder to work. Let me know how it goes. (thanks to Jac Kersing)

• Fix to ResultSet.getBoolean() for NULL strings (thanks to Barry Lagerweij)

• Beginning of code cleanup, and formatting. Getting ready to branch this off to a parallel JDBC-2.0 source tree.

• Added "final" modifier to critical sections in MysqlIO and Buffer to allow compiler to inline methods for speed.

9-29-98

• If object references passed to setXXX() in PreparedStatement are null, setNull() is automatically called for you. (Thanks for the
suggestion goes to Erik Ostrom)

• setObject() in PreparedStatement will now attempt to write a serialized representation of the object to the database for objects
of Types.OTHER and objects of unknown type.

• Util now has a static method readObject() which given a ResultSet and a column index will re-instantiate an object serialized in
the above manner.

D.7.7. Changes in MySQL Connector/J 1.1 (02 September 1998)

• Got rid of "ugly hack" in MysqlIO.nextRow(). Rather than catch an exception, Buffer.isLastDataPacket() was fixed.

• Connection.getCatalog() and Connection.setCatalog() should work now.

• Statement.setMaxRows() works, as well as setting by property maxRows. Statement.setMaxRows() overrides maxRows set via
properties or url parameters.

• Automatic re-connection is available. Because it has to "ping" the database before each query, it is turned off by default. To use
it, pass in "autoReconnect=true" in the connection URL. You may also change the number of reconnect tries, and the initial
timeout value via "maxReconnects=n" (default 3) and "initialTimeout=n" (seconds, default 2) parameters. The timeout is an ex-
ponential backoff type of timeout; for example, if you have initial timeout of 2 seconds, and maxReconnects of 3, then the
driver will timeout 2 seconds, 4 seconds, then 16 seconds between each re-connection attempt.

D.7.8. Changes in MySQL Connector/J 1.0 (24 August 1998)

• Fixed handling of blob data in Buffer.java

• Fixed bug with authentication packet being sized too small.

• The JDBC Driver is now under the LPGL

8-14-98

• Fixed Buffer.readLenString() to correctly read data for BLOBS.

• Fixed PreparedStatement.stringToStream to correctly read data for BLOBS.

• Fixed PreparedStatement.setDate() to not add a day. (above fixes thanks to Vincent Partington)

• Added URL parameter parsing (?user=... and so forth).

D.7.9. Changes in MySQL Connector/J 0.9d (04 August 1998)

• Big news! New package name. Tim Endres from ICE Engineering is starting a new source tree for GNU GPL'd Java software.
He's graciously given me the org.gjt.mm package directory to use, so now the driver is in the org.gjt.mm.mysql package
scheme. I'm "legal" now. Look for more information on Tim's project soon.

MySQL Connector/J Change History

577

• Now using dynamically sized packets to reduce memory usage when sending commands to the DB.

• Small fixes to getTypeInfo() for parameters, and so forth.

• DatabaseMetaData is now fully implemented. Let me know if these drivers work with the various IDEs out there. I've heard
that they're working with JBuilder right now.

• Added JavaDoc documentation to the package.

• Package now available in .zip or .tar.gz.

D.7.10. Changes in MySQL Connector/J 0.9 (28 July 1998)

• Implemented getTypeInfo(). Connection.rollback() now throws an SQLException per the JDBC spec.

• Added PreparedStatement that supports all JDBC API methods for PreparedStatement including InputStreams. Please check
this out and let me know if anything is broken.

• Fixed a bug in ResultSet that would break some queries that only returned 1 row.

• Fixed bugs in DatabaseMetaData.getTables(), DatabaseMetaData.getColumns() and DatabaseMetaData.getCatalogs().

• Added functionality to Statement that allows executeUpdate() to store values for IDs that are automatically generated for
AUTO_INCREMENT fields. Basically, after an executeUpdate(), look at the SQLWarnings for warnings like
"LAST_INSERTED_ID = 'some number', COMMAND = 'your SQL query'". If you are using AUTO_INCREMENT fields in
your tables and are executing a lot of executeUpdate()s on one Statement, be sure to clearWarnings() every so often to save
memory.

D.7.11. Changes in MySQL Connector/J 0.8 (06 July 1998)

• Split MysqlIO and Buffer to separate classes. Some ClassLoaders gave an IllegalAccess error for some fields in those two
classes. Now mm.mysql works in applets and all classloaders. Thanks to Joe Ennis <jce@mail.boone.com> for pointing out the
problem and working on a fix with me.

D.7.12. Changes in MySQL Connector/J 0.7 (01 July 1998)

• Fixed DatabaseMetadata problems in getColumns() and bug in switch statement in the Field constructor. Thanks to Costin
Manolache <costin@tdiinc.com> for pointing these out.

D.7.13. Changes in MySQL Connector/J 0.6 (21 May 1998)

• Incorporated efficiency changes from Richard Swift <Richard.Swift@kanatek.ca> in MysqlIO.java and Result-
Set.java:

• We're now 15% faster than gwe's driver.

• Started working on DatabaseMetaData.

• The following methods are implemented:

• getTables()

• getTableTypes()

• getColumns()

• getCatalogs()

MySQL Connector/J Change History

578

Appendix E. MySQL Connector/MXJ Change History

E.1. Changes in MySQL Connector/MXJ 5.0.6 (04 May 2007)
Functionality added or changed:

• Updated internal jar file names to include version information and be more consistent with Connector/J jar naming. For ex-
ample, connector-mxj.jar is now mysql-connector-mxj-${mxj-version}.jar.

• Updated commercial license files.

• Added copyright notices to some classes which were missing them.

• Added InitializeUser and QueryUtil classes to support new feature.

• Added new tests for initial-user & expanded some existing tests.

• ConnectorMXJUrlTestExample and ConnectorMXJObjectTestExample now demonstrate the initialization of
user/password and creating the initial database (rather than using "test").

• Added new connection property initialize-user which, if set to true will remove the default, un-passworded anonym-
ous and root users, and create the user/password from the connection url.

• Removed obsolete field SimpleMysqldDynamicMBean.lastInvocation.

• Clarified code in DefaultsMap.entrySet().

• Removed obsolete PatchedStandardSocketFactory java file.

• Added main(String[]) to com/mysql/management/AllTestsSuite.java.

• Errors reading portFile are now reported using stacktrace(err), previously System.err was used.

• portFile now contains a new-line to be consistent with pidFile.

• Fixed where versionString.trim() was ignored.

• Removed references to File.deleteOnExit, a warning is printed instead.

Bugs fixed:

• Changed tests to shutdown mysqld prior to deleting files.

• Fixed port file to always be writen to datadir.

• Added os.name-os.arch to resource directory mapping properties file.

• Swapped out commercial binaries for v5.0.40.

• Delete portFile on shutdown.

• Moved platform-map.properties into db-files.jar.

• Clarified the startup max wait numbers.

• Updated build.xml in preperation for next beta build.

• Removed use-default-architecture property replaced.

• Added null-check to deal with C/MXJ being loaded by the bootstrap classloaders with JVMs for which getClassLoader()
returns null.

• Added robustness around reading portfile.

• Removed PatchedStandardSocketFactory (fixed in Connetor/J 5.0.6).

• Refactored duplication from tests and examples to QueryUtil.

579

• Removed obsolete InitializePasswordExample

E.2. Changes in MySQL Connector/MXJ 5.0.5 (14 March 2007)
Bugs fixed:

• Moved MysqldFactory to main package.

• Reformatting: Added newlines some files which did not end in them.

• Swapped out commercial binaries for v5.0.36.

• Found and removed dynamic linking in mysql_kill; updated solution.

• Changed protected constructor of SimpleMysqldDynamicMBean from taking a MysqldResource to taking a Mysqld-
Factory, in order to lay groundwork for addressing BUG discovered by Andrew Rubinger. See: MySQL Forums (Actual
testing with JBoss, and filing a bug, is still required.)

• build.xml: usage now slightly more verbose; some reformatting.

• Now incoporates Reggie Bernett's SafeTerminateProcess and only calls the unsafe TerminateProcess as a final last re-
sort.

• New windows kill.exe fixes bug where mysqld was being force terminated. Issue reported by bruno haleblian and others,
see: MySQL Forums.

• Replaced Boolean.parseBoolean with JDK 1.4 compliant valueOf.

• Changed connector-mxj.properties default mysql version to 5.0.37.

• In testing so far mysqld reliably shuts down cleanly much faster.

• Added testcase to com.mysql.management.jmx.AcceptanceTest which demonstrats that dataDir is a mutable
MBean property.

• Updated build.xml in prep for next release.

• Changed SimpleMysqldDynamicMBean to create MysqldResource on demand in order to allow setting of datadir.
(Rubinger bug groundwork).

• Clarified the synchronization of MysqldResource methods.

• SIGHUP is replaced with MySQLShutdown<PID> event.

• Clarified the immutability of baseDir, dataDir, pidFile, portFile.

• Added 5.1.15 binaries to the repository.

• Removed 5.1.14 binaries from the repository.

• Added getDataDir() to interface MysqldResourceI.

• Added 5.1.14 binaries to repository.

• Replaced windows kill.exe resource with re-written version specific to mysqld.

• Added Patched StandardSocketFactory from Connector/J 5-0 HEAD.

• Ensured 5.1.14 compatibility.

• Swapped out gpl binaries for v5.0.37.

• Removed 5.0.22 binaries from the repository.

E.3. Changes in MySQL Connector/MXJ 5.0.4 (28 January 2007)
Bugs fixed:

MySQL Connector/MXJ Change History

580

http://forums.mysql.com/read.php?39,143046,143046#msg-143046
http://forums.mysql.com/read.php?39,140623,140623#msg-140623

• Allow multiple calls to start server from URL connection on non-3306 port. (Bug#24004)

• Updated build.xml to build to handle with different gpl and commercial mysld version numbers.

• Only populate the options map from the help text if specifically requested or in the MBean case.

• Introduced property for Linux & WinXX to default to 32bit versions.

• Swapped out gpl binaries for v5.0.27.

• Swapped out commercial binaries for v5.0.32.

• Moved mysqld binary resourced into separate jar file NOTICE: CLASSPATH will now need to connector-
mxj-db-files.jar.

• Minor test robustness improvements.

• Moved default version string out of java class into a text editable properties file (connector-mxj.properties) in the re-
sources directory.

• Fixed test to be tollerant of /tmp being a symlink to /foo/tmp.

E.4. Changes in MySQL Connector/MXJ 5.0.3 (24 June 2006)
Bugs fixed:

• Removed unused imports, formatted code, made minor edits to tests.

• Removed "TeeOutputStream" - no longer needed.

• Swapped out the mysqld binaries for MySQL v5.0.22.

E.5. Changes in MySQL Connector/MXJ 5.0.2 (15 June 2006)
Bugs fixed:

• Replaced string parsing with JDBC connection attempt for determining if a mysqld is "ready for connections" CLASSPATH
will now need to include Connector/J jar.

• "platform" directories replace spaces with underscores

• extracted array and list printing to ListToString utility class

• Swapped out the mysqld binaries for MySQL v5.0.21

• Added trace level logging with Aspect/J. CLASSPATH will now need to include lib/aspectjrt.jar

• reformatted code

• altered to be "basedir" rather than "port" oriented.

• help parsing test reflects current help options

• insulated users from problems with "." in basedir

• swapped out the mysqld binaries for MySQL v5.0.18

• Made tests more robust be deleting the /tmp/test-c.mxj directory before running tests.

• ServerLauncherSocketFactory.shutdown API change: now takes File parameter (basedir) instead of port.

• socket is now "mysql.sock" in datadir

• added ability to specify "mysql-version" as an url parameter

• Extended timeout for help string parsing, to avoid cases where the help text was getting prematurely flushed, and thus trun-
cated.

MySQL Connector/MXJ Change History

581

http://bugs.mysql.com/24004

• swapped out the mysqld binaries for MySQL v5.0.19

• MysqldResource now tied to dataDir as well as basedir (API CHANGE)

• moved PID file into datadir

• ServerLauncherSocketFactory.shutdown now works across JVMs.

• extracted splitLines(String) to Str utility class

• ServerLauncherSocketFactory.shutdown(port) no longer throws, only reports to System.err

• ServerLauncherSocketFactory now treats URL parameters in the form of &server.foo=null as serverOption-
Map.put("foo", null)

• ServerLauncherSocketFactory.shutdown API change: now takes 2 File parameters (basedir, datadir)

E.6. Changes in MySQL Connector/MXJ 5.0.1 (Never released)
This was an internal only release.

E.7. Changes in MySQL Connector/MXJ 5.0.0 (09 December 2005)
Bugs fixed:

• Removed HelpOptionsParser's need to reference a MysqldResource.

• Reorganized utils into a single "Utils" collaborator.

• Minor test tweaks

• Altered examples and tests to use new Connector/J 5.0 URL syntax for launching Connector/MXJ ("jdbc:mysql:mxj://")

• Swapped out the mysqld binaries for MySQL v5.0.16.

• Ditched "ClassUtil" (merged with Str).

• Minor refactorings for type casting and exception handling.

MySQL Connector/MXJ Change History

582

Appendix F. MySQL Connector/OpenOffice.org Change History

F.1. Changes in MySQL Connector/OpenOffice.org 1.0.2 (09 April 09
alpha)

This is a new Alpha development release, fixing recently discovered bugs.

F.2. Changes in MySQL Connector/OpenOffice.org 1.0.1 (02 Decem-
ber 08 alpha)

This is a new Alpha development release, fixing recently discovered bugs.

F.3. Changes in MySQL Connector/OpenOffice.org 1.0.0 (05 August
08 preview)

Bugs fixed:

• Test

583

Appendix G. MySQL Connector/C++ Change History

G.1. Changes in MySQL Connector/C++ 1.0.x

G.1.1. Changes in MySQL Connector/CPP 1.0.5 (21 April 2009)
This is the first Generally Available (GA) release.

Functionality added or changed:

• The interface of sql::ConnectionMetaData, sql::ResultSetMetaData and sql::ParameterMetaData was
modified to have a protected destructor. As a result the client code has no need to destruct the metadata objects returned by the
connector. MySQL Connector/C++ handles the required destruction. This enables statements such as:

connection->getMetaData->getSchema();

This avoids potential memory leaks that could occur as a result of losing the pointer returned by getMetaData().

• Improved memory management. Potential memory leak situations are handled more robustly.

• Changed the interface of sql::Driver and sql::Connection so they accept the options map by alias instead of by
value.

• Changed the return type of sql::SQLException::getSQLState() from std::string to const char * to be
consistent with std::exception::what().

• Implemented getResultSetType() and setResultSetType() for Statement. Uses TYPE_FORWARD_ONLY,
which means unbuffered result set and TYPE_SCROLL_INSENSITIVE, which means buffered result set.

• Implemented getResultSetType() for PreparedStatement. The setter is not implemented because currently Pre-
paredStatement cannot do refetching. Storing the result means the bind buffers will be correct.

• Added the option defaultStatementResultType to MySQL_Connection::setClientOption(). Also, the
method now returns sql::Connection *.

• Added Result::getType(). Implemented for the three result set classes.

• Enabled tracing functionality when building with Microsoft Visual C++ 8 and later, which corresponds to Microsoft Visual Stu-
dio 2005 and later.

• Added better support for named pipes, on Windows. Use pipe:// and add the path to the pipe. Shared memory connections
are currently not supported.

Bugs fixed:

• A bug was fixed in MySQL_Connection::setSessionVariable(), which had been causing exceptions to be thrown.

G.1.2. Changes in MySQL Connector/CPP 1.0.4 (31 March 2009 beta)
Functionality added or changed:

• An installer was added for the Windows operating system.

• Minimum CMake version required was changed from 2.4.2 to 2.6.2. The latest version is required for building on Windows.

• metadataUseInfoSchema was added to the connection property map, which allows control of the INFORMA-
TION_SCHEMA for meta data.

• Implemented MySQL_ConnectionMetaData::supportsConvert(from, to).

• Added support for MySQL Connector/C.

584

Bugs fixed:

• A bug was fixed in all implementations of ResultSet::relative() which was giving a wrong return value although pos-
itioning was working correctly.

• A leak was fixed in MySQL_PreparedResultSet, which occurred when the result contained a BLOB column.

G.1.3. Changes in MySQL Connector/CPP 1.0.3 (02 March 2009 alpha)
Functionality added or changed:

• Added new tests in test/unit/classes. Those tests are mostly about code coverage. Most of the actual functionality of
the driver is tested by the tests found in test/CJUnitPort.

• New data types added to the list returned by DatabaseMetaData::getTypeInfo() are FLOAT UNSIGED, DECIMAL
UNSIGNED, DOUBLE UNSIGNED. Those tests may not be in the JDBC specification. However, due to the change you should
be able to look up every type and type name returned by, for example,
ResultSetMetaData::getColumnTypeName().

• MySQL_Driver::getPatchVersion introduced.

• Major performance improvements due to new buffered ResultSet implementation.

• Addition of test/unit/README with instructions for writing bug and regression tests.

• Experimental support for STLPort. This feature may be removed again at any time later without prior warning! Type cmake -
L for configuration instructions.

• Added properties enabled methods for connecting, which add many connect options. This uses a dictionary (map) of key value
pairs. Methods added are Driver::connect(map), and Connection::Connection(map).

• New BLOB implementation. sql::Blob was removed in favor of std::istream. C++'s IOStream library is very
powerful, similar to PHP's streams. It makes no sense to reinvent the wheel. For example, you can pass a
std::istringstream object to setBlob() if the data is in memory, or just open a file std::fstream and let it
stream to the DB, or write its own stream. This is also true for getBlob() where you can just copy data (if a buffered result
set), or stream data (if implemented).

• Implemented ResultSet::getBlob() which returns std::stream.

• Fixed MySQL_DatabaseMetaData::getTablePrivileges(). Test cases were added in the first unit testing frame-
work.

• Implemented MySQL_Connection::setSessionVariable() for setting variables like sql_mode.

• Implemented MySQL_DatabaseMetaData::getColumnPrivileges().

• cppconn/datatype.h has changed and is now used again. Reimplemented the type subsystem to be more usable - more
types for binary and nonbinary strings.

• Implementation for MySQL_DatabaseMetaData::getImportedKeys() for MySQL versions before 5.1.16 using
SHOW, and above using INFORMATION_SCHEMA.

• Implemented MySQL_ConnectionMetaData::getProcedureColumns().

• make package_source now packs with bzip2.

• Re-added getTypeInfo() with information about all types supported by MySQL and the sql::DataType.

• Changed the implementation of MySQL_ConstructedResultSet to use the more efficient O(1) access method. This
should improve the speed with which the metadata result sets are used. Also, there is less copying during the construction of the
result set, which means that all result sets returned from the meta data functions will be faster.

• Introduced, internally, sql::mysql::MyVal which has implicit constructors. Used in mysql_metadata.cpp to create
result sets with native data instead of always string (varchar).

• Renamed ResultSet::getLong() to ResultSet::getInt64(). resultset.h includes typdefs for Windows to
be able to use int64_t.

MySQL Connector/C++ Change History

585

• Introduced ResultSet::getUInt() and ResultSet::getUInt64().

• Improved the implementation for ResultSetMetaData::isReadOnly(). Values generated from views are read-only.
These generated values don't have db in MYSQL_FIELD set, while all normal columns do have.

• Implemented MySQL_DatabaseMetaData::getExportedKeys().

• Implemented MySQL_DatabaseMetaData::getCrossReference().

Bugs fixed:

• Bug fixed in MySQL_PreparedResultSet::getString(). Returned string that had real data but the length was ran-
dom. Now, the string is initialized with the correct length and thus is binary safe.

• Corrected handling of unsigned server types. Now returning correct values.

• Fixed handling of numeric columns in ResultSetMetaData::isCaseSensitive to return false.

G.1.4. Changes in MySQL Connector/CPP 1.0.2 (19 December 2008 alpha)
Functionality added or changed:

• Implemented getScale(), getPrecision() and getColumnDisplaySize() for MySQL_ResultSetMetaData
and MySQL_Prepared_ResultSetMetaData.

• Changed ResultSetMetaData methods getColumnDisplaySize(), getPrecision(), getScale() to return
unsigned int instead of signed int.

• DATE, DATETIME and TIME are now being handled when calling the MySQL_PreparedResultSet methods get-
String(), getDouble(), getInt(), getLong(), getBoolean().

• Reverted implementation of MySQL_DatabaseMetaData::getTypeInfo(). Now unimplemented. In addition, re-
moved cppconn/datatype.h for now, until a more robust implementation of the types can be developed.

• Implemented MySQL_PreparedStatement::setNull().

• Implemented MySQL_PreparedStatement::clearParameters().

• Added PHP script examples/cpp_trace_analyzer.php to filter the output of the debug trace. Please see the inline
comments for documentation. This script is unsupported.

• Implemented MySQL_ResultSetMetaData::getPrecision() and
MySQL_Prepared_ResultSetMetaData::getPrecision(), updating example.

• Added new unit test framework for JDBC compliance and regression testing.

• Added test/unit as a basis for general unit tests using the new test framework, see test/unit/example for basic us-
age examples.

Bugs fixed:

• Fixed MySQL_PreparedStatementResultSet::getDouble() to return the correct value when the underlying type
is MYSQL_TYPE_FLOAT.

• Fixed bug in MySQL_ConnectionMetaData::getIndexInfo(). The method did not work because the schema name
wasn't included in the query sent to the server.

• Fixed a bug in MySQL_ConnectionMetaData::getColumns() which was performing a cartesian product of the
columns in the table times the columns matching columnNamePattern. The example example/connec-
tion_meta_schemaobj.cpp was extended to cover the function.

• Fixed bugs in MySQL_DatabaseMetaData. All supportsCatalogXXXXX methods were incorrectly returning true
and all supportsSchemaXXXX methods were incorrectly returning false. Now supportsCatalogXXXXX returns
false and supportsSchemaXXXXX returns true.

MySQL Connector/C++ Change History

586

• Fixed bugs in the MySQL_PreparedStatements methods setBigInt() and setDatetime(). They decremented the
internal column index before forwarding the request. This resulted in a double-decrement and therefore the wrong internal
column index. The error message generated was:

setString() ... invalid "parameterIndex"

• Fixed a bug in getString(). getString() is now binary safe. A new example was also added.

• Fixed bug in FLOAT handling.

• Fixed MySQL_PreparedStatement::setBlob(). In the tests there is a simple example of a class implementing
sql::Blob.

G.1.5. Changes in MySQL Connector/CPP 1.0.1 (01 December 2008 alpha)
Functionality added or changed:

• sql::mysql::MySQL_SQLException was removed. The distinction between server and client (connector) errors, based
on the type of the exception, has been removed. However, the error code can still be checked in order to evaluate the error type.

• Support for (n)make install was added. You can change the default installation path. Carefully read the messages displayed
after executing cmake. The following are installed:

• Static and the dynamic version of the library, libmysqlcppconn.

• Generic interface, cppconn.

• Two MySQL specific headers:

mysql_driver.h, use this if you want to get your connections from the driver instead of instantiating a
MySQL_Connection object. This makes your code portable when using the common interface.

mysql_connection.h, use this if you intend to link directly to the MySQL_Connection class and use its specifics
not found in sql::Connection.

However, you can make your application fully abstract by using the generic interface rather than these two headers.

• Driver Manager was removed.

• Added ConnectionMetaData::getSchemas() and Connection::setSchema().

• ConnectionMetaData::getCatalogTerm() returns not applicable, there is no counterpart to catalog in MySQL Con-
nector/C++.

• Added experimental GCov support, cmake -DMYSQLCPPCONN_GCOV_ENABLE:BOOL=1

• All examples can be given optional connection parameters on the command line, for example:

examples/connect tcp://host:port user pass database

or

examples/connect unix:///path/to/mysql.sock user pass database

• Renamed ConnectionMetaData::getTables: TABLE_COMMENT to REMARKS.

• Renamed ConnectionMetaData::getProcedures: PROCEDURE_SCHEMA to PROCEDURE_SCHEM.

• Renamed ConnectionMetaData::getPrimaryKeys(): COLUMN to COLUMN_NAME, SEQUENCE to KEY_SEQ, and
INDEX_NAME to PK_NAME.

• Renamed ConnectionMetaData::getImportedKeys(): PKTABLE_CATALOG to PKTABLE_CAT, PKT-
ABLE_SCHEMA to PKTABLE_SCHEM, FKTABLE_CATALOG to FKTABLE_CAT, FKTABLE_SCHEMA to FKTABLE_SCHEM.

• Changed metadata column name TABLE_CATALOG to TABLE_CAT and TABLE_SCHEMA to TABLE_SCHEM to ensure JD-
BC compliance.

• Introduced experimental CPack support, see make help.

MySQL Connector/C++ Change History

587

• All tests changed to create TAP compliant output.

• Renamed sql::DbcMethodNotImplemented to sql::MethodNotImplementedException

• Renamed sql::DbcInvalidArgument to sql::InvalidArgumentException

• Changed sql::DbcException to implement the interface of JDBC's SQLException. Renamed to
sql::SQLException.

• Converted Connector/J tests added.

• MySQL Workbench 5.1 changed to use MySQL Connector/C++ for its database connectivity.

• New directory layout.

MySQL Connector/C++ Change History

588

	Connectors and APIs
	Connectors
	Chapter 1. MySQL Connector/ODBC
	1.1. Connector/ODBC Versions
	1.2. Connector/ODBC Introduction
	1.2.1. Connector/ODBC Roadmap
	1.2.2. General Information About ODBC and Connector/ODBC
	1.2.2.1. Connector/ODBC Architecture
	1.2.2.2. ODBC Driver Managers

	1.3. Connector/ODBC Installation
	1.3.1. Installing Connector/ODBC from a Binary Distribution on Windows
	1.3.1.1. Installing the Windows Connector/ODBC Driver using an installer
	1.3.1.2. Installing the Windows Connector/ODBC Driver using the Zipped DLL package

	1.3.2. Installing Connector/ODBC from a Binary Distribution on Unix
	1.3.2.1. Installing Connector/ODBC from a Binary Tarball Distribution
	1.3.2.2. Installing Connector/ODBC from an RPM Distribution

	1.3.3. Installing Connector/ODBC from a Binary Distribution on Mac OS X
	1.3.4. Installing Connector/ODBC from a Source Distribution on Windows
	1.3.4.1. Building Connector/ODBC 3.51
	1.3.4.2. Testing

	1.3.5. Installing Connector/ODBC from a Source Distribution on Unix
	1.3.5.1. Typical configure Options
	1.3.5.2. Additional configure Options
	1.3.5.3. Building and Compilation
	1.3.5.4. Building Shared Libraries
	1.3.5.5. Installing Driver Libraries
	1.3.5.6. Testing Connector/ODBC on Unix
	1.3.5.7. Building Connector/ODBC from Source on Mac OS X
	1.3.5.8. Building Connector/ODBC from Source on HP-UX
	1.3.5.9. Building Connector/ODBC from Source on AIX

	1.3.6. Installing Connector/ODBC from the Development Source Tree

	1.4. Connector/ODBC Configuration
	1.4.1. Data Source Names
	1.4.2. Connector/ODBC Connection Parameters
	1.4.3. Configuring a Connector/ODBC DSN on Windows
	1.4.3.1. Configuring a Connector/ODBC 3.51 DSN on Windows
	1.4.3.2. Configuring a Connector/ODBC 5.1 DSN on Windows
	1.4.3.3. Errors and Debugging

	1.4.4. Configuring a Connector/ODBC DSN on Mac OS X
	1.4.5. Configuring a Connector/ODBC DSN on Unix
	1.4.6. Connecting Without a Predefined DSN
	1.4.7. ODBC Connection Pooling
	1.4.8. Getting an ODBC Trace File
	1.4.8.1. Enabling ODBC Tracing on Windows
	1.4.8.2. Enabling ODBC Tracing on Mac OS X
	1.4.8.3. Enabling ODBC Tracing on Unix
	1.4.8.4. Enabling a Connector/ODBC Log

	1.5. Connector/ODBC Examples
	1.5.1. Basic Connector/ODBC Application Steps
	1.5.2. Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC
	1.5.3. Connector/ODBC and Third-Party ODBC Tools
	1.5.4. Using Connector/ODBC with Microsoft Access
	1.5.4.1. Exporting Access Data to MySQL
	1.5.4.2. Importing MySQL Data to Access
	1.5.4.3. Using Microsoft Access as a Front-end to MySQL

	1.5.5. Using Connector/ODBC with Microsoft Word or Excel
	1.5.6. Using Connector/ODBC with Crystal Reports
	1.5.7. Connector/ODBC Programming
	1.5.7.1. Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO
	1.5.7.1.1. ADO: rs.addNew, rs.delete, and rs.update
	1.5.7.1.2. DAO: rs.addNew, rs.update, and Scrolling
	1.5.7.1.3. RDO: rs.addNew and rs.update

	1.5.7.2. Using Connector/ODBC with .NET
	1.5.7.2.1. Using Connector/ODBC with ODBC.NET and C# (C sharp)
	1.5.7.2.2. Using Connector/ODBC with ODBC.NET and Visual Basic

	1.6. Connector/ODBC Reference
	1.6.1. Connector/ODBC API Reference
	1.6.2. Connector/ODBC Data Types
	1.6.3. Connector/ODBC Error Codes

	1.7. Connector/ODBC Notes and Tips
	1.7.1. Connector/ODBC General Functionality
	1.7.1.1. Obtaining Auto-Increment Values
	1.7.1.2. Dynamic Cursor Support
	1.7.1.3. Connector/ODBC Performance
	1.7.1.4. Setting ODBC Query Timeout in Windows

	1.7.2. Connector/ODBC Application Specific Tips
	1.7.2.1. Using Connector/ODBC with Microsoft Applications
	1.7.2.1.1. Microsoft Access
	1.7.2.1.2. Microsoft Excel and Column Types
	1.7.2.1.3. Microsoft Visual Basic
	1.7.2.1.4. Microsoft Visual InterDev
	1.7.2.1.5. Visual Objects
	1.7.2.1.6. Microsoft ADO
	1.7.2.1.7. Using Connector/ODBC with Active Server Pages (ASP)
	1.7.2.1.8. Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP

	1.7.2.2. Using Connector/ODBC with Borland Applications
	1.7.2.2.1. Using Connector/ODBC with Borland Builder 4
	1.7.2.2.2. Using Connector/ODBC with Delphi
	1.7.2.2.3. Using Connector/ODBC with C++ Builder

	1.7.2.3. Using Connector/ODBC with ColdFusion
	1.7.2.4. Using Connector/ODBC with OpenOffice.org
	1.7.2.5. Using Connector/ODBC with Sambar Server
	1.7.2.6. Using Connector/ODBC with Pervasive Software DataJunction
	1.7.2.7. Using Connector/ODBC with SunSystems Vision

	1.7.3. Connector/ODBC Errors and Resolutions (FAQ)

	1.8. Connector/ODBC Support
	1.8.1. Connector/ODBC Community Support
	1.8.2. How to Report Connector/ODBC Problems or Bugs
	1.8.3. How to Submit a Connector/ODBC Patch
	1.8.4. Connector/ODBC Change History
	1.8.5. Credits

	Chapter 2. MySQL Connector/NET
	2.1. Connector/NET Versions
	2.2. Connector/NET Installation
	2.2.1. Installing Connector/NET on Windows
	2.2.1.1. Installing Connector/NET using the Installer
	2.2.1.2. Installing Connector/NET using the Zip packages

	2.2.2. Installing Connector/NET on Unix with Mono
	2.2.3. Installing Connector/NET from the source code

	2.3. Visual Studio User Guide
	2.3.1. Making a connection
	2.3.2. Editing Tables
	2.3.2.1. Column Editor
	2.3.2.2. Editing Indexes
	2.3.2.3. Editing Foreign Keys
	2.3.2.4. Column Properties
	2.3.2.5. Table Properties

	2.3.3. Editing Views
	2.3.4. Editing Stored Procedures and Functions
	2.3.5. Editing Triggers
	2.3.6. Editing User Defined Functions (UDF)
	2.3.7. Cloning Database Objects
	2.3.8. Dropping Database Objects
	2.3.9. Using the ADO.NET Entity Framework
	2.3.9.1. Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source
	2.3.9.2. Tutorial: Databinding in ASP.NET using LINQ on Entities

	2.4. Connector/NET Programming
	2.4.1. Tutorial: An Introduction to Connector/NET Programming
	2.4.1.1. The MySqlConnection Object
	2.4.1.2. The MySqlCommand Object
	2.4.1.3. Working with Decoupled Data
	2.4.1.4. Working with Parameters
	2.4.1.5. Working with Stored Procedures

	2.4.2. Connecting to MySQL Using Connector/NET
	2.4.3. Creating a Connection String
	2.4.3.1. Opening a Connection
	2.4.3.2. Handling Connection Errors

	2.4.4. Using Connector/NET with Connection Pooling
	2.4.5. Connector/NET Connection String Options Reference
	2.4.6. Using the Connector/NET with Prepared Statements
	2.4.6.1. Preparing Statements in Connector/NET

	2.4.7. Accessing Stored Procedures with Connector/NET
	2.4.7.1. Creating Stored Procedures from Connector/NET
	2.4.7.2. Calling a Stored Procedure from Connector/NET

	2.4.8. Handling BLOB Data With Connector/NET
	2.4.8.1. Preparing the MySQL Server
	2.4.8.2. Writing a File to the Database
	2.4.8.3. Reading a BLOB from the Database to a File on Disk

	2.4.9. Using Connector/NET with Crystal Reports
	2.4.9.1. Creating a Data Source
	2.4.9.2. Creating the Report
	2.4.9.3. Displaying the Report

	2.4.10. Handling Date and Time Information in Connector/NET
	2.4.10.1. Problems when Using Invalid Dates
	2.4.10.2. Restricting Invalid Dates
	2.4.10.3. Handling Invalid Dates
	2.4.10.4. Handling NULL Dates

	2.4.11. ASP.NET Provider Model
	2.4.12. Binary/Nonbinary Issues
	2.4.13. Character Sets
	2.4.14. Working with medium trust

	2.5. Connector/NET Support
	2.5.1. Connector/NET Community Support
	2.5.2. How to report Connector/NET Problems or Bugs
	2.5.3. Connector/NET Change History

	2.6. Connector/NET FAQ

	Chapter 3. MySQL Visual Studio Plugin
	3.1. Installing the MySQL Visual Studio Plugin
	3.2. Creating a connection to the MySQL server
	3.3. Using the MySQL Visual Studio Plugin
	3.3.1. Editing Tables
	3.3.1.1. Column Editor
	3.3.1.2. Indexes tab
	3.3.1.3. Foreign Keys tab
	3.3.1.4. Column Details tab
	3.3.1.5. Table Properties window

	3.3.2. Editing Table Data
	3.3.3. Editing Views
	3.3.4. Editing Stored Procedures and Functions
	3.3.5. Editing Triggers
	3.3.6. Editing User Defined Functions (UDF)
	3.3.7. Dropping database objects
	3.3.8. Cloning database objects

	3.4. Visual Studio Plugin Support
	3.4.1. Visual Studio Plugin FAQ

	Chapter 4. MySQL Connector/J
	4.1. Connector/J Versions
	4.1.1. Java Versions Supported

	4.2. Connector/J Installation
	4.2.1. Installing Connector/J from a Binary Distribution
	4.2.2. Installing the Driver and Configuring the CLASSPATH
	4.2.3. Upgrading from an Older Version
	4.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1
	4.2.3.2. Upgrading to MySQL Connector/J 5.1.x
	4.2.3.3. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

	4.2.4. Installing from the Development Source Tree

	4.3. Connector/J Examples
	4.4. Connector/J (JDBC) Reference
	4.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	4.4.2. JDBC API Implementation Notes
	4.4.3. Java, JDBC and MySQL Types
	4.4.4. Using Character Sets and Unicode
	4.4.5. Connecting Securely Using SSL
	4.4.6. Using Master/Slave Replication with ReplicationConnection
	4.4.7. Mapping MySQL Error Numbers to SQLStates

	4.5. Connector/J Notes and Tips
	4.5.1. Basic JDBC Concepts
	4.5.1.1. Connecting to MySQL Using the DriverManager Interface
	4.5.1.2. Using Statements to Execute SQL
	4.5.1.3. Using CallableStatements to Execute Stored Procedures
	4.5.1.4. Retrieving AUTO_INCREMENT Column Values

	4.5.2. Using Connector/J with J2EE and Other Java Frameworks
	4.5.2.1. General J2EE Concepts
	4.5.2.1.1. Understanding Connection Pooling

	4.5.2.2. Using Connector/J with Tomcat
	4.5.2.3. Using Connector/J with JBoss
	4.5.2.4. Using Connector/J with Spring
	4.5.2.4.1. Using JdbcTemplate
	4.5.2.4.2. Transactional JDBC Access
	4.5.2.4.3. Connection Pooling

	4.5.2.5. Using Connector/J with GlassFish

	4.5.3. Common Problems and Solutions

	4.6. Connector/J Support
	4.6.1. Connector/J Community Support
	4.6.2. How to Report Connector/J Bugs or Problems
	4.6.3. Connector/J Change History

	Chapter 5. MySQL Connector/MXJ
	5.1. Connector/MXJ Overview
	5.2. Connector/MXJ Versions
	5.3. Connector/MXJ Installation
	5.3.1. Supported Platforms
	5.3.2. Connector/MXJ Base Installation
	5.3.3. Connector/MXJ Quick Start Guide
	5.3.4. Deploying Connector/MXJ using Driver Launch
	5.3.5. Deploying Connector/MXJ within JBoss
	5.3.6. Verifying Installation using JUnit
	5.3.6.1. JUnit Test Requirements
	5.3.6.2. Running the JUnit Tests

	5.4. Connector/MXJ Configuration
	5.4.1. Running as part of the JDBC Driver
	5.4.2. Running within a Java Object
	5.4.3. Setting server options

	5.5. Connector/MXJ Reference
	5.5.1. MysqldResource Constructors
	5.5.2. MysqldResource Methods

	5.6. Connector/MXJ Notes and Tips
	5.6.1. Creating your own Connector/MXJ Package
	5.6.2. Deploying Connector/MXJ with a pre-configured database
	5.6.3. Running within a JMX Agent (custom)
	5.6.4. Deployment in a standard JMX Agent environment (JBoss)

	5.7. Connector/MXJ Support
	5.7.1. Connector/MXJ Community Support
	5.7.2. How to Report Connector/MXJ Problems
	5.7.3. Connector/MXJ Change History

	Chapter 6. MySQL Connector/C++
	6.1. MySQL Connector/C++ Binary Installation
	6.2. MySQL Connector/C++ Source Installation
	6.2.1. Building source on Unix, Solaris and Mac OS X
	6.2.2. Building on Windows

	6.3. MySQL Connector/C++ Building Windows applications with Microsoft Visual Studio
	6.4. MySQL Connector/C++ Building Linux applications with NetBeans
	6.5. MySQL Connector/C++ Getting Started: Usage Examples
	6.5.1. MySQL Connector/C++ Connecting to MySQL
	6.5.2. MySQL Connector/C++ Running a simple query
	6.5.3. MySQL Connector/C++ Fetching results
	6.5.4. MySQL Connector/C++ Using Prepared Statements
	6.5.5. MySQL Connector/C++ Complete Example 1
	6.5.6. MySQL Connector/C++ Complete Example 2

	6.6. MySQL Connector/C++ Debug Tracing
	6.7. MySQL Connector/C++ References
	6.8. MySQL Connector/C++ Known Bugs and Issues
	6.9. MySQL Connector/C++ Feature requests
	6.10. MySQL Connector/C++ Support
	6.11. MySQL Connector/C++ FAQ

	Chapter 7. MySQL Connector/OpenOffice.org
	7.1. Installation
	7.2. Getting Started: Connecting to MySQL
	7.3. Getting Started: Usage Examples
	7.4. References
	7.5. Known Bugs
	7.6. Contact

	Chapter 8. MySQL PHP API
	8.1. MySQL
	8.1.1. Installing/Configuring
	8.1.1.1. Requirements
	8.1.1.2. Installation
	8.1.1.2.1. Installation on Linux Systems
	8.1.1.2.1.1. PHP 4
	8.1.1.2.1.2. PHP 5+

	8.1.1.2.2. Installation on Windows Systems
	8.1.1.2.2.1. PHP 4
	8.1.1.2.2.2. PHP 5+

	8.1.1.2.3. MySQL Installation Notes

	8.1.1.3. Runtime Configuration
	8.1.1.4. Resource Types

	8.1.2. Predefined Constants
	8.1.3. Examples
	8.1.3.1. Basic

	8.1.4. MySQL Functions
	8.1.4.1. mysql_affected_rows
	8.1.4.2. mysql_change_user
	8.1.4.3. mysql_client_encoding
	8.1.4.4. mysql_close
	8.1.4.5. mysql_connect
	8.1.4.6. mysql_create_db
	8.1.4.7. mysql_data_seek
	8.1.4.8. mysql_db_name
	8.1.4.9. mysql_db_query
	8.1.4.10. mysql_drop_db
	8.1.4.11. mysql_errno
	8.1.4.12. mysql_error
	8.1.4.13. mysql_escape_string
	8.1.4.14. mysql_fetch_array
	8.1.4.15. mysql_fetch_assoc
	8.1.4.16. mysql_fetch_field
	8.1.4.17. mysql_fetch_lengths
	8.1.4.18. mysql_fetch_object
	8.1.4.19. mysql_fetch_row
	8.1.4.20. mysql_field_flags
	8.1.4.21. mysql_field_len
	8.1.4.22. mysql_field_name
	8.1.4.23. mysql_field_seek
	8.1.4.24. mysql_field_table
	8.1.4.25. mysql_field_type
	8.1.4.26. mysql_free_result
	8.1.4.27. mysql_get_client_info
	8.1.4.28. mysql_get_host_info
	8.1.4.29. mysql_get_proto_info
	8.1.4.30. mysql_get_server_info
	8.1.4.31. mysql_info
	8.1.4.32. mysql_insert_id
	8.1.4.33. mysql_list_dbs
	8.1.4.34. mysql_list_fields
	8.1.4.35. mysql_list_processes
	8.1.4.36. mysql_list_tables
	8.1.4.37. mysql_num_fields
	8.1.4.38. mysql_num_rows
	8.1.4.39. mysql_pconnect
	8.1.4.40. mysql_ping
	8.1.4.41. mysql_query
	8.1.4.42. mysql_real_escape_string
	8.1.4.43. mysql_result
	8.1.4.44. mysql_select_db
	8.1.4.45. mysql_set_charset
	8.1.4.46. mysql_stat
	8.1.4.47. mysql_tablename
	8.1.4.48. mysql_thread_id
	8.1.4.49. mysql_unbuffered_query

	8.2. MySQL Improved Extension (Mysqli)
	8.2.1. Examples
	8.2.2. Overview
	8.2.3. Installing/Configuring
	8.2.3.1. Requirements
	8.2.3.2. Installation
	8.2.3.2.1. Installation on Windows Systems

	8.2.3.3. Runtime Configuration
	8.2.3.4. Resource Types

	8.2.4. Predefined Constants
	8.2.5. The MySQLi Extension Function Summary
	8.2.6. The MySQLi class (MySQLi)
	8.2.6.1. mysqli->affected_rows, mysqli_affected_rows
	8.2.6.2. mysqli::autocommit, mysqli_autocommit
	8.2.6.3. mysqli::change_user, mysqli_change_user
	8.2.6.4. mysqli::character_set_name, mysqli_character_set_name
	8.2.6.5. mysqli::close, mysqli_close
	8.2.6.6. mysqli::commit, mysqli_commit
	8.2.6.7. mysqli->connect_errno, mysqli_connect_errno
	8.2.6.8. mysqli->connect_error, mysqli_connect_error
	8.2.6.9. mysqli::__construct, mysqli_connect
	8.2.6.10. mysqli::debug, mysqli_debug
	8.2.6.11. mysqli::dump_debug_info, mysqli_dump_debug_info
	8.2.6.12. mysqli->errno, mysqli_errno
	8.2.6.13. mysqli->error, mysqli_error
	8.2.6.14. mysqli->field_count, mysqli_field_count
	8.2.6.15. mysqli::get_charset, mysqli_get_charset
	8.2.6.16. mysqli::get_client_info, mysqli_get_client_info
	8.2.6.17. mysqli::get_client_version, mysqli_get_client_version
	8.2.6.18. mysqli->host_info, mysqli_get_host_info
	8.2.6.19. mysqli->protocol_version, mysqli_get_proto_info
	8.2.6.20. mysqli->server_info, mysqli_get_server_info
	8.2.6.21. mysqli->server_version, mysqli_get_server_version
	8.2.6.22. mysqli::get_warnings, mysqli_get_warnings
	8.2.6.23. mysqli->info, mysqli_info
	8.2.6.24. mysqli::init, mysqli_init
	8.2.6.25. mysqli->insert_id, mysqli_insert_id
	8.2.6.26. mysqli::kill, mysqli_kill
	8.2.6.27. mysqli::more_results, mysqli_more_results
	8.2.6.28. mysqli::multi_query, mysqli_multi_query
	8.2.6.29. mysqli::next_result, mysqli_next_result
	8.2.6.30. mysqli::options, mysqli_options
	8.2.6.31. mysqli::ping, mysqli_ping
	8.2.6.32. mysqli::prepare, mysqli_prepare
	8.2.6.33. mysqli::query, mysqli_query
	8.2.6.34. mysqli::real_connect, mysqli_real_connect
	8.2.6.35. mysqli::real_escape_string, mysqli_real_escape_string
	8.2.6.36. mysqli::real_query, mysqli_real_query
	8.2.6.37. mysqli::rollback, mysqli_rollback
	8.2.6.38. mysqli::select_db, mysqli_select_db
	8.2.6.39. mysqli::set_charset, mysqli_set_charset
	8.2.6.40. mysqli::set_local_infile_default, mysqli_set_local_infile_default
	8.2.6.41. mysqli::set_local_infile_handler, mysqli_set_local_infile_handler
	8.2.6.42. mysqli->sqlstate, mysqli_sqlstate
	8.2.6.43. mysqli::ssl_set, mysqli_ssl_set
	8.2.6.44. mysqli::stat, mysqli_stat
	8.2.6.45. mysqli::stmt_init, mysqli_stmt_init
	8.2.6.46. mysqli::store_result, mysqli_store_result
	8.2.6.47. mysqli::thread_id, mysqli_thread_id
	8.2.6.48. mysqli::thread_safe, mysqli_thread_safe
	8.2.6.49. mysqli::use_result, mysqli_use_result
	8.2.6.50. mysqli::warning_count, mysqli_warning_count

	8.2.7. The MySQLi_STMT class (MySQLi_STMT)
	8.2.7.1. mysqli_stmt->affected_rows, mysqli_stmt_affected_rows
	8.2.7.2. mysqli_stmt::attr_get, mysqli_stmt_attr_get
	8.2.7.3. mysqli_stmt::attr_set, mysqli_stmt_attr_set
	8.2.7.4. mysqli_stmt::bind_param, mysqli_stmt_bind_param
	8.2.7.5. mysqli_stmt::bind_result, mysqli_stmt_bind_result
	8.2.7.6. mysqli_stmt::close, mysqli_stmt_close
	8.2.7.7. mysqli_stmt::data_seek, mysqli_stmt_data_seek
	8.2.7.8. mysqli_stmt->errno, mysqli_stmt_errno
	8.2.7.9. mysqli_stmt->error, mysqli_stmt_error
	8.2.7.10. mysqli_stmt->execute, mysqli_stmt_execute
	8.2.7.11. mysqli_stmt::fetch, mysqli_stmt_fetch
	8.2.7.12. mysqli_stmt->field_count, mysqli_stmt_field_count
	8.2.7.13. stmt::free_result, mysqli_stmt_free_result
	8.2.7.14. mysqli_stmt::get_warnings, mysqli_stmt_get_warnings
	8.2.7.15. mysqli_stmt->insert_id, mysqli_stmt_insert_id
	8.2.7.16. mysqli_stmt::num_rows, mysqli_stmt_num_rows
	8.2.7.17. mysqli_stmt->param_count, mysqli_stmt_param_count
	8.2.7.18. mysqli_stmt::prepare, mysqli_stmt_prepare
	8.2.7.19. mysqli_stmt::reset, mysqli_stmt_reset
	8.2.7.20. mysqli_stmt::result_metadata, mysqli_stmt_result_metadata
	8.2.7.21. mysqli_stmt::send_long_data, mysqli_stmt_send_long_data
	8.2.7.22. mysqli_stmt::sqlstate, mysqli_stmt_sqlstate
	8.2.7.23. mysqli_stmt::store_result, mysqli_stmt_store_result

	8.2.8. The MySQLi_Result class (MySQLi_Result)
	8.2.8.1. mysqli_result->current_field, mysqli_field_tell
	8.2.8.2. mysqli_result::data_seek, mysqli_data_seek
	8.2.8.3. mysqli_result::fetch_all, mysqli_fetch_all
	8.2.8.4. mysqli_result::fetch_array, mysqli_fetch_array
	8.2.8.5. mysqli_result::fetch_assoc, mysqli_fetch_assoc
	8.2.8.6. mysqli_result::fetch_field_direct, mysqli_fetch_field_direct
	8.2.8.7. mysqli_result::fetch_field, mysqli_fetch_field
	8.2.8.8. mysqli_result::fetch_fields, mysqli_fetch_fields
	8.2.8.9. mysqli_result::fetch_object, mysqli_fetch_object
	8.2.8.10. mysqli_result::fetch_row, mysqli_fetch_row
	8.2.8.11. mysqli_result->field_count, mysqli_num_fields
	8.2.8.12. mysqli_result::field_seek, mysqli_field_seek
	8.2.8.13. mysqli_result::free, mysqli_free_result
	8.2.8.14. mysqli_result->lengths, mysqli_fetch_lengths
	8.2.8.15. mysqli_result->num_rows, mysqli_num_rows

	8.2.9. The MySQLi_Driver class (MySQLi_Driver)
	8.2.9.1. mysqli_driver::embedded_server_end, mysqli_embedded_server_end
	8.2.9.2. mysqli_driver::embedded_server_start, mysqli_embedded_server_start

	8.2.10. Aliases and deprecated Mysqli Functions
	8.2.10.1. mysqli_bind_param
	8.2.10.2. mysqli_bind_result
	8.2.10.3. mysqli_client_encoding
	8.2.10.4. mysqli_disable_reads_from_master, mysqli->disable_reads_from_master
	8.2.10.5. mysqli_disable_rpl_parse
	8.2.10.6. mysqli_enable_reads_from_master
	8.2.10.7. mysqli_enable_rpl_parse
	8.2.10.8. mysqli_escape_string
	8.2.10.9. mysqli_execute
	8.2.10.10. mysqli_fetch
	8.2.10.11. mysqli_get_metadata
	8.2.10.12. mysqli_master_query
	8.2.10.13. mysqli_param_count
	8.2.10.14. mysqli_report
	8.2.10.15. mysqli_rpl_parse_enabled
	8.2.10.16. mysqli_rpl_probe
	8.2.10.17. mysqli_rpl_query_type, mysqli->rpl_query_type
	8.2.10.18. mysqli_send_long_data
	8.2.10.19. mysqli_send_query, mysqli->send_query
	8.2.10.20. mysqli_set_opt
	8.2.10.21. mysqli_slave_query

	8.3. MySQL Functions (PDO_MYSQL)
	8.3.1. PDO_MYSQL DSN

	8.4. Connector/PHP
	8.5. Common Problems with MySQL and PHP
	8.6. Enabling Both mysql and mysqli in PHP

	Appendix A. MySQL Connector/ODBC (MyODBC) Change History
	A.1. Changes in MySQL Connector/ODBC 5.1.6 (Not yet released)
	A.2. Changes in MySQL Connector/ODBC 5.1.5 (18 August 2008)
	A.3. Changes in MySQL Connector/ODBC 5.1.4 (15 April 2008)
	A.4. Changes in MySQL Connector/ODBC 5.1.3 (26 March 2008)
	A.5. Changes in MySQL Connector/ODBC 5.1.2 (13 February 2008)
	A.6. Changes in MySQL Connector/ODBC 5.1.1 (13 December 2007)
	A.7. Changes in MySQL Connector/ODBC 5.1.0 (10 September 2007)
	A.8. Changes in MySQL Connector/ODBC 5.0.12 (Never released)
	A.9. Changes in MySQL Connector/ODBC 5.0.11 (31 January 2007)
	A.10. Changes in MySQL Connector/ODBC 5.0.10 (14 December 2006)
	A.11. Changes in MySQL Connector/ODBC 5.0.9 (22 November 2006)
	A.12. Changes in MySQL Connector/ODBC 5.0.8 (17 November 2006)
	A.13. Changes in MySQL Connector/ODBC 5.0.7 (08 November 2006)
	A.14. Changes in MySQL Connector/ODBC 5.0.6 (03 November 2006)
	A.15. Changes in MySQL Connector/ODBC 5.0.5 (17 October 2006)
	A.16. Changes in Connector/ODBC 5.0.3 (Connector/ODBC 5.0 Alpha 3) (20 June 2006)
	A.17. Changes in Connector/ODBC 5.0.2 (Never released)
	A.18. Changes in Connector/ODBC 5.0.1 (Connector/ODBC 5.0 Alpha 2) (05 June 2006)
	A.19. Changes in MySQL Connector/ODBC 3.51.27 (20 November 2008)
	A.20. Changes in MySQL Connector/ODBC 3.51.26 (07 July 2008)
	A.21. Changes in MySQL Connector/ODBC 3.51.25 (11 April 2008)
	A.22. Changes in MySQL Connector/ODBC 3.51.24 (14 March 2008)
	A.23. Changes in MySQL Connector/ODBC 3.51.23 (09 January 2008)
	A.24. Changes in MySQL Connector/ODBC 3.51.22 (13 November 2007)
	A.25. Changes in MySQL Connector/ODBC 3.51.21 (08 October 2007)
	A.26. Changes in MySQL Connector/ODBC 3.51.20 (10 September 2007)
	A.27. Changes in MySQL Connector/ODBC 3.51.19 (10 August 2007)
	A.28. Changes in MySQL Connector/ODBC 3.51.18 (08 August 2007)
	A.29. Changes in MySQL Connector/ODBC 3.51.17 (14 July 2007)
	A.30. Changes in MySQL Connector/ODBC 3.51.16 (14 June 2007)
	A.31. Changes in MySQL Connector/ODBC 3.51.15 (07 May 2007)
	A.32. Changes in MySQL Connector/ODBC 3.51.14 (08 March 2007)
	A.33. Changes in MySQL Connector/ODBC 3.51.13 (Never released)
	A.34. Changes in MySQL Connector/ODBC 3.51.12 (11 February 2005)
	A.35. Changes in MySQL Connector/ODBC 3.51.11 (28 January 2005)

	Appendix B. MySQL Connector/NET Change History
	B.1. Changes in MySQL Connector/NET 6.0.4 (Not yet released beta)
	B.2. Changes in MySQL Connector/NET 6.0.3 (28 April 2009 beta)
	B.3. Changes in MySQL Connector/NET 6.0.2 (07 April 2009 beta)
	B.4. Changes in MySQL Connector/NET 6.0.1 (02 April 2009 beta)
	B.5. Changes in MySQL Connector/NET 6.0.0 (02 March 2009 alpha)
	B.6. Changes in MySQL Connector/NET 5.3.0 (Not yet released)
	B.7. Changes in MySQL Connector/NET 5.2.7 (Not yet released)
	B.8. Changes in MySQL Connector/NET 5.2.6 (28 April 2009)
	B.9. Changes in MySQL Connector/NET 5.2.5 (19 November 2008)
	B.10. Changes in MySQL Connector/NET 5.2.4 (13 November 2008)
	B.11. Changes in MySQL Connector/NET 5.2.3 (19 August 2008)
	B.12. Changes in MySQL Connector/NET 5.2.2 (12 May 2008)
	B.13. Changes in MySQL Connector/NET 5.2.1 (27 February 2008)
	B.14. Changes in MySQL Connector/NET 5.2.0 (11 February 2008)
	B.15. Changes in MySQL Connector/NET 5.1.8 (Not yet released)
	B.16. Changes in MySQL Connector/NET 5.1.7 (21 August 2008)
	B.17. Changes in MySQL Connector/NET 5.1.6 (12 May 2008)
	B.18. Changes in MySQL Connector/NET 5.1.5 (Not yet released)
	B.19. Changes in MySQL Connector/NET 5.1.4 (20 November 2007)
	B.20. Changes in MySQL Connector/NET 5.1.3 (21 September 2007 beta)
	B.21. Changes in MySQL Connector/NET 5.1.2 (18 June 2007)
	B.22. Changes in MySQL Connector/NET 5.1.1 (23 May 2007)
	B.23. Changes in MySQL Connector/NET 5.1.0 (01 May 2007)
	B.24. Changes in MySQL Connector/NET 5.0.10 (Not yet released)
	B.25. Changes in MySQL Connector/NET 5.0.9 (Not yet released)
	B.26. Changes in MySQL Connector/NET 5.0.8 (21 August 2007)
	B.27. Changes in MySQL Connector/NET 5.0.7 (18 May 2007)
	B.28. Changes in MySQL Connector/NET 5.0.6 (22 March 2007)
	B.29. Changes in MySQL Connector/NET 5.0.5 (07 March 2007)
	B.30. Changes in MySQL Connector/NET 5.0.4 (Not released)
	B.31. Changes in MySQL Connector/NET 5.0.3 (05 January 2007)
	B.32. Changes in MySQL Connector/NET 5.0.2 (06 November 2006)
	B.33. Changes in MySQL Connector/NET 5.0.1 (01 October 2006)
	B.34. Changes in MySQL Connector/NET 5.0.0 (08 August 2006)
	B.35. Changes in MySQL Connector/NET 1.0.11 (Not yet released)
	B.36. Changes in MySQL Connector/NET 1.0.10 (24 August 2007)
	B.37. Changes in MySQL Connector/NET 1.0.9 (02 February 2007)
	B.38. Changes in MySQL Connector/NET 1.0.8 (20 October 2006)
	B.39. Changes in MySQL Connector/NET 1.0.7 (21 November 2005)
	B.40. Changes in MySQL Connector/NET 1.0.6 (03 October 2005)
	B.41. Changes in MySQL Connector/NET 1.0.5 (29 August 2005)
	B.42. Changes in MySQL Connector/NET 1.0.4 (20 January 2005)
	B.43. Changes in MySQL Connector/NET 1.0.3 (12 October 2004 gamma)
	B.44. Changes in MySQL Connector/NET 1.0.2 (15 November 2004 gamma)
	B.45. Changes in MySQL Connector/NET 1.0.1 (27 October 2004 beta)
	B.46. Changes in MySQL Connector/NET 1.0.0 (01 September 2004)
	B.47. Changes in MySQL Connector/NET Version 0.9.0 (30 August 2004)
	B.48. Changes in MySQL Connector/NET Version 0.76
	B.49. Changes in MySQL Connector/NET Version 0.75
	B.50. Changes in MySQL Connector/NET Version 0.74
	B.51. Changes in MySQL Connector/NET Version 0.71
	B.52. Changes in MySQL Connector/NET Version 0.70
	B.53. Changes in MySQL Connector/NET Version 0.68
	B.54. Changes in MySQL Connector/NET Version 0.65
	B.55. Changes in MySQL Connector/NET Version 0.60
	B.56. Changes in MySQL Connector/NET Version 0.50

	Appendix C. MySQL Visual Studio Plugin Change History
	C.1. Changes in MySQL Visual Studio Plugin 1.0.3 (Not yet released)
	C.2. Changes in MySQL Visual Studio Plugin 1.0.2 (Not yet released)
	C.3. Changes in MySQL Visual Studio Plugin 1.0.1 (4 October 2006)
	C.4. Changes in MySQL Visual Studio Plugin 1.0.0 (4 October 2006)

	Appendix D. MySQL Connector/J Change History
	D.1. Changes in MySQL Connector/J 5.1.x
	D.1.1. Changes in MySQL Connector/J 5.1.8 (Not yet released)
	D.1.2. Changes in MySQL Connector/J 5.1.7 (21 October 2008)
	D.1.3. Changes in MySQL Connector/J 5.1.6 (07 March 2008)
	D.1.4. Changes in MySQL Connector/J 5.1.5 (09 October 2007)
	D.1.5. Changes in MySQL Connector/J 5.1.4 (Not Released)
	D.1.6. Changes in MySQL Connector/J 5.1.3 (10 September 2007)
	D.1.7. Changes in MySQL Connector/J 5.1.2 (29 June 2007)
	D.1.8. Changes in MySQL Connector/J 5.1.1 (22 June 2007)
	D.1.9. Changes in MySQL Connector/J 5.1.0 (11 April 2007)

	D.2. Changes in MySQL Connector/J 5.0.x
	D.2.1. Changes in MySQL Connector/J 5.0.8 (09 October 2007)
	D.2.2. Changes in MySQL Connector/J 5.0.7 (20 July 2007)
	D.2.3. Changes in MySQL Connector/J 5.0.6 (15 May 2007)
	D.2.4. Changes in MySQL Connector/J 5.0.5 (02 March 2007)
	D.2.5. Changes in MySQL Connector/J 5.0.4 (20 October 2006)
	D.2.6. Changes in MySQL Connector/J 5.0.3 (26 July 2006 beta)
	D.2.7. Changes in MySQL Connector/J 5.0.2 (11 July 2006)
	D.2.8. Changes in MySQL Connector/J 5.0.1 (Not Released)
	D.2.9. Changes in MySQL Connector/J 5.0.0 (22 December 2005)

	D.3. Changes in MySQL Connector/J 3.1.x
	D.3.1. Changes in MySQL Connector/J 3.1.15 (Not yet released)
	D.3.2. Changes in MySQL Connector/J 3.1.14 (10-19-2006)
	D.3.3. Changes in MySQL Connector/J 3.1.13 (26 May 2006)
	D.3.4. Changes in MySQL Connector/J 3.1.12 (30 November 2005)
	D.3.5. Changes in MySQL Connector/J 3.1.11 (07 October 2005)
	D.3.6. Changes in MySQL Connector/J 3.1.10 (23 June 2005)
	D.3.7. Changes in MySQL Connector/J 3.1.9 (22 June 2005)
	D.3.8. Changes in MySQL Connector/J 3.1.8 (14 April 2005)
	D.3.9. Changes in MySQL Connector/J 3.1.7 (18 February 2005)
	D.3.10. Changes in MySQL Connector/J 3.1.6 (23 December 2004)
	D.3.11. Changes in MySQL Connector/J 3.1.5 (02 December 2004)
	D.3.12. Changes in MySQL Connector/J 3.1.4 (04 September 2004)
	D.3.13. Changes in MySQL Connector/J 3.1.3 (07 July 2004)
	D.3.14. Changes in MySQL Connector/J 3.1.2 (09 June 2004)
	D.3.15. Changes in MySQL Connector/J 3.1.1 (14 February 2004 alpha)
	D.3.16. Changes in MySQL Connector/J 3.1.0 (18 February 2003 alpha)

	D.4. Changes in MySQL Connector/J 3.0.x
	D.4.1. Changes in MySQL Connector/J 3.0.17 (23 June 2005)
	D.4.2. Changes in MySQL Connector/J 3.0.16 (15 November 2004)
	D.4.3. Changes in MySQL Connector/J 3.0.15 (04 September 2004)
	D.4.4. Changes in MySQL Connector/J 3.0.14 (28 May 2004)
	D.4.5. Changes in MySQL Connector/J 3.0.13 (27 May 2004)
	D.4.6. Changes in MySQL Connector/J 3.0.12 (18 May 2004)
	D.4.7. Changes in MySQL Connector/J 3.0.11 (19 February 2004)
	D.4.8. Changes in MySQL Connector/J 3.0.10 (13 January 2004)
	D.4.9. Changes in MySQL Connector/J 3.0.9 (07 October 2003)
	D.4.10. Changes in MySQL Connector/J 3.0.8 (23 May 2003)
	D.4.11. Changes in MySQL Connector/J 3.0.7 (08 April 2003)
	D.4.12. Changes in MySQL Connector/J 3.0.6 (18 February 2003)
	D.4.13. Changes in MySQL Connector/J 3.0.5 (22 January 2003)
	D.4.14. Changes in MySQL Connector/J 3.0.4 (06 January 2003)
	D.4.15. Changes in MySQL Connector/J 3.0.3 (17 December 2002)
	D.4.16. Changes in MySQL Connector/J 3.0.2 (08 November 2002)
	D.4.17. Changes in MySQL Connector/J 3.0.1 (21 September 2002)
	D.4.18. Changes in MySQL Connector/J 3.0.0 (31 July 2002)

	D.5. Changes in MySQL Connector/J 2.0.x
	D.5.1. Changes in MySQL Connector/J 2.0.14 (16 May 2002)
	D.5.2. Changes in MySQL Connector/J 2.0.13 (24 April 2002)
	D.5.3. Changes in MySQL Connector/J 2.0.12 (07 April 2002)
	D.5.4. Changes in MySQL Connector/J 2.0.11 (27 January 2002)
	D.5.5. Changes in MySQL Connector/J 2.0.10 (24 January 2002)
	D.5.6. Changes in MySQL Connector/J 2.0.9 (13 January 2002)
	D.5.7. Changes in MySQL Connector/J 2.0.8 (25 November 2001)
	D.5.8. Changes in MySQL Connector/J 2.0.7 (24 October 2001)
	D.5.9. Changes in MySQL Connector/J 2.0.6 (16 June 2001)
	D.5.10. Changes in MySQL Connector/J 2.0.5 (13 June 2001)
	D.5.11. Changes in MySQL Connector/J 2.0.3 (03 December 2000)
	D.5.12. Changes in MySQL Connector/J 2.0.1 (06 April 2000)
	D.5.13. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)
	D.5.14. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)
	D.5.15. Changes in MySQL Connector/J 2.0.0pre (17 August 1999)

	D.6. Changes in MySQL Connector/J 1.2b (04 July 1999)
	D.7. Changes in MySQL Connector/J 1.2.x and lower
	D.7.1. Changes in MySQL Connector/J 1.2a (14 April 1999)
	D.7.2. Changes in MySQL Connector/J 1.1i (24 March 1999)
	D.7.3. Changes in MySQL Connector/J 1.1h (08 March 1999)
	D.7.4. Changes in MySQL Connector/J 1.1g (19 February 1999)
	D.7.5. Changes in MySQL Connector/J 1.1f (31 December 1998)
	D.7.6. Changes in MySQL Connector/J 1.1b (03 November 1998)
	D.7.7. Changes in MySQL Connector/J 1.1 (02 September 1998)
	D.7.8. Changes in MySQL Connector/J 1.0 (24 August 1998)
	D.7.9. Changes in MySQL Connector/J 0.9d (04 August 1998)
	D.7.10. Changes in MySQL Connector/J 0.9 (28 July 1998)
	D.7.11. Changes in MySQL Connector/J 0.8 (06 July 1998)
	D.7.12. Changes in MySQL Connector/J 0.7 (01 July 1998)
	D.7.13. Changes in MySQL Connector/J 0.6 (21 May 1998)

	Appendix E. MySQL Connector/MXJ Change History
	E.1. Changes in MySQL Connector/MXJ 5.0.6 (04 May 2007)
	E.2. Changes in MySQL Connector/MXJ 5.0.5 (14 March 2007)
	E.3. Changes in MySQL Connector/MXJ 5.0.4 (28 January 2007)
	E.4. Changes in MySQL Connector/MXJ 5.0.3 (24 June 2006)
	E.5. Changes in MySQL Connector/MXJ 5.0.2 (15 June 2006)
	E.6. Changes in MySQL Connector/MXJ 5.0.1 (Never released)
	E.7. Changes in MySQL Connector/MXJ 5.0.0 (09 December 2005)

	Appendix F. MySQL Connector/OpenOffice.org Change History
	F.1. Changes in MySQL Connector/OpenOffice.org 1.0.2 (09 April 09 alpha)
	F.2. Changes in MySQL Connector/OpenOffice.org 1.0.1 (02 December 08 alpha)
	F.3. Changes in MySQL Connector/OpenOffice.org 1.0.0 (05 August 08 preview)

	Appendix G. MySQL Connector/C++ Change History
	G.1. Changes in MySQL Connector/C++ 1.0.x
	G.1.1. Changes in MySQL Connector/CPP 1.0.5 (21 April 2009)
	G.1.2. Changes in MySQL Connector/CPP 1.0.4 (31 March 2009 beta)
	G.1.3. Changes in MySQL Connector/CPP 1.0.3 (02 March 2009 alpha)
	G.1.4. Changes in MySQL Connector/CPP 1.0.2 (19 December 2008 alpha)
	G.1.5. Changes in MySQL Connector/CPP 1.0.1 (01 December 2008 alpha)

